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Abstract

Gene therapy

Background: Expression and function of sodium iodide symporter (NIS) is requisite for efficient iodide transport in
thyrocytes, and its presence in cancer cells allows the use of radioiodine as a diagnostic and therapeutic tool in
thyroid neoplasia. Discovery of NIS expression in extrathyroidal tissues, including transformed cells, has opened a
novel field of research regarding NIS-expressing extrathyroidal neoplasia. Indeed, expression of NIS may be used as
a biomarker for diagnostic, prognostic, and therapeutic purposes. Moreover, stimulation of endogenous NIS
expression may permit the radioiodine treatment of extrathyroidal lesions by concentrating this radioisotope.

Results: This review describes recent findings in NIS research in extrathyroidal malignancies, focusing on breast and
urological cancer, emphasizing the most relevant developments that may have clinical impact.

Conclusions: Given the recent progress in the study of NIS regulation as molecular basis for new therapeutic
approaches in extrathyroidal cancers, particular attention is given to studies regarding the relationship between NIS
and clinical-pathological aspects of the tumors and the regulation of NIS expression in the experimental models.

Keywords: Sodium iodide symporter (NIS), Extrathyroidal tissues, Breast cancer, Urological malignancies,

Introduction

The sodium iodide symporter (NIS) is a glycosylated pro-
tein with 13 trans-membrane domains, belonging to the
solute carrier family [1,2] (Figure 1). It is able to transport
2 Na' and one I through the membranes, depending on
the Na" gradient maintained by Na*/K* ATPase [3]. The
highest expression levels are detectable in the thyroid,
where is located in the basolateral membrane of the thyro-
cytes [3]. NIS activity is necessary to provide the iodide
concentration gradient inside thyroid cells, used for the
synthesis of thyroid hormones in a multistep process re-
quiring the action of pendrin, thyroid peroxidase (TPO),
dual oxidase-2, and thyroglobulin. The thyroid stimulating
hormone (TSH) is the main regulator of the iodide trans-
port in the thyrocytes, and it does so by acting on NIS
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transcription, NIS protein half-life, and its translocation to
the thyrocyte basal plasma membranes [3-5].

NIS expression in thyroid cancer and radioiodide therapy

The presence of NIS in thyroid cancer cells, by allowing
highly efficient iodide accumulation, is exploited for the
use of radioactive substrates of NIS for diagnostic and
therapeutic purposes. Thus, when functional NIS expres-
sion is maintained in metastatic lesions, radioiodide-131
(') administered after total thyroidectomy permits se-
lective ablation of neoplastic tissue. However, expression
of endogenous NIS and subsequent radioiodide uptake is
often reduced in thyroid cancer, especially in metastatic
tissue [6]. Stimulation of NIS expression is therefore re-
quired prior to '*'I administration, and is currently ob-
tained by elevating TSH levels [7,8]. However, there are
some tumors, especially the less differentiated ones, that
are unresponsive to such a treatment [7,8]. An increase of
NIS expression, and subsequent iodide concentration
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Figure 1 NIS schematic model. The transporter contains 13 transmembrane domain (in red) and 3 N-linked glycosylation sequences (in green).

ability, has been successfully obtained in thyroid tumor
cells also by using inhibitors of some oncogenic signaling
pathways in in vivo and in vitro experimental models [9].
Indeed, restoration of NIS expression by differentiation-
inducible agents, acting by genetic or epigenetic mecha-
nisms [9,10], or enhancement of iodide uptake by using
potential NIS translocation stimulators, have been reported
in less differentiated thyroid cancer cells [11]. Altogether,
such findings provide a promising basis to extend the
radioiodine approach for those tumors that are still nonre-
sponsive to radioiodine treatment.

NIS expression in extrathyroidal tissues

Various extra-thyroidal tissues express NIS at mRNA
and/or protein levels [12]. By using immunohistochemis-
try, Wapnir and coworkers showed that several normal
tissues, including bladder, colon, endometrium, kidney,
prostate, and pancreas, expressed NIS protein. However,
plasma membrane immunopositivity was confirmed only
in salivary ductal, gastric mucosa, and lactating mammary
cells [13] (Table 1). Iodide uptake was also reported in
choroid plexus cells in a pre-NIS era [14-16].

Table 1 NIS expression in normal extrathyroidal tissues

Tissues mRNA Protein (¥) References
Lacrimal glands + [17]
Salivary glands + [13,18-20]
Stomach + + [13,18,19]
Colon + (13]
Testis + + [21]
Endometrium + [13]
Placenta + + [22]
Lactating mammary + [13,23]

(*) only when detected in the plasma membrane.

