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magnetic resonance in differentiation of breast
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Abstract

Background: The apparent diffusion coefficient (ADC) is a highly diagnostic factor in discriminating malignant and
benign breast masses in diffusion-weighted magnetic resonance imaging (DW-MRI). The combination of ADC and
other pictorial characteristics has improved lesion type identification accuracy. The objective of this study was to
reassess the findings on an independent patient group by changing the magnetic field from 1.5-Tesla to 3.0-Tesla.

Methods: This retrospective study consisted of a training group of 234 female patients, including 85 benign and
149 malignant lesions, imaged using 1.5-Tesla MRI, and a test group of 95 female patients, including 19 benign and
85 malignant lesions, imaged using 3.0-Tesla MRI. The lesion of interest was segmented from the raw image and
four sets of measurements describing the morphology, kinetics, DW-MRI, and texture of the pictorial properties of
each lesion were obtained. Each lesion was characterized by 28 features in total. Three classical machine-learning
algorithms were used to build prediction models on the training group, which evaluated the prognostic performance
of the multi-sided features in three scenarios. To reduce information redundancy, five highly diagnostic factors were
selected to obtain a compact yet informative characterization of the lesion status.

Results: Three classification models were built on the training of 1.5-Tesla patients and were tested on the independent
3.0-Tesla test group. The following results were found. i) Characterization of breast masses in a multi-sided way
dramatically increased prediction performance. The usage of all features gave a higher performance in both sensitivity
and specificity than any individual feature groups or their combinations. ii) ADC was a highly effective factor in improving
the sensitivity in discriminating malignant from benign masses. iii) Five features, namely ADC, Sum Average, Entropy,
Elongation, and Sum Variance, were selected to achieve the highest performance in diagnosis of the 3.0-Tesla patient
group.

Conclusions: The combination of ADC and other multi-sided characteristics can increase the capability of discriminating
malignant and benign breast lesions, even under different imaging protocols. The selected compact feature subsets
achieved a high diagnostic performance and thus are promising in clinical applications for discriminating lesion type and
for personalized treatment planning.
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Background
There is a growing clinical interest in developing nonin-
vasive tissue characterization methods that can be used
early in the course of diagnosis to assess risk and to guide
subsequent treatment by allowing clinicians to conduct a
therapy on an individual [1,2]. Magnetic resonance im-
aging (MRI) methods such as dynamic contrast-enhanced
(DCE) and diffusion-weighted (DW) methods are among
those of interest, as they provide noninvasive digital bio-
marker measurements of tissue properties that are highly
relevant to the assessment of tumor progression and/or
responses [3]. DW-MRI generates images that are sensi-
tive to water displacement at the diffusion scale and quan-
tifies such diffusion according to a quantitative index
reflecting the apparent freedom of diffusion (apparent
diffusion coefficient (ADC)). DW-MRI has been reported
to achieve higher detection rates than mammography
[4,5], and can easily be adopted as an adjunction for
standard clinical imaging protocols [1,6]. Preclinical and
clinical reports show that ADC reflects regional cellular-
ity, which results in significantly lower values in malig-
nant tumors than in benign breast lesions or normal
tissue due to an increasing restriction on the extracellu-
lar matrix and a higher fraction of signal from intracellu-
lar water [7-9]. It has been reported recently that the
mean ADC value of malignant tumors is reduced com-
pared with that of benign lesions and normal tissue in vivo
DW-MRI, and thus this technique is promising for the
characterization of breast lesions [10]. However, false nega-
tives and underestimation of cancer spread were also ob-
served owing to artifacts based on bleeding and tumor
structure [11].
DCE-MRI, on the other hand, uses the serial acquisi-

tion of images during and after the injection of an intra-
venous contrast agent. It has been shown to reflect
tumor vascularity and to achieve higher sensitivity than
other imaging modalities in delineating invasive lobular
carcinoma, which is not evident on conventional im-
aging [12,13]. DCE-MRI has high sensitivity to breast
cancer detection (89–100%), while DW-MRI shows good
performance in monitoring response after therapy [14].
A recognized weakness of both DCE-MRI and DW-

