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Abstract

Background: The aim was to assess and compare prognostic power of nine breast cancer gene signatures (Intrinsic,
PAM50, 70-gene, 76-gene, Genomic-Grade-Index, 21-gene-Recurrence-Score, EndoPredict, Wound-Response and
Hypoxia) in relation to ER status and follow-up time.

Methods: A gene expression dataset from 947 breast tumors was used to evaluate the signatures for prediction of
Distant Metastasis Free Survival (DMFS). A total of 912 patients had available DMFS status. The recently published
METABRIC cohort was used as an additional validation set.

Results: Survival predictions were fairly concordant across most signatures. Prognostic power declined with follow-up
time. During the first 5 years of followup, all signatures except for Hypoxia were predictive for DMFS in ER-positive
disease, and 76-gene, Hypoxia and Wound-Response were prognostic in ER-negative disease. After 5 years, the signatures
had little prognostic power. Gene signatures provide significant prognostic information beyond tumor size, node status
and histological grade.

Conclusions: Generally, these signatures performed better for ER-positive disease, indicating that risk within each ER
stratum is driven by distinct underlying biology. Most of the signatures were strong risk predictors for DMFS during the
first 5 years of follow-up. Combining gene signatures with histological grade or tumor size, could improve the prognostic
power, perhaps also of long-term survival.
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Background
Breast cancer is a heterogeneous disease. Tumors with
similar clinico-pathological characteristics can have
markedly different clinical courses. Gene signatures de-
veloped from genome-wide expression profiling of breast
cancer have been shown to provide overlapping clinico-
pathological classifications, and more importantly, to
add prognostic accuracy and could potentially guide
clinical decisions [1-9].
Despite the fact that a large number of expression-

based gene signatures have been developed for breast
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cancer for prognostic and predictive purpose, the clinical
value of these signatures has not been confirmed in pro-
spective studies and the consequence for therapy re-
mains unclear. The 10-year results of ongoing clinical
trials [10,11] for testing the clinical benefit of gene signa-
tures [4,12] will not be available until 2020. Outcome
prediction by gene signatures has been criticized for be-
ing inaccurate [13]. Most studies evaluating various sig-
natures [14-18] have been carried out on relatively small
scales. Compatibility between the signatures and the tar-
geted cohorts with respect to biological and pathological
characteristics (Additional file 1: Table S1) is often ig-
nored [16]. Use of validation sets not completely inde-
pendent of the original training sets may have influenced
the results leading to biased interpretation [14]. Further-
more, computing signature scores from inadequately
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transformed data may have resulted in unreliable or
spurious results [19,20]. It therefore remains desirable to
evaluate existing signatures in greater scrutiny on a rea-
sonably sized and representative breast cancer cohort
and pinpoint important specifications for more effective
use of molecular-based tests in clinical settings.
With this in mind, we investigated nine signatures that

have received great interest and been validated in mul-
tiple studies. These are Intrinsic signature [1-3,21] and
PAM50 [9] for classifying breast tumors into five sub-
types: luminal A (LumA), luminal B (LumB), HER2-
enriched, basal-like, and normal-like; 70-gene profile or
MammaPrint® (Agendia, Amsterdam, The Netherlands)
[4,5,22-24] for predicting metastasis free survival over a
five-year period; 76-gene signature [6,25,26] for predict-
ing distant metastasis within five years for lymph-node-
negative breast cancers; genomic grade index (GGI)
[7,27] for reclassifying histologic grade (HG) 2 tumors
into HG1-like or HG3-like groups; Wound-Response
(WR) signature [28,29] for classifying tumors into acti-
vated or quiescent WR groups; Hypoxia signature
[15,30] for assigning hypoxic or non-hypoxic tumors; 21-
gene-recurrence-score (RS) or Oncotype DX® (Genomic
Health Inc., Redwood City, CA) [12] for predicting
distant recurrence at ten years in adjuvant-tamoxifen-
treated patients [12,31] and EndoPredict (EP) [32], a re-
cently developed 11-gene assay for predicting distant
recurrence at ten years in ER-positive and HER2-
negative patients who were treated with adjuvant hor-
monal therapy.
We found that the prognostic effects of signatures de-

clined with follow-up time and were generally better in
ER-positive than ER-negative disease. In particular, sig-
natures that had strong predictive power in ER-positive
disease, mostly had little predictive power in ER-negative
disease, the main exception being WR which had some
predictive power also in ER-negative disease; on the
other hand, Hypoxia was the only signature with clear
predictive power in ER-negative disease, but had no pre-
dictive power in ER-positive disease. This illustrates the
need for designing robust prognostic tools separately for
ER-positive and ER-negative disease.