NIS acts in salivary glands, stomach, and intestine to pro-
vide efficient adsorption of iodide contained in the food [3].
While salivary glands (mainly the parotid glands) and stom-
ach cells transfer iodide from the bloodstream to the lumen
of the gastrointestinal tract [24], intestines take the iodide
from the lumen to transport it into circulation [25]. For this
reason NIS is expressed on the basolateral membrane of
salivary ductal and gastric mucosa cells [19,26], and, vice-
versa, on the apical membrane of the brush border of small
intestine [25].

Lactating mammary glands are able to provide a suffi-
cient amount of iodide in the milk to reach a concentration
of approximately 150 pg/L [27]. This is obtained thanks to
abundant NIS expression on the basolateral membrane of
the alveolar cells [28], which mediates the transfer from
the bloodstream into milk. Stimulation of NIS expression
occurs during lactation due to increased levels of various
hormones, including oxytocin, prolactin, and estrogens
[23,28]. In contrast, non-lactating normal breast tissue does
not express NIS protein and is not able to accumulate iod-
ine, unless pathological conditions like hyperprolactinoemia
occur [29]. Indeed, Bruno and coworkers [12], investigating
a series of patients who underwent whole-body "*'I follow-
ing the administration of high doses of **'I for thyroid car-
cinoma, demonstrated that only a very small fraction of
normal breast tissues presented efficient iodine uptake.

NIS also operates in placental cells, contributing to
the transfer of iodide from the mother to the fetal cir-
culation [22].

Finally, the presence of NIS mRNA and protein was
demonstrated at low levels also in fetal and adult human
testicular tissues [21]. Expression of NIS in the germinal
cells may represent the molecular basis for the concen-
tration of radioiodine, responsible for the alterations
observed in male patients undergoing this treatment
for thyroid cancer. However, the low amount of NIS in
the plasma membranes, as well as the presumable rapid
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efflux of radioiodide due to the absence of an organification
machinery in testicular cells, may explain the presence of
only transient alterations observed in these patients [21].

NIS expression and radioiodide uptake in

extrathyroidal tumors

The crucial role of radioiodide-based therapy in thyroid
cancer and the characterization of the molecular basis of
iodide transport following the cloning of NIS, including its
detection in some extrathyroidal tissues, has encouraged a
large series of studies aimed to try to extend radioiodine
treatment even to extrathyroidal tumors after induction of
NIS expression.

When this strategy is adopted for the treatment of
extrathyroidal tumors, it becomes necessary to prevent
radioiodide uptake and concentration in normal thyro-
cytes. Selective downregulation of NIS expression, as well
inhibition of organification, has been successfully obtained
by using combination of T3 and methimazole [30]. In
addition, also high doses of iodide are able to downregu-
late NIS expression in normal thyrocytes.

The two strategies currently explored to induce NIS
expression in cancer cells include the transfer of NIS
gene using vectors (mainly viruses) and constructs able
to ensure the selective expression in tumor cells, or, al-
ternatively, the stimulation of the expression of a func-
tional endogenous NIS.

In the next sections, we will describe recent findings
regarding NIS expression in extrathyroidal malignancies,
focusing on breast and urological cancers, and empha-
sizing the most relevant developments in both gene
therapy and endogenous NIS stimulation strategies.

NIS and breast cancer

NIS expression in breast cancer

The demonstration of NIS presence in lactating breast [23]
has suggested that this protein could be expressed also in
breast cancer (BC). Accordingly, in the seminal study in
which NIS expression in lactating breast was discovered, it
was shown that this protein is expressed in more than 80%
of both invasive and in situ BCs [23]. However, both plasma
membrane and intracellular immunohistochemical signal
was detected (Table 2), which is in contrast to the only
basolateral membrane signal detected in lactating breast.
The notion that the NIS protein is expressed in a large
number of breast carcinomas was confirmed by the same
group by investigating a larger cohort of samples [13]. In
this study it was found that NIS is also expressed in about
80% of fibroadenomas. Again, in breast carcinomas, the
NIS protein was predominantly located in the cytoplasm,
suggesting that in BC a deficiency of NIS trafficking from
cytoplasm to plasma membrane occurs. High levels of NIS
positivity in BC by immunostaining has also been described
in other studies [31,32]. It should be pointed out, however,
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Table 2 NIS expression in breast cancer tissues

No of specimens mRNA Protein positive (%) References
45 nd. 69 [23]
50 nd. 90 [31]
12 + 100 [35]
27 nd. 30 [30]
23 nd. 65 [36]
28 + 7 [34]
75 + nd. [37]
32 nd. 92 [32]

n.d.: not determined.