MRI is their low specificity in discriminating between
benign and malignant lesions (37–86%) [15-17]; there-
fore, biopsy tests are frequently adopted as a remedy,
which inevitably introduce sampling errors. Recent stud-
ies focus on comparing and retrospectively integrating
the contributions from different modalities by combin-
ing the merits of different modalities [18,19]. This work
has highlighted the potential of combining multi-modality
characteristics to differentiate the core of the tumor from
peritumoral tissues and normal tissues, and thus to provide
richer information on lesion status than individual imaging
modalities [20,21].
During the image interpretation phase, well-trained
and experienced radiologists are needed to read an MRI
image. However, even well-trained experts may have
high inter-observer variation rates, so computer-aided
diagnosis (CAD) is necessary to help radiologists in de-
tecting and classifying breast cancer [22]. Recently, sev-
eral CAD approaches have been studied to minimize the
effects of operator-dependent errors that are inherent in
magnetic imaging, and to increase diagnostic sensitivity
and specificity [23]. For example, feasibility and effi-
ciency of CAD systems for breast cancer detection and
classification by the use of ultrasound images has been
demonstrated by others [22,24]. A CAD system using se-
lected features from a set including lesion shape, texture,
and enhancement kinetics was built and tested using a
back-propagation neural network [25]. As much as 65–
90% of the biopsies turned out to be benign; therefore, a
crucial goal of breast cancer CAD systems is to distin-
guish benign from malignant lesions to reduce false pos-
itives. Many machine learning techniques such as linear
discriminant analysis, support vector machines (SVM)
and artificial neural networks have been studied for mass
detection and classification [26].
We, together with other researchers, have shown that

combining different modalities, such as DCE-MRI and
DW-MRI, can dramatically increase the power in discrim-
inating pathologically verified breast masses [21,27-29].
For example, Nie et al. reported six features selected
from morphology and texture descriptors by an artificial
neural network and developed a classification model for
computer-aided diagnosis [30]. Partridge et al. investi-
gated the discrimination power of ADC from DW-MRI
and demonstrated an improved positive predictive value
of breast lesions, which was calculated for DCE-MRI
alone [14].
However, these earlier studies mainly concentrated on

patients collected under similar protocols. Therefore,
the obtained prognostic models, as well as the selected
prognostic factors, were not validated extensively. We
conducted an independent validation study concerning
breast mass discrimination on two patient datasets col-
lected under different imaging conditions. We focus on
evaluating the potential discriminatory power by inte-
grating DCE-MRI with DW-MRI. Twenty-eight distinct
features were estimated to comprehensively characterize
the segmented mass. Three scenarios were analyzed to
resolve three major concerns. 1) Does the high diagnostic
power reported still hold in an independent validation
study? 2) Does a full characterization of breast mass im-
prove diagnostic performance? 3) Can a compact feature
set achieve good diagnostic performance? Our studies
have given positive answers to these three questions
through extensive experiments using standard classifica-
tion models including SVM [31-33], k-nearest neighbors
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(KNN) [34] and Random Forest [35]. Finally, five highly
prognostic factors that are invariant under various im-
aging conditions were found. These factors are valuable
in clinical practice since they can provide accurate infor-
mation solely dependent on tumor characteristics.

Methods
Clinical cases
This retrospective study was approved by the institu-
tional review board (IRB) and ethics committee of Sun
Yat-sen University Cancer Center, China. Neither patient
approval nor informed consent was required for review
of medical records or images. Informed consent was
signed and obtained from all patients before biopsy or
surgery prior to procedures as a daily practice. This
study consisted of two groups of patients with lesions
detected on breast MR images. These data were col-
lected at the Sun Yat-sen University Cancer Center. Be-
tween September 2008 and December 2011, a total of
234 consecutive female patients were enrolled in the first
group (training group), including 85 benign and 149 ma-
lignant lesions. All of the patients in the training group
underwent a breast MRI examination in a 1.5-Tesla sys-
tem. The mean age of these women was 46 years (ranging
from 18 to 78 years). Between January 2011 and December
2011, a total of 93 consecutive female patients with 18 be-
nign and 75 malignant lesions were enrolled in the second
group (test group). The patients in the test group under-
went a breast MRI examination in a 3.0-Tesla system. The
mean age of these 93 women was 45 years (ranging from
16 to 74 years).
The breast MRIs were interpreted using assessment