Methods
Detailed description, together with reproducible code
and data, are provided in the Additional files 2, 3 and 4,
respectively.

Microarray Data
The gene expression dataset [33] (n = 947) is a collection
of six published breast cancer microarray datasets
[26,27,34-37] on Affymetrix Human Genome HG-U133A
arrays. The datasets were retrieved from Gene Expression
Omnibus [38] (http://www.ncbi.nlm.nih.gov/geo) and
ArrayExpress (www.ebi.ac.uk/arrayexpress) under acces-
sion number GSE6532 [27], GSE3494 [34], GSE1456 [35],
GSE7390 [26], GSE2603 [36] and E-TABM-158 [37] re-
spectively. Data were processed and RMA-normalized
[39] as previously described [33].
Clinical data
We compiled comprehensive clinical information on
these 947 samples in addition to what have been col-
lected previously [33]. This includes additional and up-
to-date (if available) information on ER status [35], node
status [35], tumor size [35], and DMFS follow-ups
[34,35], and treatment information [26,27,34-37].
Distant Metastasis Free Survival (DMFS: n = 912) was

used as clinical endpoint (Additional file 1: Table S2A).
Additional file 1: Table S2B summarizes the clinicopath-
ological characteristics with respect to the clinical end-
point. For tumors lacking ER and HER2 status from
standard immunohistochemistry (or FISH), the gene ex-
pression value for ESR1 and ERBB2, respectively, were
used [33]. Among 335 tumors [34,37] with available
TP53 mutation status, 82 tumors were TP53-mutated
and 253 were wild-type. Pathological characteristics in-
cluding tumor size (DMFS: n = 905), lymph node status
(DMFS: n = 893) and histological grade (DMFS: n = 781)
were recorded. Datasets with adjuvant treatment informa-
tion [26,27,34,35,37] included 403 patients (DMFS: n = 395)
who did not receive systemic treatment.
Applicability of signatures
We investigated all nine signatures (Table 1; Additional
file 1: Table S1) on the full dataset (n = 947), although
some of the signatures were originally developed on spe-
cific patient subgroups. Most analyses were done separ-
ately for ER-positive and ER-negative disease. While RS
[12] has only been applied to ER-positive breast cancer,
and GGI [7,27] was developed on ER-positive and only
later validated on ER-negative disease (Supplement), for
completion we have included both along with the other
signatures in the analyses on ER-negative disease.
The 76-gene signature has only been validated in

node-negative disease [25,26], but we found that it was
also a valid predictor on node-positive disease and have
therefore assessed it on the full dataset. Indeed, several
of the signatures were originally developed on node-
negative disease, and later validated on node-positive
disease (see Additional file 1: Table S1 for details).
The EP signature [32] was originally designed for ER-

positive/HER2-negative breast cancer patients for pre-
dicting distant recurrence. In this study, it showed
significant prognostic power on the complete dataset,
ER-positive/HER2-negative treated and untreated sub-
groups (Figure eight of Additional file 2).

http://www.ncbi.nlm.nih.gov/geo
http://www.ebi.ac.uk/arrayexpress


Table 1 Summary of gene signatures in the study and the annotation mapping coverage

Signature Description Validation Training platform Coverage (%)

Intrinsic [1,21] Intrinsic subtype Ref. [2,3] Stanford cDNA array 410/549 (75%)

PAM50 [9] PAM50 subtype Ref. [9] Agilent Human oligo array 42/50 (84%)

70gene [4] MammaPrint Ref. [5,22-24] Agilent 25 k Human oligo array 46/70 (65.7%)

76gene [6] Veridex Ref. [25,26] Affymetrix u133a GeneChip 76/76 (100%)

Hypoxia [30] Hypoxia signature Ref. [15,30] Stanford cDNA array 117/253 (46.2%)a

WR [28] Wound response Ref. [15,29] Stanford cDNA array 298/380 (78.4%)

GGI [7] Genomic Grade Index Ref. [17,27] Affymetrix u133a GeneChip 128/128 (100%)

RS [12] OncoType DX Recurrent Score Ref. [12,31] qRT-PCR 21/21 (100%)