that such a large positivity, when obtained by immunobhis-
tochemistry in the cytoplasmic compartment, could be due
to non-specific staining [33]. In order to understand the
molecular basis of NIS inability to target the plasma mem-
brane in a large fraction of BC, genes whose expression is
associated to NIS plasma membrane localization have been
recently identified by microarray analysis [34]. Interestingly,
the cysteinyl-tRNA synthetase gene is highly associated
with cell surface NIS protein levels only in the estrogen re-
ceptor (ER)-positive BC subtype, suggesting that molecular
mechanisms responsible for reduced plasma membrane
localization of NIS may be different in a distinct subtype of
BC [34].

Triple-negative BCs (TNBCs) are defined by the absence
of ER, the progesterone receptor (PR), and the human epi-
dermal growth factor receptor 2 (HER2) expression [38].
Because of absence of ER, PR, and HER2, TNBC cannot
be treated by hormonal therapy or HER2-targeting com-
pounds, leaving chemotherapy as the only therapeutic
tool. Patients with this disease have a worse outcome than
patients with other BC subtypes [38,39]. It has been shown
that NIS is expressed in about 65% of TNBCs and that in
a fraction of them a strong plasma membrane localization
is present [40]. Accordingly, in the same study, efficient
iodine uptake was detected by '*’I scintigraphy in a pa-
tient. The notion that the NIS protein expressed in BC is
able to allow radioiodine uptake has been reported in
other studies as well. In fact, by studying women with in-
filtrating duct carcinoma, high NIS expression at both
transcriptional and translational level and its ability to
transport iodine in cancer tissue has been demonstrated
[35]. Recently, Damle and coworkers reported that the
radioiodine uptake in breast cancer specimens was signifi-
cantly higher as compared to that observed in the normal
tissue from the same patients [41]. In this study, 50% of
breast cancer samples were positive for radioiodine uptake
as well as NIS gene expression [41].

Expression and function of NIS has been investigated
also in metastatic BC. Wapnir and coworkers investigated
23 patients with metastasis predominantly at the level of
lung, liver, bone, and lymph node/soft tissues [30]. Eight
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of these subjects showed protein NIS expression, and iod-
ide uptake was noted in two of eight NIS-expressing tu-
mors. The same group has more recently investigated NIS
expression in brain metastasis by immunohistochemistry
[40]. In 75% of cases a predominant cytoplasmic signal
was detected; however, plasma membrane immunoreactiv-
ity was detected only in 23.8% of NIS-positive samples.
Altogether these data would indicate that NIS protein is
correctly located and is able to accumulate iodine only in
a small fraction of BC metastasis.

Besides immunohistochemical studies, high expression
of NIS mRNA has been shown by quantitative reverse
transcriptase polymerase chain reaction (RT-PCR) evalu-
ation. Oh and coworkers have shown that NIS gene expres-
sion was present in approximately one-third of BC tissues,
and no relationship was found between NIS mRNA levels
and hormonal receptors expression [42]. More recently,
Ryan et al. confirmed that NIS expression levels are signifi-
cantly higher in BC and fibroadenoma than in normal tis-
sue, with the highest levels of NIS mRNA observed in
fibroadenoma tissues [37]. At present, detection of NIS ex-
pression levels has no prognostic value: in fact no signifi-
cant relationship has been detected between NIS mRNA
levels and clinical characteristics of the tumors [37]. In
addition, immunohistochemistry of a subset of tumor tis-
sues in the same cohort confirmed the presence of NIS
protein both in selected malignant carcinomas and benign
fibroadenomas [37].