and breast density categories established by the American
College of Radiology and reported in the Breast Imaging
Reporting and Data System (BI-RADS) by two radiolo-
gists who had 3–10 years’ experience in breast imaging.
The entire breast images, breast tissue or lesions were
classified as per the following assessments: need additional
imaging evaluation (category 0); negative (category 1);
benign finding (category 2); probably benign finding
with a recommendation for additional imaging or biopsy
(category 3); suspicious (category 4); or highly suggestive
of malignancy (category 5). All of these cases were se-
lected by experienced radiologists based on the following
inclusion criteria. 1) Multiple breast MRI imaging se-
quences, including T1- and T2-weighted images, pre-
and post-contrast images, DCE-MRI and DW-MRI, can
be loaded simultaneously. 2) Nodal or mass lesions on
breast MRI classified as category 2–5. 3) All malignant
(category 4–5) and probably benign lesions (category 3)
on MR images were verified by open surgical biopsy or fine
needle biopsy, and all benign lesions (category 2) on MR
images were verified by biopsy or follow-up at least 2 years
after MRI examination.
Patients were excluded from the trial for any of the
following criteria: 1) history of previous breast biopsy
within a week or any therapy on breast lesions before
MRI examination; 2) lesions not visible in any sequences
on breast MRI imaging; 3) lesions classified as category
3–5 could not be verified by histopathology. Characteristics
and histopathology of the lesions in the two groups are
summarized in Table 1.

Image acquisition
The patients in the training group underwent MRI in a
1.5-Tesla superconductive magnetic system (GE, Signa,
HDx). The patients in the test group underwent MRI
in a 3.0-T superconductive magnetic system (Siemens,
Trip Tim). A breast-specific 4-channel phased-array
surface coil was used. The images consisted of axial
cross-sectional and sagittal T2-weighted fast spin-echo,
sagittal T1-weighted non-fat-suppressed, T1-weighted
fat-suppressed DCE before and after contrast material
administration, and DW sequences prior to gadolinium-
based contrast material injection in axial orientation. DCE
MR imaging data were acquired using an MRI-specific
automatic power injector (Medrad, Pittsburgh PA) to inject
0.1 mmol/kg body weight contrast medium gadolinium
diethylenetriaminepenta-acetic acid (Gd-DTPA) with a
hand venipuncture technique at a rate of 3 ml/s. Saline,
10 ml at 3 ml/s, was then injected to wash the tube.
For 1.5 Tesla MR imaging, DW-MRI was per-

formed using single-shot echo planar imaging, fat
suppression, b values of 0 and 800 s/mm2, 5000/75
(repetition time msec/echo time msec), 5-mm section
thickness, a 30 × 30-cm field of view, a 256 × 256 matrix,
0 mm section gap, and 130 sec acquisition time. DCE MRI
was obtained using 3D Fast FSPGR pulse sequence, with
repetition time msec/echo time msec of 5.5/2.6, a matrix
of 288 × 288, and nine postcontrast acquisitions. Temporal
resolution was 59 seconds per dynamic acquisition.
For 3.0 Tesla MR imaging, DW-MRI was acquired

using a spin-echo echo-planar imaging, fat suppression,
b values of 0 and 800 s/mm2, 5400/86 (repetition time
msec/echo time msec), 5-mm section thickness, a 30 ×
30-cm field of view, a 192 × 192 matrix, 1 mm section
gap, and 130 sec acquisition time. DCE MRI was ob-
tained using a (fast low angle shot three dimensional
imaging) FL3D sequence, with repetition time msec/echo
time msec of 4.15/1.55, a matrix of 256 × 205, and nine
postcontrast acquisitions. Temporal resolution was 270 sec-
onds per dynamic acquisition.

Lesion image segmentation
The manual segmentation was first performed by an ex-
perienced radiologist and optimized by a two-step ap-
proach through which we incorporated fuzzy c-means
clustering [36] and a gradient vector flow snake algorithm



Table 1 Data summary

Training group Testing group

Benign lesions# 1.3(0.5-3.0)cm 1.8(0.5-9.0)

