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Abstract
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Keywords: CAV1, Hypermethylation, EAC, ESCC

Background: Esophageal cancer ranks eighth among frequent cancers worldwide. Our aim was to investigate
whether and at which neoplastic stage promoter hypermethylation of CAVT is involved in human esophageal

Methods: Using real-time quantitative methylation-specific PCR (qMSP), we examined CAV1 promoter hypermethylation
in 260 human esophageal tissue specimens. Real-time RT-PCR and gMSP were also performed on OE33 esophageal
cancer cells before and after treatment with the demethylating agent, 5-aza-2"-deoxycytidine (5-Aza-dQ).

Results: CAVT hypermethylation showed highly discriminative ROC curve profiles, clearly distinguishing esophageal
adenocarcinomas (FAC) and esophageal squamous cell carcinomas (ESCC) from normal esophagus (NE) (EAC vs. NE,
AUROC =0.839 and p < 0.0001; ESCC vs. NE, AUROC =0.920 and p < 0.0001). Both CAVT methylation frequency and
normalized methylation value (NMV) were significantly higher in Barrett's metaplasia (BE), low-grade and high-grade
dysplasia occurring in BE (D), EAC, and ESCC than in NE (all p < 0.01, respectively). Meanwhile, among 41 cases
with matched NE and EAC or ESCC, CAVI NMVs in EAC and ESCC (mean = 0.273) were significantly higher than
in corresponding NE (mean = 0.146; p < 0.01, Student’s paired t-test). Treatment of OE33 EAC cells with 5-Aza-dC
reduced CAVI methylation and increased CAVT mRNA expression.

Conclusions: CAVT promoter hypermethylation is a frequent event in human esophageal carcinomas and is
associated with early neoplastic progression in Barrett's esophagus.

Background

Esophageal cancer ranks eighth among frequent cancers
worldwide, with estimated over 480,000 new cases diag-
nosed and 400,000 deaths globally in 2008 [1]. There
are two major histologic subtypes in esophageal cancer:
esophageal adenocarcinoma (EAC), which is more preva-
lent in Western countries, with a rapid recent rate of
increase in incidence; and esophageal squamous cell
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carcinoma (ESCC), which occurs at high frequencies
in many developing countries, especially in Asia, and
including China [2]. Since esophageal cancer exhibits
highly aggressive behavior, with rapid progression to
death [3,4], it is essential to gain a better understanding of
the molecular events underlying these tumors In order
to make further inroads into survival, it is important to
discover novel early detection biomarkers and targets
for chemoprevention or therapy.

Caveolae, which are small (50—100 nanometer) invagi-
nations of the plasma membrane in many vertebrate cell
types, are vital subcellular structures that regulate endo-
cytosis, vesicular traffic, and signal transduction [5].
Caveolin-1 (CAV1), a cytoplasmic 22-kDa scaffold pro-
tein, is an essential component of caveolae [6]. In recent
years, several studies have reported downregulation of
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CAV1 protein levels in several malignancies, including
ovarian, breast [7-10], prostate [11], oral squamous cell
[12] and lung cancer [13]. Prade et al also showed that
the majority of EACs exhibit loss of CAV1 expression in
tumor vs. matched normal esophageal epithelia [14].
These results suggest that reduced CAV1 expression may
represent a general characteristic of tumors, and that
CAVI may inhibit tumor formation. Aberrant methylation
of promoter CpG islands upstream of tumor suppressor
genes is now well-established as a major mechanism of
gene inactivation in tumorigenesis [15], including in ESCC
and EAC [16-23]. Several of these aberrantly methylated
genes appear to represent useful prognostic markers, as
they precede and predict the progression of BE to EAC.
Aberrant promoter methylation of CAVI is associated
with inactivation of its expression in breast and colorectal
cancers [24-27]. Therefore, we hypothesized that CAVI
was inactivated via promoter hypermethylation in human
esophageal cancers, and that hypermethylation of CAVI
constituted an early event in the genesis of EAC.