NIS-based gene therapy

A strategy attempted to achieve significant radioiodine
uptake by the BC cells is using gene therapy to intro-
duce an “active” exogenous NIS gene. Montiel-Equihua
and coworkers have generated a replication-incompetent
adenovirus, AdSERE, in which the expression of NIS is di-
rected by an estrogen-responsive promoter [43]. There-
fore, this vector would be active only in ER-positive BC
(about 60% of all BC). In vitro, AASERE mediated human
NIS expression and iodide uptake in ER+ cell lines (MCF7
and ZR75-1). Moreover, the authors show that ZR75-1
AdSERE-positive xenografts in nude mice can be imaged
after *™Tc injection and their growth suppressed with
therapeutic doses of 1317 [43]. The use of a non-replicative
adenovirus has been recently reported by the Santisteban
group [44]. In this virus, NIS transcription is driven by
promoters of human telomerase subunits RNA (hTR) and
human telomerase reverse transcriptase (hTERT). Tel-
omerase is a ribonucleoprotein that is essential in most
human cancers but is not expressed in most normal tis-
sues [45-47]. Thus, hTR and hTERT promoters would be
active only in cancer cells. When the BC cell line MDA-
MB-231 was infected by this virus, expression of NIS pro-
tein, iodine uptake, as well as reduced cell survival after
radioiodine administration was observed. A conditionally
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replicating adenovirus (CRAd) in which the Ela gene is
driven by the tumor-specific promoter Mucin 1 (MUC-1)
has also been generated [48]. This virus can efficiently rep-
licate only in MUC-1 overexpressing cells, including BC
cells [49]. In addition, this virus contains the transcrip-
tional cassette RSV promoter-hNISCDNAbGH polyA in
the E3 region, which permits NIS to express at high levels.
After infection of the MUC-1-positive BC cell line T47D,
virus replication, cytolysis, and release of infective viral
particles, as well as iodide uptake, were observed [48].

The increase of the exogenous, virus-mediated expression
of the NIS gene by pharmacological treatment has been also
investigated. Treatment with retinoic acid (RA) has been
shown to increase NIS expression in MCF7 cells infected
by a non-replicating adenovirus in which NIS expression is
controlled by the potent cytomegalovirus (CMV) pro-
moter [50]. Indeed, the CMV promoter contains an RA-
responsive element [51]. A large increase of iodine uptake
has been also described in virus-infected, RA-treated
MCEF7 cells.

Induction of endogenous NIS

Though NIS expression has been demonstrated in most
BCs, only in very few patients would spontaneous NIS ex-
pression allow efficient radioiodine uptake. For this rea-
son, a large body of investigation has been undertaken to
identify compounds that are able to increase NIS expres-
sion, its localization in plasma membrane, and iodine up-
take. The major inductor of NIS expression in breast
cancer cells is certainly RA. Several compounds of the RA
family stimulate NIS expression, including all-trans RA,
13-cis RA, and AGN190168, all of which are already used
for medical purposes [9]. Among them, the one used most
to activate NIS expression in BC cells is all-trans RA. NIS
expression has been induced in several BC cell lines in-
cluding MCF7, T47D, and BT474 [52]. Several data indi-
cate that RA induces NIS expression primarily by
activating RARB/RXRa heterodimer receptors. Hormone-
bound receptor may act through two mechanisms. The
first is binding to an element located in cis to the NIS gene
[9]. It has been demonstrated that in MCF7 cells, treat-
ment by RA induce retinoic acid receptor-alpha (RARa)
binding to a retinoic acid response element located in in-
tron 2 of the NIS gene [53]. It must be mentioned, how-
ever, that the NIS regulation by RARa was not confirmed
in a different study performed on MCF7 cells [9]. The sec-
ond mechanism is activation of the phosphoinositide 3-
kinase (PI3K) pathway and the p38MAPK pathway. In
MCEF7 cells, Ohashi and coworkers have shown that either
treating cells with the PI3K inhibitor LY294002 or inducing
knockdown of p85alpha (a regulatory subunit of PI3K) de-
creases RA-induced NIS expression. Moreover, the AKT in-
hibitor VIII decreases iodine uptake in MCF7 cells in a
dose-dependent manner [54]. Kogai and coworkers, by
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using both gain and loss of function experiments, have
shown that p38f plays a role in the RA-induced NIS ex-
pression increase in MCF7 cells [55]. Interestingly, in the
same study it was shown that in FRTL5 thyroid cells not
the B but the p38a isoform has a role in NIS control of ex-
pression. Moreover, NIS induction was also observed in
mouse MCF7 xenograft [56,57], although this finding was
not confirmed by another group [58]. These different re-
sults using MCF7 cells might be due to heterogeneity of
this cell line [59].

In addition to gene expression, the PI3K pathway regu-
lates NIS localization. Glycosylation of NIS protein is ne-
cessary to plasma membrane localization [60]. In MCF7
cells, overexpression of PI3K increases the non-glycosylated
NIS protein [61]. In the same study, it was shown that the
presence of NIS in the plasma membrane as well as iodine
uptake was reduced by an active mutant of PI3K. It ap-
pears, therefore, that activation of the PI3K signaling path-
ways exerts opposite effects on NIS: expression is activated
while NIS localization in the plasma membrane is inhibited.