Malignant lesions# 2.8(1.5-5.0)cm 2.6(0.5-5.5)cm

Number Percentage Number Percentage

BI-RADS assessments

category 2 30 12.8 17 18.3

category 3 41 17.6 41 44.1

category 4 98 41.8 27 29.0

category 5 65 27.8 8 8.6

Malignant lesions 149 63.68 75 80.6

Invasive ductal carcinoma 120 51.3 62 66.7

Intraductal carcinoma 17 7.26 9 9.7

Ductal carcinoma in situ 4 1.7 1 1.1

Mucinous carcinoma 3 1.28 2 2.1

Medullary carcinoma 1 0.43 0 0

Others 4 1.71 1 1.1

Benign lesions 85 36.32 18 19.4

Fibroadenoma 26 11.11 6 6.4

Fibrocystic changes 24 10.26 3 3.2

Fibroadenosis 3 1.28 3 3.2

Intraductal papilloma 4 1.71 3 3.2

Hyperplasia 3 1.28 1 1.1

Phyllodestumor 2 0.85’ 1 1.1

Adenomyosisepithelioma 1 0.43 0 0

Inflammation 1 0.43 1 1.1

Follow-up 21 8.97 0 0

Note: #summarizes the median size of the lesions, whose range is listed by parentheses.
Characteristics and histopathology of benign and malignant breast lesions.
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[37], the details of which we have reported elsewhere. This
segmentation was performed piece by piece and the lesion
region of interest in each piece was visually assessed by the
radiologists.

Pictorial characterization of the segmented lesion from
MR images
Once a segmented lesion image was obtained, one can
characterize its pictorial properties by using a standard
technique for image analysis. In our study, four groups
of features were designed to reflect the distinct charac-
teristics of the mass images, including kinetics, morph-
ology, texture and DW-MRI features.
The morphological group of features is traditionally

used in clinical practice and it mainly summaries the
one-dimensional statistics. Eleven morphological features
were estimated for each segmented lesion. The features
of the group include compactness, spiculation, extent,
elongation, solidity, circularity, entropy of radial length
distribution, fractal, heterogeneity, area, and eccentricity.
Texture features are widely used in the pattern recogni-
tion domain to assist in differentiating imaged objects
automatically, such as natural scenes versus non-natural
scenes. They have also been widely used to analyze breast
cancer images to discriminate abnormalities from normal
masses [38]. Fundamentally, texture features are high
order statistics of the image. Thirteen texture features
were estimated on the segmented lesion through its gray
level co-occurrence matrix [39].
The texture features included angular second moment,

contrast, correlation, inverse difference moment, average of
sum, variance of sum, entropy of sum, entropy, average of
difference, variance of difference, entropy of difference,
measurement of correlation 1 information, and measure-
ment of correlation 2 information [40]. Readers are referred
to Additional file 1 for detailed definition of the features.
Both the early-phase enhancement (EPE) and the signal

enhancement ratio (SER) [41] were estimated to represent
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the kinetic behavior of the lesion signal intensity before
and after the injection of Gd-DTPA. The time-intensity
profile for the classification of breast cancer on dynamic
magnetic resonance images through an artificial neural
network was used by the radiologist to achieve a better
diagnostic accuracy [42]. The kinetic features included EPE
and SER, defined by [43]

EPE ¼ I0 − Iinit
Iinit

%

SER ¼ I0 − Iinit
Ilast − Iinit

%

where I0, Iinit and Ilast represent the signal intensity in pre-
contrast, first post-contrast and last images, respectively.
The discrimination capability of ADC has been vali-

dated, and its expression is shown to be significantly
lower in malignant tumors than in benign breast lesions
or normal tissue in DW-MRI [6-8,11,44,45]. It has been
shown to be an effective parameter in distinguishing ma-
lignant from benign breast lesions [8]. Here, we used the
ADC value to characterize the lesion segmented from
the DW-MRI [28,46]. The DW-MRI intensity of each le-
sion was first dichotomized into a low and high value by
comparing the breast tissue with the corresponding
background. The averaged ADC values were computed
to represent the characteristics of DW-MRI.
The four groups generated 28 features for each lesion.

All the features obtained were extracted by two radiolo-
gists who had 10 years’ experience in interpreting breast
MRIs. They were blind to the histological results. The
status of breast masses enrolled in the study were all
verified histopathologically, or confirmed in at least the
following two years. The systematic pipeline, consisting
of four steps including image segmentation, feature cal-
culation, feature extraction and classification, is summa-
rized in Figure 1.