Methods

Tissue samples

In the current study, 67 normal esophagi (NE), 60 Barrett’s
metaplasias without dysplasia (BE), 19 low-grade (LGD)
and 21 high-grade (HGD) dysplasias occurring in BE (D),
67 EACs, and 26 ESCCs were examined. Outcome data
were derived from a comprehensive database maintained
by the institution’s cancer registry and from patients’ med-
ical records at the University of Maryland and Baltimore
Veterans Affairs Medical Centers. All patients provided
written informed consent under a protocol approved
by the Institutional Review Boards at the University of
Maryland and Baltimore Veterans Affairs Medical Centers,
where all esophagogastroduodenoscopies were performed.
Biopsies were taken using a standardized biopsy protocol,
as previously described [17]. Research tissues were obtained
from grossly apparent Barrett’s epithelium or from mass
lesions in patients manifesting these changes at endo-
scopic examination, and histology was confirmed using
parallel aliquots obtained at endoscopy. All biopsy speci-
mens were stored in liquid nitrogen before DNA/RNA
extraction. Clinicopathologic characteristics are summa-
rized in Table 1.

Cell lines

The EAC (OE33) cell line was obtained from collaborators
at the University of Michigan (Dr. David Beer). These cells
were cultured in 47.5% RPMI 1640, 47.5% F-12 supple-
mented with 5% fetal bovine serum.

DNA and RNA extraction
Genomic DNA was extracted from biopsies and cultured
cells using a DNeasy Tissue Kit (Qiagen, Valencia, CA).
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Total RNA was isolated cultured cells using TRIzol
reagent (Invitrogen, Carlsbad, CA). DNAs and RNAs
were stored at —80°C before analysis.

Bisulfite treatment and real-time quantitative
methylation-specific PCR

DNA was treated with bisulfite to convert unmethylated
cytosines to uracils prior to qMSP, as described previously
[27]. Promoter methylation levels of CAVI were determined
with the ABI 7900 Sequence Detection System (Applied
Biosystems, Foster City, CA), using primers and probes as
described previously [27]. A standard curve was generated
using serial dilutions of CpGenome Universal Methylated
DNA (CHEMICON, Temecula, CA). The normalized
methylation value (NMV) was defined as follows: NMV =
(CAV1-S/CAVI1-FM)/(ACTB-S/ACTB-FM), where CAVI-S
and CAVI-FM represent the methylation levels of CAV1
in sample and universal methylated DNAs, respectively,
while ACTB-S and ACTB-FM correspond to f§-Actin in
sample and universal methylated DNAs, respectively [21].

Real-time quantitative RT-PCR

To determine CAVI mRNA levels, one-step real-time
quantitative reverse-transcriptase polymerase chain reac-
tion (RT-PCR) was performed using a Qiagen QuantiTect
Probe RT-PCR Kit (Qiagen, Hilden, Germany) and the
ABI 7900 Sequence Detection System (Applied Biosystems,
Foster City, CA). Primers and probes were the same as pre-
viously reported [27]. §-Actin was used for normalization of
data. A standard curve was generated using serial dilutions
of qPCR Reference Total RNA (Clontech, Mountainview,
CA). The normalized mRNA value (NRV) was calculated
according to the following formula for relative expression
of target mRNA: NRV = (TarS/TarC)/(ACTB-S/ACTB-C),
where TarS and TarC represent levels of mRNA expression
for the target gene in sample and control mRNAs,
respectively, whereas ACTB-S and ACTB-C correspond
to amplified f§-Actin levels in sample and control mRNAs,
respectively [21].

5-Aza-dC treatment of esophageal cancer cell lines

To determine whether CAV1 inactivation was due to
promoter hypermethylation in esophageal cancer, OE33
EAC cells were subjected to 5-Aza-dC (Sigma, St. Louis,
MO) treatment as previously described [21]. Briefly, 1 x
10° cells/ml were seeded onto a 100 mm dish and grown
for 24 h. Then, 1 ul of 5 mM 5-Aza-dC per ml of cells was
added every 24 hours for 6 days. DNA and RNA were
harvested on day 4.