EP [32] EndoPredict risk score Ref. [32,40] qRT-PCR 11/11 (100%)
aThe original study [30] reported 168 UniGene IDs annotated from 253 clones in the Hypoxia signature, of which 117 clones mapped to the Affy probes (46.2%).
Considering these mapped clones represented 116 unique Unigene clusters (under UniGene Build Number 222), the mapping coverage for this signature on the
studied data is higher than the percentage reported here.
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Computing original gene signature scores
Affymetrix probes were matched against the genes of the
signatures (Table 1). Risk scores were then generated
using the original algorithms of the signatures and recali-
brated on the studied dataset for risk-group assignments.
For Intrinsic and PAM50, subtype classification was

performed based on the nearest of the five centroids
(distances calculated using correlation to the centroids).
Risk score per sample was computed by linear com-
bination of the centroid correlations in ROR-S model
(Risk-Of-Relapse scores by Subtype alone) [9]. A pseudo
Oncotype DX® Recurrence Score per patient was com-
puted by the unscaled Recurrence Score [12]. Similarly,
a pseudo EP Score per patient was obtained by the un-
scaled risk score for EP [32]. For 76-genes, GGI, RS and
EP, rather than assigning risk groups based on published
cutoffs, we used a population-based approach in which a
fixed proportion of the population was assigned to each
risk group. The proportions were derived from previous
datasets associated with individual signatures [7,12,26,40].
We found this necessary as our analyses differed from the
original methods in technical or methodological manners
(Supplement).

Survival analysis
Distant Metastasis Free Survival (DMFS: n = 912) is used
as clinical endpoint. Follow-up time was defined as time
from diagnosis until distant metastasis, or time of last
follow-up if the patient is not known to have distant me-
tastasis. It was noted that DMFS in the Pawitan set [35]
was defined as distant metastasis or death, whichever oc-
curs first. Since this only consists of a small portion of
the studied cohort, it is unlikely to bias or confound our
results.
Continuous risk scores from the original signatures were

used instead of categorized risk-groups. For Intrinsic and
PAM50, the ROR-S scores were used. For 70-gene, the
centroid correlations were reversed to represent the risk.
The concordance index [41] (C-index, an analogy to
area under ROC curve) was chosen to compare the pre-
dictive strength of the signatures. The contribution of a
signature predictor in the univariate setting was evalu-
ated using the proportion of variation explained in the
outcome variable (PVE) [42].
Univariate Cox models were fitted for each risk signa-

ture. Assessment of the proportional hazard assumption
by different methods [43-45] indicated clear time-
dependencies in the predictive power of the risk signa-
tures and was used to identify suitable time intervals for
separate Cox analyses. Standardized hazard ratios (HR)
indicate the relative risk associated with a one-standard-
deviation increase in the risk score.
Effects of common prognostic factors: tumor size (pT1,

pT2 and pT3-pT4), node status (positive versus negative)
and histological grade (I-III) were investigated using
multivariate Cox models.

METABRIC data
METABRIC [46] expression discovery set (n = 996) was
used. Gene annotations on the original IlluminaHT12v3
probes were retrieved using BioMart through R library
biomaRt (Ensembl release 68, HG19 human assembly).
Disease-specific survival was used as endpoint. Follow-
up time was defined as time from diagnosis until death,
or time of last follow-up if the patient is not known to
have died. Data is available through European Genome-
Phenome Archive (http://www.ebi.ac.uk/ega/), under ac-
cession number EGAS00000000083.

Results
Subtype signatures comparison
We compared the subtype classification between Intrin-
sic and PAM50 on the full dataset (n = 947). Overall,
their subtype assignments were moderately concordant
(Cohen’s kappa [47] κ = 0 · 54). Noticeably, nearly half of
the Intrinsic LumA tumors were assigned as LumB by

http://www.ebi.ac.uk/ega/
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PAM50 (40.7%), while the two signatures appeared to
highly agree on classification of basal-like tumors
(86.5%; Additional file 5: Figure S1A). Indeed, basal-like
was the most concordant subtype with a Pearson correl-
ation of 0 · 94 between Intrinsic and PAM50 (Additional
file 5: Figure S1B), followed by normal-like (0.85), LumA
(0.68), LumB (0.55) and Her2-enriched (0.42). More spe-
cifically, basal-like was the most distinctly classified sub-
type across these two signatures (Additional file 5:
Figure S1C) with disagreement limited to a few border-
line classifications. Furthermore, agreements between
the subtypes and their immunohistochemistry receptor
status counterparts were similar for both signatures. A
majority of the 709 IHC ER-positive samples were classi-
fied as Luminal tumors (62% for Intrinsic and 64% for
PAM50), and half of the IHC HER2-positive samples were
classified as HER2-enriched subtype (55% for Intrinsic
and 50% for PAM50). The overlap between Basal-like tu-
mors and triple-negative samples was 79% for both
PAM50 and Intrinsic (Figure two and three of Additional
file 2).
One property that distinguishes these signatures is that