Classification performance of individual features
We first assessed the overall classification performance
of each individual feature in classifying lesion types. For
each individual feature, the best cut-off value with which
to differentiate benign from malignant lesions was first
estimated on the training group through analyzing the
receiver operating characteristics (ROC). The best cutoff
value was defined as the value corresponding to the
highest average of sensitivity and specificity. This value
was then evaluated on the test group to validate its diag-
nostic performance. To remove the bias due to different
magnetic field levels as well as inter-observer inter-
pretations, the two groups were normalized using a
standard z-transformation. The area under the maximum
likelihood-estimated binormal ROC curve (AUC) was
used as an index of performance. Features whose AUC
was larger than 0.5 were further analyzed using an
independent-samples t-test to compare malignant with
benign. A p-value of less than .05 was considered to indi-
cate a significant difference. Software (Matlab, version
R2011b; MathWorks Com. Ltd., Boston, MA, USA) was
used for all data analysis.

Classification performance of multi-sided features
It has been shown by ours research as well as in earlier
studies that an individual feature is less effective in the
characterization of breast lesions than multiple features
combined [21,27-29,46]. The evaluation of multiple fea-
tures combined together in discriminating benign lesions
from malignant ones is usually considered a binary clas-
sification problem. The status of the lesions is the ob-
served outcome, on which a supervised classification
model can be built. Consequently, the models obtained
are then applied to evaluate the ability of each feature
class (morphology, texture, kinetic texture and kinetic
signal intensity) and to classify each lesion as benign or
malignant. The features corresponding to each feature
class are used as inputs to the classifier individually and
in combination. To achieve extensive comparisons, three
classical classification models including SVM [31-33],
KNN [34] and Random Forest [35] were used in our
study. We tested the classification performance of the
features individually as well as in combination by using
the three classification models. Therefore, the bias caused
by the classification scheme could be largely ameliorated
and the diagnostic potential of the features could be
ascertained through extensive experiments. A short intro-
duction to the three classification models is provided in
Additional file 2.
Though each segmented lesion was fully characterized

by multi-sided descriptions, a redundant feature set will
inevitably result, and deteriorate classification performance.
To alleviate this drawback, a recently reported method for
feature selection, called the Local Hyperplane-based
RELIEF (LHR) feature weighting scheme, can be used to
select a subset of features with high prognostic values
[47-49]. The feature selection scheme of LHR is chosen
owing to its good performance, in particular its immunity
to classification models. We then tested the well-selected
features using the three classification models to evaluate
their discrimination power. A short introduction to the
LHR model is provided in Additional file 3.

Results
Diagnostic performance of each feature individually
Among the 28 estimated features, eleven of them achieved
large AUC (>0.5), as shown in Table 2. The top three fea-
tures are ADC, SER and sum average. The values of the
corresponding AUC are as high as 0.85, 0.71 and 0.70, re-
spectively. However, a common drawback of these three



Feature selection to have 

compact form 

Final decision:  

Malignant vs Benign? 

Morphology/Texture Features ADC Feature Kinetic Feature 

Segmented masses ADC value Kinetic curve 

Raw DCE-MRI Raw DW-MRI Enhanced MRI

Classification  

Figure 1 Overview of the analysis pipeline. Raw DCE-MRI is segmented to have suspicious breast mass, on which morphological and texture
features are estimated. The ADC map is calculated on DWI-MRI to have the ADC feature. Kinetic curve is obtained on the enhanced image of
DCE-MRI and then kinetic features are estimated. Features are extracted and selected within the combined features, and used by the classifier to
predict whether the sample is malignant or benign.
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factors is their low sensitivity measurement, making them
infeasible in clinic practice.

Diagnostic performance of multi-sided features
in combination
We considered three scenarios when evaluating the
classification performance of multi-sided features in
combination on the dataset. In the first scenario
(scenario 1), we tested whether entire features achieved
superior performance to individuals or combinations
during diagnostic classification. In the second scenario
(scenario 2), we tested whether ADC still possesses a high
prognostic value when the magnetic field changed from
1.5-Tesla to 3.0-Tesla. In the third scenario (scenario 3), we



Table 2 Diagnostic performances of the features

Feature name Parameter distribution* P-value# Specificity Sensitivity Accuracy AUC