Data analysis and statistics

Receiver-operator characteristic (ROC) curve analysis [28]
was performed using NMVs for the 67 EAC, 26 ESCC
and 67 NE by Analyse-it software (Version 1.71, Analyse-
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Table 1 Clinicopathologic characteristics and methylation status of Caveolin 1 in human esophageal tissues

Number Age NMV Methylation status (cutoff 0.2)
Clinical characteristics of samples  (year) mean Mean P Frequency UM M P
Barrett's segment
Short-segment ( <3 cm ) 14 623 0327 >005° 71.4% 4 10 > 005"
Long-segment ( >=3 cm) 16 62.8 0439 81.3% 313
Histology
Normal esophagus 67 644 0.134 254% 50 17
Barrett's metaplasia 60 63.7 0374 <001¥° 81.7% 1149 *<0017
Dysplasia in Barrett's esophagus 40 653 0254 <001¥%/<001”°  60.0% 16 24 *<0017/°<005"
Low-grade dysplasia 19 65.3 0269 < 001%%/ <005 57.9% 8 11 *<001"/°<005"
High-grade dysplasia 21 652 0240 <001¥%/<001”°  61.9% 8 13 *<001'/°>005"
EAC 67 65.1 0294 <0017/ <001"°  657% 23 44 *<0017/°<005"
Well differentiation 10 66.2 0344 >005%° 80.0% 2 8 > 005"
Moderate differentiation 24 66.1 0.29 58.3% 0 14
Poor differentiation 22 65.5 0.297 63.6% 8 14
Unknown 11 61 0252 72.7% 38
ESCC 26 625 0326 <0018 80.8% 5 2 * <0017
Well differentiation 3 617 0307 >005% 100.0% 0 3 > 005"
Moderate differentiation 11 62.7 0.381 90.9% 1 10
Poor differentiation 5 64.2 0.256 80.0% 1 4
Unknown 7 61.1 0.299 57.1% 3 4
Stage of EAC patients
| 7 63 0358 >005% 71.4% 2 5 > 005"
I 15 65.2 0.286 73.3% 4 11
I 25 64.6 0.284 56.0% 11 14
\Y 7 663 0.242 28.6% 5 2
Lymph node metastasis in EAC patients
Negative 25 64.9 0314 >005° 64.0% 9 16 > 005"
Positive 25 646 0276 56.0% 1114
Smoking status of EAC patients
Never 6 585 0325 >005°%° 83.3% 15 > 005"
Former 24 685 0276 62.5% 9 15
Current 13 60.8 0303 53.8% 6 7
Alcohol consumption of EAC patients
Never 16 653 0285 >005°%° 68.8% 5 1 > 0,057
Former 15 63 0.302 66.7% 5 10
Current 10 65.7 0315 60.0% 4 6

EAC: esophageal adenocarcinoma; ESCC: esophageal squamous cell carcinoma; NMV: normalized methylation value; UM, unmethylated; M, methylated;
SStudent's t test; *comparisons made to normal esophagus; *comparisons made to Barrett’s metaplasia; **Kruskal-Wallis test; TChi-square for independence

test; *Fisher's exact test.

it Software, Leeds, UK). Using this approach, the area
under the ROC curve (AUROC) yielded optimal sensitiv-
ity and specificity to distinguish normal from malignant
esophageal tissues, and corresponding NMV thresholds
were calculated for CAVI. The cutoff value determined

from this ROC curve was applied to determine the fre-
quency of CAVI methylation in each tissue type included
in the present study. For all other tests, Statistica (version
6.1; StatSoft, Inc., Tulsa, OK) was used. Differences with
p < 0.05 were deemed significant.
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Results and discussion

CAV1 promoter hypermethylation in different

esophageal tissues

Promoter hypermethylation of the CAVI gene was ana-
lyzed in 67 NE, 60 BE, 40 D (19 LGD and 21 HGD), 67
EAC and 26 ESCC samples. All assays in this study were
performed in duplicate format, and data showed reprodu-
cible and concordant results. CAVI promoter hypermethy-
lation showed highly discriminative ROC curve profiles,
which clearly distinguished both EAC (p<0.0001) and
ESCC (p <0.0001) from NE. AUROC of EAC vs. NE and
ESCC vs. NE were 0.839 and 0.920, respectively. ROC
curves with corresponding AUROCs for CAVI of EAC vs.
NE and ESCC vs. NE are displayed in Figure 1.