proliferation-associated genes were intentionally added
when developing PAM50. This may partially explain the
disconcordance between PAM50 and Intrinsic in their
LumA and LumB classifications. Both signatures were
kept for further analysis.

Similarity for risk assessment among gene signatures
The Pearson correlations of the continuous risk scores
from individual signatures were generally high (Figure 1A;
Additional file 1: Table S3). The correlations were above
0.4, except those involving Hypoxia and between 76-gene
and Intrinsic (ρ=0.23), indicating reasonably good con-
cordance across the signatures. The highest correlations
were between GGI and PAM50 (0.9), followed by GGI
with WR (0.87) and Intrinsic with RS (0.81). Intrinsic and
PAM50 ROR-S scores correlated well (ρ=0.61). The Hyp-
oxia signature was negatively associated with the 76-gene
classifier (ρ= − 0.02), and 76-gene was also less in agree-
ment with other signatures: correlation with Intrinsic
(0.23), 70-gene (0.4) and RS (0.44). Thus, Hypoxia and 76-
gene appear distinct from the other signatures.

Comparison of performances of gene signatures for
survival prediction
For all signatures except Hypoxia, differences in DMFS
between risk groups were highly significant (n = 912;
Figure 1B).
Using the continuous risk scores to predict DMFS,

PAM50 had the highest C-index of 0.658 with 95% CI
[0.64–0.68] (Table 2), followed by GGI (0.656), WR
(0.651), RS (0.648), 76-gene (0.642), 70-gene (0.612),
Intrinsic (0.598) and Hypoxia (0.525). All signatures
received a C-index exceeding the threshold 0.5 for ran-
dom prediction. The importance of individual signatures
in univariate setting as measured by PVE (Table 2)
ranked PAM50 (5.74%), GGI (4.87%) and WR (4.83%) as
the top three predictors for DMFS, while Hypoxia ex-
plained the lowest portion of variation (0.6%). The rank-
ings by C-index and PVE were fairly similar.

Time- & ER-dependency of gene signatures for DMFS
prediction
The assumption of time-independent proportional haz-
ard was examined for ER-positive group and ER-negative
group separately using a univariate Cox model with sig-
nature risk scores as covariate. Time-dependency was
clearly visible for most of the signatures (Additional file 5:
Figure S2A-B; Table 3). In general, signatures seemed
to lose their predictive power over time for forecasting
DMFS.
To investigate the nature of time-dependency in ER-

positive tumors, we inspected the cumulative regression
plots of the estimate along with 95% confidence intervals
from a univariate additive regression model (Additional
file 5: Figure S2C). The estimated curve in each plot re-
flects the cumulative effect of a signature covariate on
survival over time, and a time-independent effect should
therefore result in a curve with a constant slope. Hyp-
oxia did not seem to have an effect on DMFS prediction.
For all the other signatures, there were significant and
strong initial positive effects up to around 5 years; these
effects tended to disappear after about 10 years. How-
ever, the estimates are uncertain towards the end of the
time span as few patients remain in the risk set. In ER-
negative breast cancers (Additional file 5: Figure S2D),
while similar time-dependency was evident for individual
signatures, the effects on DMFS predictions were less
substantial than in the ER-positive subset, and rather un-
certain for most of the signatures. Contrary to its non-
predictive behavior in the ER-positive group, Hypoxia
predicted DMFS (higher hypoxic scores associated with
a shorter survival time) for ER-negative cancers. In
addition, WR, 76-gene and Intrinsic also potentially have
predictive effect in the early follow-up period.
Based on these results, we divided follow-up time into

three intervals: first 5 years, 5–10 years, and beyond
10 years. Patients experiencing an event before the start
of the interval were excluded, while those that remained
at risk at the end of the time interval were censored. For
each time interval, univariate Cox models for each signa-
ture were fitted in ER-positive and ER-negative tumors
separately. The estimated HRs with 95% confidence
interval per time interval and ER status are shown for
each signature (Figure 2; Table 3). The HRs were sys-
tematically higher at earlier time points and decayed
with time; predictions were generally stronger in the