Benign Malignant

Elongation 0.84 ± 0.13 0.87 ± 0.11 0.39 0.11 0.89 74.19 0.58

ADC 1.04 ± 0.21 1.50 ± 0.43 0.00 0.67 0.92 87.10 0.85

SER 1.20 ± 0.22 1.00 ± 0.50 0.01 0.33 0.97 84.95 0.71

Correlation 0.65 ± 0.16 0.60 ± 0.17 0.23 0.06 0.96 78.49 0.60

Inertia 1995.34 ± 1177.11 2773.68
1891.29

0.03 0.17 0.93 78.49 0.64

Entropy 8.48 ± 1.30 7.90 ± 1.34 0.09 0.11 0.99 81.72 0.64

Inverse Difference 0.10 ± 0.05 0.09 ± 0.03 0.22 0.11 0.97 80.65 0.65

Sum average 310.21 ± 37.83 285.58 ± 34.20 0.01 0.11 0.99 81.72 0.70

Sum variance 9235.63 ± 2999.89 10078.03 ± 3168.82 0.29 0.00 1.00 80.65 0.57

Sum entropy 6.76 ± 0.87 6.29 ± 0.90 0.04 0.11 0.99 81.72 0.66

Difference average 32.44 ± 10.15 38.73 ± 14.30 0.03 0.28 0.93 80.65 0.66

Difference variance 820.01 ± 486.86 1042.80
636.38

0.10 0.06 0.99 80.65 0.62

Difference entropy 5.40 ± 0.44 5.16 ± 0.47 0.04 0.11 0.99 81.72 0.66

Information Correlation 1 −0.58 ± 0.12 −0.61 ± 0.14 0.43 0.11 0.95 78.49 0.58

Note: 1. #Computed with paired-sample t-test.
2.*The distribution of the variables are denoted in form of Mean ± Standard Deviation.
Statistical analysis of the independent 3.0-Tesla patients group. For each individual variable, its diagnostic performance is tested through ROC analysis on 1.5-Tesla
patients group. The five variables (highlighted in italic) when combined together to consist of a highly diagnostic feature subset is shown to outperform over any
individual variables in Table 3.
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tested whether carefully selected features achieved superior
or comparable diagnostic performance to the entire feature
set. Three conclusions were drawn with respect to the
three scenarios.

Scenario 1: Entire features outperform individual or
combinations of features during diagnostic classification
The estimated feature groups described distinct char-
acteristics of the breast lesions that thus had differ-
ent discrimination powers. First, we investigated the
discrimination power of each feature group individually
and then compared them with their combinations.
Since the morphological information was widely used
in clinical practice, it was used as the borderline to
compare with other feature groups. Different combina-
tions of feature groups with morphological features were
tested using the three classifiers and their average per-
formance was also computed. The results are summa-
rized in Table 3. When using morphological features
alone, the classification of an independent dataset of pa-
tients showed a high specificity of 0.817 but a very low
sensitivity of 0.278 (tested by SVM), which implied a
low degree of true positive. Therefore it underesti-
mated the possibility of malignant masses when using
morphological information, resulting in a delay of clinical
treatment. However, the combination of the morpho-
logical feature with texture features, kinetic features or
both dramatically increased sensitivity. For example, the
average sensitivity was increased from 0.445 to 0.518,
0.556, and 0.611 after combining morphological features
with texture features, kinetic features and both, respect-
ively. The corresponding AUCs were improved from 0.566
to 0.61, 0.681 and 0.689. Therefore, the characterization of
breast masses in a multi-sided way would dramatically in-
crease the sensitivity value by increasing true positives.
Moreover, using the entire estimated feature set would
dramatically increase the performance of the three classi-
fiers, thus achieving the best results. For example, the
maximum specificity and sensitivity values were 0.722 and
0.924, which were increased by 30% and 4.8% more than
by using morphological, texture and kinetic features to-
gether, when using SVM on entire feature groups. On
average, entire feature groups showed a higher perform-
ance in both sensitivity of 0.685 and specificity of 0.912
than any individual groups or their combinations. The two
values were increased by 12.1% and 2.2% more than by
using morphological, texture and kinetic features together.