The cutoff NMV for CAVI (0.2) was chosen from
ROC curves to maximize sensitivity and specificity. Mean
NMYV and frequency of CAVI hypermethylation for each
tissue type are shown in Table 1. The mean NMV of
CAVI1 was significantly higher in ESCC (0.326), EAC
(0.294), D (0.254), HGD (0.240), LGD (0.269) and BE
(0.374) than in NE (0.134; p <0.01, Student’s t-test). The
frequency of CAV1 hypermethylation was increased in
BE (81.7%), D (60%), and EAC (65.7%) vs. NE (25.4%;
p<0.01, p<0.01 and p < 0.01, respectively; Chi-square for
independence test). CAVI was hypermethylated in 21
(80.8%) of 26 ESCCs. There were no significant differences
between EAC and ESCC in mean CAVI NMV (0.294 vs.
0.326; p > 0.05) or hypermethylation frequency (65.7% vs.
80.8%, p > 0.05). Among 41 cases with matched NE and
T (EAC or ESCC), CAVI NMVs in T (mean =0.273)
were significantly higher than in corresponding NE
(mean = 0.146; p < 0.01, Student’s paired t-test; Figure 2A
and B). Among 15 cases with corresponding NE, BE and
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EAC, one (No.8) was methylated only in EAC, three
(No.7, 13 and 17) were methylated only in BE, five (No.1,
6, 9, 14 and 28) were methylated in both BE and EAC,
and the remaining six were methylated in NE, BE and
EAC simultaneously (Figure 2C). In addition, both CAV1
mean NMV and hypermethylation frequency were signifi-
cantly higher in BE (0.374, 81.7%) than in D (0.254, 60%)
and EAC (0.294, 65.7%; p < 0.01 and p < 0.05, respectively;
Figure 3).

No significant associations were observed between CAVI
promoter hypermethylation and patient age, survival (data
not shown), smoking or alcohol consumption status,
BE segment length, tumor stage or lymph node metas-
tasis, histologic tumor differentiation, or histologic type
of esophageal carcinoma (Table 1).

CAV1 methylation and mRNA levels in OE33 cells after
5-Aza-dC treatment

OE33 cells were subjected to demethylation by 5-Aza-
dC treatment. On day 4 after 5-Aza-dC treatment, the
NMV of CAVI was diminished, while CAVI mRNA
levels were increased (Figure 4).

CAVI has already been previously reported to have
tumor suppressor activity via. inhibiting cell prolifera-
tion and/or metastesis in several human cancers [29-32].
CAV1 down-regulation has been reported in many types
of cancer, including breast, lung, oral and esophagus
[9,10,12-14]. These results suggest that low expression
of CAV1 may represent a general characteristic or even
a requirement of transformed cells in many kinds of
carcinogenesis. Potential mechanisms underlying this
suppression of expression include posttranscriptional and
epigenetic changes, such as aberrant DNA methylation
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Figure 1 Receiver-operator characteristic (ROC) curve analysis of normalized methylation value (NMV). ROC curve analysis of CAVT NMVs
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Figure 4 CAV1 methylation and mRNA expression in OE33 cells
after treatment with 5-aza-2’-deoxycytidine (5-Aza-dC). After
5-Aza-dC treatment, the NMV of CAVT was diminished, while the
normalized mRNA value (NRV) of CAVT was increased.