Several compounds cooperate with RA in inducing NIS
expression in BC cell lines. RA-induced enhancement of
NIS is increased by hydrocortisone, dexamethasone, trogli-
tazone (a peroxisome proliferator—activated receptor vy,
PPARYy, agonist), histone deacetylase (HDAC) inhibitors
(tricostatin A and sodium butyrate), and carbamazepine
[58,62-64]. Hydrocortisone, dexamethasone, troglitazone,
and carbamazepine cooperate with RA also in inducing
iodine uptake. Interestingly, by using MCF7 xenografts in
nude mice, it has been shown that RA alone is not able to
increase iodine uptake; however, significant increase in '*I
accumulation occurs when RA is used in combination with
dexamethasone [65]. Other stimulators, such as prolactin,
insulin, and insulin growth factor (IGF)-I and II, are able to
increase NIS mRNA levels in MCF7 cells also in the ab-
sence of RA [66]. Fortunati and coworkers reported that
the HDAC inhibitor LBH589 significantly induced NIS
mRNA and protein levels as well as iodine uptake in several
BC cell lines [67]. Table 3 summarizes the data regarding
the stimulation of iodide uptake in breast cancer cells.

NIS and urological malignancies

NIS expression in prostate cancer

In 2010 Navarra et al. analyzed the expression of NIS in
tissue specimens from a large series of patients with
prostate adenocarcinoma [70]. They demonstrate that
approximately half of prostate cancers express the NIS
at both mRNA and protein levels (Table 4). In addition,
NIS expression correlates with aggressive features of the
tumors such as Gleason score and pathologic stage, thus
suggesting the hypothesis that these changes are a result
of the dedifferentiation process occurring during a late
stage of malignant transformation. A quantitative evalu-
ation of NIS protein levels, using more sensitive methods
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than immunohistochemistry, will provide more details on
the role of NIS as biomarker for prostate cancer aggres-
siveness, as reported for beta-catenin using fluorescence
microscopy [71]. In prostate tumor cells expressing NIS, it
appears primarily in the cytosolic fraction of the acini as a
result of an incomplete maturation or too low levels of ex-
pression, as hypothesized in some thyroid and breast can-
cers [72,73]. In any case, the observed strong staining of
the cytoplasm makes it difficult to discern plasma mem-
brane immunoreactivity, so that the presence of a func-
tional NIS in the tumor cell plasma membranes could not
be proved.

A recent report, proposing the function of cytoplasmic
NIS as an element of a pathway involved in tumor cell
invasive capacity [76], suggests a role of cytoplasmic NIS
in tumor aggressiveness, strengthening the hypothesis of
using NIS expression as biomarker for defining individ-
uals with biologically active prostate cancer.

NIS expression in testicular cancer

In 2003 Wapnir et al,, by analyzing a few specimens of tes-
ticular tumors by immunohistochemistry, first evidenced
the expression of NIS in some cores of these tumors [13].
In a larger study including a series of 107 testicular tumors,
we have recently demonstrated that NIS is expressed in the
plasma membrane of the large majority of seminomas and
embryonal carcinomas of human testis, while it is absent
in Leydig cell cancers [75]. Our data also demonstrated a
significant association of the expression of NIS protein
with lymphovascular invasion, a well-known marker of ag-
gressiveness. We believe that the association between NIS
expression in the tumor cells and lymphovascular invasion
may reflect the different biological aggressiveness of testis
tumors, suggesting the presence of NIS as an unfavorable
prognostic factor. Also, its presence in the plasma mem-
brane compartment of the tumor cells suggests that it may
serve as potential carrier of radioiodine for an ablative
treatment of cancer tissue.

NIS-based gene therapy

A successful prostate cancer xenograft model has been first
described that accumulates 25-30% ID/g in the tumors
[77]. For comparison, poorly differentiated thyroid cancer
xenografts accumulated only 4.9-9.3% ID/g and were not
effectively treatable with radioiodine [78]. A NIS gene deliv-
ered with an adenovirus vector and a tissue-specific gene
promoter, the prostate-specific antigen gene (PSA) pro-
moter, conferred efficient functional NIS expression in
prostate cancer xenografts [79,80]. In a recent report,
Trujillo and coworkers, by using a prostate tumor—specific
CRAd in a xenograft model of prostate cancer, demon-
strated that the efficacy of radioiodide therapy depends
mainly on an efficient viral tumor spread and a decrease in
the rate of the efflux of radioisotope [81]. To achieve
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Table 3 Stimulators of iodide uptake in breast cancer cell lines
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Cell line Stimulator Mechanism of action I~ uptake (fold of induction) References
MCF7 tRA,9-cis RA RAR/RXR agonist 10~13 [68]
MCF7 AGN190168 RARB/y agonist 10~13 [52]
MCF7 Am80 RARa/( agonist ~7 [56]
MCF7 Theophylline PDE antagonist/P2R inhibitor ~4.7 [69]
MCF7 LBH589 HDAC inhibitor ~2.3 [67]
T47D LBH589 HDAC inhibitor ~4.8 [67]
MDA-MB231 LBH589 HDAC inhibitor ~2.7 [67]
MCF7 Insulin Insulin receptor ~12 [66]
MCF7 IGF-I IGF-I receptor ~78 [66]
MCF7 IGF-II IGF-Il receptor ~10.3 [66]
MCF7 Prolactin Cytosolic PKs activation ~9 [66]
MCF7 Forskolin Adenilyl-cyclase/PKA activation ~3.1 [66]
MCF7 TPA PKC activation ~26 [66]
MCF7 (Bu)2-cAMP PKA activation ~34 [66]