Scenario 2: ADC is highly diagnostic and can increase
sensitivity when combined with other features
It has been reported that ADC is a very informative
diagnostic variable [7-9]. The ADC is significantly lower
in malignant tumors than in benign breast lesions or



Table 3 Diagnostic performances of the classification models

Classifier Feature subset Specificity Sensitivity Accuracy AUC

SVM Morphology 0.278 0.817 67.74 0.526

Morphology + Texture 0.444 0.851 69.89 0.602

ADC + SER 0.722 0.926 81.72 0.781

Morphology + Kinetic 0.5 0.875 77.42 0.67

Morphology + ADC 0.611 0.903 81.72 0.739

Morphology + Texture + Kinetic 0.556 0.882 75.27 0.678

Entire*% 0.72230% 0.9244.8% 79.575.7% 0.76813.3%

KNN Morphology 0.5 0.85 64.52 0.569

Morphology + Texture 0.444 0.844 66.67 0.619

ADC + SER 0.722 0.917 73.12 0.784

Morphology + Kinetic 0.556 0.867 66.67 0.66

Morphology + ADC 0.611 0.892 74.19 0.794

Morphology + Texture + Kinetic 0.611 0.887 70.97 0.666

Entire*% 0.6110% 0.8991.4% 78.4910.6% 0.74411.7%

Random Forest Morphology 0.556 0.871 68.82 0.604

Morphology + Texture 0.667 0.864 53.76 0.609

ADC + SER 0.667 0.9 70.97 0.764

Morphology + Kinetic 0.611 0.885 69.89 0.713

Morphology + ADC 0.667 0.91 78.49 0.8

Morphology + Texture + Kinetic 0.667 0.906 75.27 0.722

Entire*% 0.7228.3% 0.9121% 69.89-7.2% 0.7879%

Average Morphology 0.445 0.846 67.03 0.566

Morphology + Texture 0.518 0.853 63.44 0.61

ADC + SER 0.703 0.914 75.27 0.776

Morphology + Kinetic 0.556 0.876 71.33 0.681

Morphology + ADC 0.630 0.873 78.13 0.778

Morphology + Texture + Kinetic 0.611 0.892 73.84 0.689

Entire*% 0.68512.1% 0.9122.2% 75.982.9% 0.76611.2%

Remark 1: Entire *%refers to using entire feature set, i.e., Morphology + Texture + Kinetic + ADC, and the subscript *%denotes the increased ratio from Morphology +
Texture + Kinetic to Morphology + Texture + Kinetic + ADC.
Diagnostic performances of three classical classification models and their average on different feature subsets. Incorporation of the feature of ADC will dramatically
increase the discrimination power of the classification models as well as their average.
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normal tissue in DW-MRI owing to its high cell density,
caused by an increased restriction of the extracellular
matrix and an increased fraction of signals from intracel-
lular water. Similar observations were produced in our
study. When using morphology and ADC features to-
gether, the classification performances of the three clas-
sifiers conducted on the independent group of patients
beat all other possible combinations of morphology and
other features, show in Table 3. The former achieved the
highest AUC of 0.739, 0.794, and 0.8 after SVM, KNN
and Random Forest, respectively. The average AUC of
morphology plus ADC was 0.778, which was higher than
that of morphology combined with texture (0.61), kinetic
(0.681) or both (0.689). Further analysis shows that the
good performance of ADC is due to its dramatic
improvement in sensitivity, implying outstanding discrim-
ination in malignant patients. When using features other
than ADC, the sensitivity value ranged from 0.278 to
0.667. After incorporating ADC during classification,
the range was greatly extended from 0.611 to 0.722.
A simple t-test shows that the two groups are statis-
tically different (p-value < 0.001), as shown in Table 3.
Finally, adding ADC to all other features achieved superior
performance to using the features without ADC. For ex-
ample, when using morphology, kinetic and texture fea-
tures together, the overall accuracies are 75.27% after
SVM, 70.97% after KNN, and 75.27% after Random For-
est. In comparison, the accuracy increased to 79.57%
after SVM, 78.49% after KNN, and 69.89% after Random
Forest. The suboptimal performance of Random Forest



Table 4 Diagnostic evaluation of the selected features

Selected feature Criteria Specificity Sensitivity Accuracy AUC

ADC SVM [31-33] 0.778 0.94 82.8 0.809

Sum average KNN [34] 0.667 0.91 78.50 0.815

Entropy Random Forest [35] 0.722 0.92 74.19 0.791

Elongation

Sum variance Average 0.722 0.923 78.50 0.805

Evaluation of the discrimination power of five selected informative features through three classical classification models.
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is mainly due to the classification scheme of the tree-like
structure, which is sensitive to data variations between
training and test data like ours. On average, the incorpor-
ation of ADC can dramatically increase the discrimination
power compared with not using ADC in terms of sensi-
tivity, specificity, accuracy and AUC from 0.611 to 0.685
(increase of 12%), 0.892 to 0.912 (increase of 2%),
73.84% to 75.98% (increase of 3%) and 0.689 to 0.766
(increase of 11%), respectively.