[26,27,33]. In the current study, we systematically investi-
gated hypermethylation of the CAVI gene promoter in
primary human esophageal lesions of differing histological
types and grades. Our results demonstrate that CAV1
promoter hypermethylation occurs frequently in both
human EAC and ESCC (Table 1). CAVI NMVs in T were
significantly higher than those in corresponding NE
(p <0.01, Students paired t-test) in 41 cases with corre-
sponding NE and T (Figure 2). Moreover, hypermethylation
of the CAVI promoter was significantly more frequent in
premalignant lesions, such as BE and D, as well as in EAC,
than in NE (Table 1). There was no significant association
between CAVI promoter hypermethylation and histological
subtype of esophageal carcinoma (EAC vs. ESCC). These
results suggest that hypermethylation of CAV1 may
represent an early epigenetic event in these subjects,
that the frequency of this epigenetic event increases
during esophageal carcinogenesis, and that this event is
highly prevalent in human esophageal cancers.

Barrett’s carcinogenesis is a multistep process compris-
ing genetic and epigenetic alterations in tumor suppressor
genes, cell cycle-regulatory genes, and genes essential for
cell-cell adhesion [34,35]. Progressive accumulation of
gene alterations is postulated to underly the transition of
normal squamous epithelium to BE [36]. Many previous
studies, focused on promoter hypermethylation of candi-
date genes for esophageal carcinomas, have shown staged
growth in methylation frequency from nondysplastic
esophageal squamous cell mucosa to BE and finally to
EAC [15,37,38]. Interestingly, it has been suggested that
CAV1 acts as a tumor modulator in a tissue type- and
stage-dependent manner by binding several different
proteins involved in different signal transduction [6,39-42].
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Recently, we reported a preponderance of hypomethyla-
tion over hypermethylation events during the epigenomic
program of BE pre-progression by comparing global DNA
methylation profiles of two groups of BE patients, termed
‘progressors’ and ‘non-progressors’ [16]. Although the fre-
quency of CAV1 hypermethylation in this study increased
in parallel with esophageal carcinoma progression, the
mean NMV and frequency of CAVI hypermethylation
were higher in BE than in D and EAC, and these differ-
ences were significant by Student’s t test (i.e., there was
an inverse correlation between CAV1 hypermethylation
and Barrett’s-associated esophageal neoplastic progression)
(Figure 3). Taken together, these data suggested that
the CAVI promoter is relatively hypomethylated in
EAC and D vs. BE, implying that, at least in part, this
event represents an early part of the temporal program
of Barrett’s-associated esophageal neoplastic progression.
Two previous studies demonstrated that expression of
CAV1 was elevated in ESCC compared to corresponding
normal tissues, and its elevation was associated with
malignant progression and poor survival [43,44]. These
inconsistent results may have been due to different ana-
lytic methods used, ethnic groups studied, and smaller
sample sizes in the previous studies.

In accordance with previous findings [11,45,46], we
observed that methylation of CAVI in EAC cell lines
was associated with silenced or reduced expression of
CAVI1 mRNA. In this study, reversal of methylation and
restoration of CAV1 expression were induced in OE33
cells by 5-Aza-dC treatment (Figure 4). Restoration of
CAV1 mRNA expression due to 5-Aza-dC treatment is
consistent with the interpretation that DNA hyperme-
thylation silences the CAVI gene. Although 5-Aza-dC or
its derivatives have shown potential as therapeutic anti-
cancer drugs [47-49], relatively hypomethylation of CAV1
in EAC and D vs. BE in the current study, and together
with previous data on the re-expression of CAV1 in
advance cancerf, would make CAV1 not an ideal molecu-
lar target for anti-cancer therapy involving demethylation
in EAC patients.

Conclusions

The current study indicates that hypermethylation of the
CAV1 promoter, leading to gene silencing, is a common
event in human esophageal cancer and occurs early during
Barrett’s-associated EAC. These results provide a basis for
further research on CAV1 as a potential biomarker for the
early diagnosis, classification, stratification and prognosti-
cation of esophageal cancers.
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