Abbreviations: tRA trans retinoic acid, RAR retinoic acid receptor, PDE phosphodiesterase, HDAC histone deacetylase, IGF insulin growth factor, PK protein kinase.

Table 4 NIS expression in extrathyroidal cancer tissues

Primary No of NIS  NIS protein References
cancer specimens mRNA positive (%)
Bladder 24 nd. 42 [13]
Cervix 11 nd. 100 [13]
Colon 75 n.d. 63 [13]
Esophagus 15 nd. 47 [13]
20 nd. 20 [13]
Liver 26 + 8 [74]
20* + 100 [74]
Lung 58 nd. 66 [13]
Ovary 37 n.d. 73 [13]
Pancreas 11 n.d. 64 [13]
Prostate 34 nd. 74 [13]
Skin squamous 18 n.d. 56 [13]
Stomach 27 nd. 59 [13]
4 + nd. [12]
Submandibular gland 3 + nd. 2]
Testis 11 nd. 9 [13]
107 + 64 [75]
Uterus endometrium 25 n.d. 56 [13]
Metastatic cancer
Liver** 15 nd. 80 [76]
Brain*** 28 nd. 84 [40]

n.d.: not determined; *cholangiocarcinoma; **metastasis from breast, pancreas,
colorectal and biliary cancers; **metastasis from breast cancer.

synergistic or additive cytotoxic effects, combined treat-
ments with NIS gene therapy and a tumor targeting strat-
egy, such as utilization of an oncolytic vector [82], are also
under experimentation.

Induction of endogenous NIS

Induction of NIS expression has been obtained in vitro in
two testicular cancer cell lines. Findings from our laborator-
ies revealed that NIS expression may be enhanced in vitro
in a human embryonal testicular carcinoma cell line by the
histone deacetylase inhibitor (HDACi) [75]. Histone acetyl-
ation is a known epigenetic mechanism of regulation of
gene expression, and its alteration has been reported in
many human cancers [83]. In many cell lines of thyroid and
non-thyroid cancer, HDACi have been successfully tested
to induce radioiodine uptake due to increased NIS expres-
sion [84-86]. The same result was obtained in the NTERA
cells in our study, showing that, at least in vitro, embryonal
testicular tumor cell susceptibility to radioiodine adminis-
tration may occur, and suggesting the possibility of using
radioiodine after pharmacological induction of NIS expres-
sion even in this rare tumor histotype. It is noteworthy that
these drugs are being tested in clinical trials at doses com-
patible with those effective in vitro.

Recently, Maggisano et al. analyzed the effects of the
HDAC:I suberoylanilide hydroxamic acid (SAHA) and val-
proic acid (VPA) on NIS expression and function in rat
Leydig testicular carcinoma cells (LC540) [87]. LC540 cells
were exposed to SAHA 3 pM and VPA 3 mM (alone and
in combination), and NIS mRNA and protein levels were
evaluated by using, respectively, real-time RT-PCR and
western blotting. Also, NIS function was analyzed by iod-
ide uptake assay. They found that both HDACI, used
alone, were able to stimulate the transcription of NIS gene,
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but not its protein expression, while the association of
SAHA and VPA increased both NIS transcript and pro-
tein levels, resulting in a significant enhancement of
radioiodine uptake capacity of LC540 cells. These data
demonstrate the presence of an epigenetic control of NIS
expression in Leydig tumor cells, suggesting the possibility
of using the combination of these two HDACi for a
radioiodine-based treatment of these malignancies.