Scenario 3: Carefully selected features achieved the best
diagnostic performance
The estimated features were redundant in characterizing
the lesion masses and therefore reduced the prediction
Figure 2 Validations via ROC plot. ROC plot of the carefully selected fea
patients. For the individual features, thresholds were estimated from 1.5-Te
The resulted ROC curves were plotted in dashed lines. The ROC curves for
Random Forest, [35] were plotted in solid lines.
performance of the three classifiers. A feature selection
method reported recently, called LHR, uses a highly
diagnostic yet compact feature subset [49]. The five fea-
tures discovered include ADC, Sum Average, Entropy,
Elongation and Sum Variance. The results of the classifi-
cation performance on the selected feature subset are re-
ported in Table 4. Both the AUC and accuracy of the
selected features are better than for all features after
using the three classification models. For example, the
accuracies of SVM on the selected feature subset and on
the all-feature set were 82.8% and 79.57%, respectively.
The averaged AUC and accuracy on the selected features
were 78.5% and 0.805, which is increased from 75.98%
and 0.766 on all features. For clarity, the ROC curves for
tures from 1.5-Tesla patients in diagnostic prediction on 3.0-Tesla
sla patients and then were used on the independent 3.0-Tesla patients.
the selected prognostic features after SVM [31-33], KNN [34] and
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the three models after selected features in individually or
their combinations are shown in Figure 2.

Discussion
Both 1.5 T and 3.0 T systems are widely used in clinical
practice. Magnetic power can influence the imaging pa-
rameters, such as signal-to-noise ratio, contrast-to-noise
ratio, spatial resolution, and sequence acquisition time.
Whether these changes in imaging protocol can influ-
ence the diagnostic performance of the classification
models is rarely reported. The current study aimed to fill
the gap by building a prognostic model on the training
group of 1.5-Tesla patients and test it on the test group
of 3.0-Tesla patients. Our multi-parametric model pro-
vided a high accuracy both in the 1.5-Tesla and 3.0-Tesla
group. The results after the three well-designed scenarios
demonstrate that diagnostic performance can be dramatic-
ally improved by incorporating multi-sided characteriza-
tions of breast lesions in MRI. The ADC parameter in
particular shows a close relationship with lesion malig-
nancy due to a high cell density, caused by an increased
fraction of signals from intracellular water. This parameter,
when combined with morphology and enhancement kin-
etic features, can increase both the specificity and sensitiv-
ity in discriminating lesion types, and thus is a promising
candidate to provide supplementary assessment of lesion
status.
Our study has some limitations. First, the databases of

the 3.0-Tesla group were not large enough to allow the
extraction of a strict statistical model. Considering that
both 1.5-Tesla and 3.0-Tesla systems are widely used in
clinical practice, it will be valuable to evaluate the diag-
nostic performance of MRI at 3.0-Tesla on larger sample
sizes in future research. Second, the pictorial characteris-
tics were estimated on 2D slices and currently we are
working on 3D characterization of the lesions to obtain
accurate volumetric measurements.

Conclusions
The current study has highlighted the potential of com-
bining DCE-MRI with DW-MRI to differentiate breast
mass from normal via extensive validation. Our study
demonstrates that diagnostic performance can be dra-
matically improved by characterization of breast lesions
through the incorporation of multi-modalities of the
MRIs, thus yielding better mass classification than with
individually processed features of the two modalities.
The ADC parameter is confirmed to have a high diag-
nostic value alone or in combination with other features
and our analysis shows that its good performance is
mainly due to improvements in specificity. Our study
also reported a compact yet informative variable for
diagnostic prediction that has the highest performance.
This may be useful for building a CAD system combin-
ing of the ADC value, morphological, and DCE fea-
tures to help radiologists in classifying breast lesions
on MRI.
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