Figure 1 Risk prediction by gene signatures. (A) Heatmap of the pairwise correlations of the predicted risk scores from the gene signatures.
The predicted risk scores by Intrinsic and PAM50 are generated by the ROR-S (Risk of Relapse by Subtype along) model. The risk predictions are
generally fairly concordant across different signatures, except for Hypoxia that has week correlations with the other signatures. (B) Comparison of
15-year period prediction for Distant Metastasis Free Survival (DMFS) using risk groups identified by published cutoffs in original gene signatures.
Survival probabilities associated with the risk groups are shown by Kaplan Meier plot up to 15 years. For most of the signatures, the reported
cutoffs were applied to generate risk group assignments. Thresholds for risk groups assignment were modified for 76-gene, GGI and RS using
population based strategy. For 76-gene, “good” prognosis is defined as less than 30% percentile of the raw relapse score in ER + group and less
than 22% percentile in ER- group [26]. For GGI, the third of the patients with low GGI scores being defined as low-risk and the remaining patients
as high-risk [7]. For RS, 27% patients with high unscaled Recurrence Score were assigned as “high-risk” and 51% with low score as “low-risk”, and
the remaining 22% of the patients were assigned to the “intermediate-risk” group [12]. For the Intrinsic signature and PAM50, in addition to the
survival curves associated with subtype groups, the risk groups defined by the ROR-S model (risk of relapse subtype-only model) are also shown.
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ER-positive group than in the ER-negative group. Within
the first 5 years, all signatures except for Hypoxia had
significant positive effects (p < 0.0001) in the ER-positive
group; while in the ER-negative group, Hypoxia (p <
0.0001), WR (p = 0.021) and 76-gene (p = 0.023) were
the only classifiers with significant positive effects on
DMFS prediction. We observed borderline significant
protective effects (HR < 1: higher risk scores had lower
risks for distant metastasis) within the last time interval
(>10 years) in the ER-negative group for Intrinsic (p =
0.044), 70-gene (p = 0.007), GGI (p = 0.017) and WR
(p = 0.01).



Table 2 Assessment of univariate performance of
individual gene signatures on Distant Metastasis Free
Survival prediction

Ca (95% CI) PVEb (%)

Intrinsic-RORs 0.598 [0.58, 0.62] 1.60

PAM50-RORs 0.658 [0.64, 0.68] 5.74

70-gene 0.612 [0.60, 0.63] 2.76

76-gene 0.642 [0.62, 0.66] 4.58

GGI 0.656 [0.64, 0.67] 4.87

WR 0.651 [0.63, 0.67] 4.83

Hypoxia 0.525 [0.50, 0.55] 0.60

RS 0.648 [0.63, 0.67] 4.05

EP 0.648 [0.63, 0.67] 4.78
aC: concordance index.
bPVE: proportion of variation explained in the outcome variable, comparable
with the R2 in regression modeling.
The variability of the C-index was estimated from 1000 bootstrap iterations.
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Possible effects of cohort differences
Since cohort differences could potentially lead to spuri-
ous effects, we ran survival analyses adjusted for cohort
differences. However, as cohort differences did not con-
tribute significantly to the models (Figure one and Box
five of Additional file 2), it seems unlikely that cohort
differences may have biased the results.

Analysis on a systemically untreated subpopulation
To avoid bias introduced by adjuvant treatment, the
same analyses were performed on patients that were
only treated with surgery with/without radiotherapy (n =
395). Similar indications related to follow-up time and ER
status for signatures predicting DMFS hold in this sub-
group of patients (Additional file 5: Figure S3), indicating
that treatment alone does not explain the effects described
above.
Analyses of systemically treated patients confirmed the

predictive power of the signatures during the first 5 years
of follow-up in the ER-positive group, but had too few
events after 5 years for any reliable assessment of time-
dependency.