Considering altogether data obtained in breast, prostate
and testicular cancer, an important difference seems to
emerge. In fact, in testicular and prostate cancer NIS ex-
pression, evaluated by immunohistochemistry, appears to
be related to the degree of dedifferentiation and aggres-
siveness [70,75,76]. However, such a relationship is not
present in breast cancer [37]. Such a difference seems not
due to different methodologies in detecting NIS expression.
In fact, the lack of correlation between NIS expression and
dedifferentiation was detected in breast tumors both by
using RT-PCR and immunohistochemistry [37]. Thus, dis-
crepancy observed between testicular/prostate tumors and
breast tumors would depend on the difference of originat-
ing tissues. It would be relevant to test such a possibility in
a single study, in which testicular, prostate and breast can-
cer are investigated by the same methodology.

NIS and other malignancies

Tumors arising in different non-thyroidal organs, such as
esophagus, colon, liver, pancreas, lung, ovary, and skin,
showed NIS expression (Table 4), though the transporter
was mainly and weakly detected only in the cytoplasm of
neoplastic cells. Thus, the possibility of using radioiodide
treatment in these tumors is strictly dependent on the
possibility of achieving an adequate amount of NIS ex-
pression in the plasma membrane of tumor cells through
stimulation of endogenous or exogenous NIS. According
to the recent study of Lacoste et al. [76] (see above), the
attribution to the intracellular NIS fraction of a role in
tumor cell locomotion may have important implications
for those tumors expressing NIS in the cytoplasmic com-
partment, allowing use as a biomarker of aggressiveness.
However, this hypothesis is essentially based on results
from only one experimental study and needs to be con-
firmed by other studies.

Independent of the detection or not in human tumor
tissues, a NIS gene therapy approach has been tested in
in vitro and in vivo experimental models of many types of
neoplasia. As reported in Table 5, various vectors and
many different tumor-specific promoters have been used
to drive the tissue-specific expression of the NIS gene.
Several replication-defective adenoviruses and negative-
sense single-stranded RNA viruses that avoid their integra-
tion into the host genomes have been utilized, and specific
promoters, as the hepatocarcinoma-intestine-pancreas gene
(HIP), the human telomerase reverse transcriptase (WERT)

Page 7 of 12

Table 5 NIS gene therapy in extrathyroidal neoplasia

Neoplasia Vector Combined  Promoter References
treatments (¥) (**)
Neuroblastoma Plasmid- (@YY, [88]
polyplex
Medulloblastoma MV + [89]
Ad cmv [90]
Glioma
Retrovirus LTR [91]
MV + [92]
Multiple myeloma
VSV + [93]
Melanoma Ad TR/TERT [44]
Mesothelioma MV + [94]
Ad cmv [95]
Ad CMV/CEA [96]
Lentivirus UbC [97]
Colon Lentivirus + UbC [98]
cancer
Ad + [@Y\Y [99]
Ad TERT, TR [44]
MV + [100]
Wnt-
Colorectal Ad + responsive [101]
cancer TCF4
Ad + TR [102]
Ad HIP [103]
Plasmid AFP [104]
Hepatoma
Retrovirus CMV [105]
Retrovirus + TERT [106]
Plasmid- MV [107]
polyplex
CMV in
NIS-MSC MSC [108]
PAMAM-
Ad [@Y\Y [109]
Ad MUC1 [110]
Pancreatic MV + 111
cancer
Ad + E3 [82]
Ad Survivin [112]
Cervical Retrovirus + [@Y\% [105]
cancer

(*): to enhance the tumor growth inhibition; (**): tumor cells-specific promoter.
Abbreviations: polyplex synthetic polymeric vector, CMV cytomegalovirus, MV
measles virus, Ad adenovirus, LTR long terminal repeat, VSV vesicular stomatitis
virus, TR telomerase RNA, TERT telomerase reverse transcriptase, CEA
carcinoembryonic antigen, UbC ubiquitin C, Wnt Wingless-related integration site,
TCF4 transcription factor 4, PAMAM-Ad adenoviral vectors after coating with
synthetic poly(amidoamine) dendrimers, HIP hepatocarcinoma-intestine-pancreas
gene, AFP alpha-fetoprotein, MSC mesenchymal stem cells, MUCT mucin1 gene,
E3 E3 antigen.

and the alpha-fetoprotein (AFP) promoters, have shown
the capacity to promote NIS expression and iodide uptake
in infected cancer cells of various origins [9]. The promis-
ing results obtained in such experimental models may open
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the way to making targeted radiotherapy feasible for these
types of extrathyroidal cancers.

Currently, at variance with breast and testis cancer cells,
there are only few data of stimulation of endogenous NIS
expression in other tumor cells. Very recently, Guerrieri
and collaborators [113] reported that in liver cancer cells
the NIS gene is a direct target of the p53 family, suggesting
that its modulation can be exploited to obtain NIS upreg-
ulation in vivo.