Multivariate analysis on signatures with known
prognostic parameters
Node status, tumor size and histological grade all signifi-
cantly predict DMFS on the complete dataset (n = 912;
Additional file 5: Figure S4A). A multivariate Cox model
was fitted with node, size, histological grade and individ-
ual signatures for the two ER groups separately. In the
ER-positive group (Additional file 1: Table S4A), with
the exception of Hypoxia (p = 0.7351), signatures remain
significant with the presence of size, node and histological
grade (Model 1: p < 0.0001 except Intrinsic p = 0.0397). In-
clusion of tumor size in the model removed the time
trends associated with the signatures (Model 2). The prog-
nostic power of the included predictors were dismal for
ER-negative tumors (Additional file 1: Table S4B),

Analysis on prognosis of gene signatures associated with
HER2 status for DMFS prediction
We investigated the performance of gene signatures in
relation to HER2 status. We observe a decreasing time
dependency associated with the prognostic power in the
HER2-negative group (Additional file 5: Figure S5A).
Due to limited number of events in the 5–10 year fol-
lowup interval, we cannot draw conclusions about the
time trend in the HER2-positive group and the differ-
ences in prognostic power between the two HER2
groups (Additional file 5: Figure S5A).
The analysis on groups defined by both HER2 status

and ER status revealed a decreasing time trend for the
signature’s prognostic power for both the HER2-/ER +
and HER2-/ER- groups (Additional file 5: Figure S5B),
where at least two events are presented for each time in-
tervals. And HER2-/ER + is generally better than HER2-/
ER- in term of prognostic power. This can be largely ex-
plained by the ER stratification.

Validation on METABRIC data
We observed similar ER-dependency and similar pattern
of gene signatures for the long-term prognosis on the
METABRIC complete set, systemically untreated set as
well as on the systemically treated set (Additional file 5:
Figure S6 & Additional file 1: Table S7). Similarly, in-
cluding histological grade and tumor size seems to re-
duce the strength of the time dependency of the
signatures (Additional file 1: Table S8).

Discussion
Applicability of individual gene signatures
Growing evidence suggests that expression-based gene
signatures are of clinical relevance, especially for identi-
fying patients at high risk of early distant metastasis.
One important challenge is to robustly identify patients
with low risk, thereby reducing the number of patients
receiving cytotoxic treatment. Translating signatures to
a new dataset is complicated by differences in micro-
array platforms and data processing procedures, as well
as the clinical differences between cohorts.
Methods based on centroid correlations (e.g. subtype

signatures, 70-gene and WR) and methods that trans-
form the data into an invariant scale before computing
the risk scores (e.g. GGI) have more consistent perfor-
mances across different studies. We suspect that sum-
marizing gene expression patterns through weighted
averages (e.g. 76-gene, RS, Hypoxia) is more sensitive to
data scales and missing gene information. Different
normalization procedure from the original study [6] may



Table 3 Time- & ER-dependent effect assessment of individual gene signatures in predicting Distant Metastasis Free
Survival (DMFS)

ER + (n = 692) ER – (n = 220)

Gene signature PHa ρ (p) Time nrisk nevent HR [95% CI] p PHa ρ (p) nrisk nevent HR [95% CI] p

Intrinsic-RORs −0.23(0.0032) −0.38(0.0069)

0-5 yr 692 126 1.46 [1.24-1.72] <0.0001 220 61 1.24 [0.94-1.63] 0.1230

5-10 yr 566 41 0.83 [0.59-1.15] 0.2576 159 7 0.95 [0.49-1.85] 0.8892

>10 yr 525 10 0.76 [0.36-1.60] 0.4650 152 5 0.49 [0.25-0.98] 0.0440

PAM50-RORs −0.27(0.0005) −0.13(0.3676)

0-5 yr 692 126 2.16 [1.78-2.61] <0.0001 220 61 1.11 [0.86-1.44] 0.4312

5-10 yr 566 41 1.26 [0.93-1.70] 0.1383 159 7 1.6 [0.64-4.03] 0.3161

>10 yr 525 10 0.91 [0.48-1.73] 0.7773 152 5 0.54 [0.27-1.09] 0.0835

70-gene −0.18(0.0232) −0.24(0.0702)

0-5 yr 692 126 1.70 [1.43-2.03] <0.0001 220 61 1.00 [0.79-1.28] 0.9739

5-10 yr 566 41 1.16 [0.87-1.55] 0.3054 159 7 0.84 [0.43-1.65] 0.6189

>10 yr 525 10 1.06 [0.57-1.96] 0.8468 152 5 0.40 [0.21-0.78] 0.0066

76-gene −0.20(0.0092) −0.26(0.0565)