Biological and technical limitations of NIS-based therapy
in extrathyroidal tumors

For the efficacy of the NIS-based treatment of extrathyroi-
dal malignancies, some fundamental concepts, which still
represent major limitations, need to be taken into consid-
eration: the efficacy of the treatment is strictly dependent
on the biological half-life of the radioiodide in the body
and its retention in the target tumors. Indeed, about 20%
of the injected radioiodide dose must be concentrated for
a sufficient time to obtain a complete destruction of the
tumor mass [7]. Moreover, while in normal thyrocytes a
prolonged iodide retention is assured by incorporation of
the trapped iodide into thyroglobulin, in most thyroid can-
cer this process is less effective, resulting in a higher
amount of discharge from tumor tissue [7]. Moreover, ex-
cept for few tissues provided with a peroxidase activity (i.e.
lactoperoxidase in mammary gland), non-thyroid cells do
not possess the iodination machinery in their transcrip-
tome. Thus, a prerequisite for the possibility of success of
a NIS-based strategy in extrathyroidal tumors is to obtain
an adequate amount of NIS protein expression in tumor
cell plasma membranes. On this issue, lessons from re-
search in thyroid cancer are highly informative: after a
long period of discouraging results of this approach in the
clinical trials, the success of radioiodine treatment by NIS-
recovered expression obtained by using a novel protein-
kinase inhibitor has been recently described [114] (see
next section).

Review and Conclusions

Radioiodine administration after TSH stimulation of
iodide uptake is a validated treatment effective in most
differentiated thyroid cancer. Its success may be likely
attributed to the TSH-induced increase of NIS expres-
sion and function in the plasma membrane of thyroid
cancer cells. Moreover, novel therapeutic approaches
targeting the molecular pathways responsible for the loss
of differentiation (and subsequent reduction of NIS) are
showing promising results in those radioiodide-refractory
cancers [115].

These finding justify the efforts to set up a similar strat-
egy, radioiodine-based treatment after stimulation of NIS
expression, as a reasonable approach for those extrathyroi-
dal tumors in which NIS can be induced in the membrane

Page 8 of 12

of neoplastic cells. Such a therapy would present the ad-
vantage of short duration of treatment, reducing the fre-
quency and severity of the eventual side effects.

Introduction of exogenous NIS into non-thyroidal cancer
have demonstrated efficient tumor shrinkage by '*'I in
several in vivo studies [116]. The major improvement of
NIS gene-based therapy strategy has come from the use of
vectors of oncolytic viruses or replication-defective adeno-
viruses, thus preventing unfavorable genomic integration.
Even non-viral vectors have been efficiently tested for the
same purpose (see Table 5).

Also, the use of promoter-specific driving of NIS in the
target tissue has been adopted in xenograft models of many
tumors. After the successful test of the first construct con-
taining the PSA promoter used to confer efficient func-
tional NIS expression in prostate cancer xenografts [77],
several other tumor-specific promoters have shown the
capacity to drive NIS expression in specific tumor tissue
and determine the radioiodide inhibition of tumor growth
in animal experimental models. Finally, synergistic and/or
additive cytotoxic effects have been achieved combining
treatments with NIS gene therapy and other tumor tar-
geting strategies [9]. An unresolved question is the real
feasibility of the application of such a strategy on hu-
man patients.

In addition, endogenous NIS stimulation also appears to
be a promising approach. It may take advantage of the
enormous progress obtained in thyroid cancer field of re-
search in the elucidation of the molecular mechanism that
controls thyrocyte differentiation and, in particular, NIS
expression. For example, inhibitors of signal transduction
pathways, as PI3BK/AKT inhibitors and MEK/ERK inhibi-
tors, or HDAC inhibitors, have demonstrated the ability to
enhance the functional NIS expression in some thyroid
cancer, as well as non-thyroid cancer cells [85,117,118]
and, very recently, a clinical pilot study has actually dem-
onstrated the effectiveness of the MEK inhibitor selumeti-
nib to increase radioiodide uptake in a number of patients
with advanced thyroid cancer [114].

Isoform-specific signal transduction pathways are prob-
ably involved in the tissue-specific regulation of NIS ex-
pression. Thus, elucidation of the molecular mechanism
underlying such regulatory pathways may contribute to
achieving a further enhancement of functional NIS ex-
pression in extrathyroidal cancer tissues, expanding the
application of radioiodide therapy to all NIS-expressing
neoplasia.
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