0-5 yr 692 126 1.83 [1.55-2.17] <0.0001 220 61 1.30 [1.04-1.62] 0.0228

5-10 yr 566 41 1.32 [0.99-1.76] 0.0551 159 7 1.12 [0.51-2.48] 0.7745

>10 yr 525 10 0.58 [0.28-1.20] 0.1446 152 5 0.38 [0.09-1.57] 0.1828

GGI −0.32(<0.0001) −0.29(0.0296)

0-5 yr 692 126 2.11 [1.77-2.52] <0.0001 220 61 1.07 [0.82-1.38] 0.6288

5-10 yr 566 41 1.23 [0.91-1.66] 0.1735 159 7 1.22 [0.55-2.71] 0.6170

>10 yr 525 10 0.73 [0.37-1.44] 0.3592 152 5 0.39 [0.18-0.84] 0.0165

WR −0.28(0.0001) −0.43(0.0002)

0-5 yr 692 126 2.07 [1.72-2.48] <0.0001 220 61 1.39 [1.05-1.85] 0.0214

5-10 yr 566 41 1.16 [0.86-1.56] 0.3341 159 7 0.80 [0.39-1.63] 0.5334

>10 yr 525 10 0.63 [0.33-1.20] 0.1612 152 5 0.30 [0.12-0.75] 0.0098

Hypoxia −0.02(0.7717) −0.04(0.7132)

0-5 yr 692 126 1.06 [0.88-1.26] 0.5483 220 61 1.50 [1.20-1.89] <0.0001

5-10 yr 566 41 0.93 [0.68-1.27] 0.6427 159 7 1.41 [0.70-2.83] 0.3389

>10 yr 525 10 1.10 [0.57-2.10] 0.7773 152 5 0.48 [0.17-1.35] 0.1645

RS −0.25(0.0019) −0.23(0.0628)

0-5 yr 692 126 1.79 [1.55-2.07] <0.0001 220 61 1.19 [0.92-1.53] 0.1919

5-10 yr 566 41 1.06 [0.78-1.43] 0.7311 159 7 0.78 [0.39-1.58] 0.4902

>10 yr 525 10 0.65 [0.26-1.61] 0.3535 152 5 0.57 [0.25-1.30] 0.1798

EP −0.27(0.0004) −0.18(0.2457)

0-5 yr 692 126 1.97 [1.66-2.33] <0.0001 220 61 1.11 [0.86-1.45] 0.4199

5-10 yr 566 41 1.13 [0.83-1.53] 0.4393 159 7 1.04 [0.50-2.15] 0.9198

>10 yr 525 10 1.02 [0.55-1.91] 0.9462 152 5 0.51 [0.25-1.04] 0.0628
aPH test for time trend: scaled Schoenfeld residuals were tested against transformed time (Kaplan-Meier estimates) for violation of proportional hazard assumption
in a univariate Cox model for individual gene signatures. P values are shown.
Analysis was carried out on ER + group and ER- group separately. Preliminary test for time trend was performed by checking proportional hazard assumption in a
Cox model§ per signature fitted on all tumors with follow-up time and event status available (column “PH”: correlation and asscoaited p value are reported)). Main
effect associated with a signature for DMFS prediction in a certain follow-up time interval was estimated by a Cox model within each ER stratification. The Hazard
Ratio (HR) along with its 95% confidence interval and the p value from the Wald test are shown. Numbers of patients at risk (nrisk) were computed at time point 0,
5 and 10 year, respectively.
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Figure 2 Evaluation of time- & ER-dependency in predicting Distant Metastasis Free Survival (DMFS) by gene signatures (n = 912).
Estimated effect (standardized hazard ratios, eβ, with 95% confidence intervals) of gene signatures for survival prediction within different time
intervals and stratified by ER status. The X-axis indicates the follow-up time intervals: up to 5-year, 5–10 year, and beyond 10 year. Within each
subinterval, a univariate Cox model per signature was fitted. The Y-axis indicates the estimated hazard ratios (HR) on a logarithmic scale
corresponding to a 1 standard deviation increase in the signature. The null, HR = 1, is indicated by the blue line. Solid dots indicate HRs significantly
different from 1 (P < 0 · 05). ER + (n = 692) is denoted as red and ER– (n = 220) is denoted as blue. The number of events for each follow-up subinterval
in ER + subgroup is 126, 41 and 10, respectively; and in ER- subgroup 61, 7 and 5, respectively.
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explain why the original 76-gene signature, prior to the
population-based recentering, did not predict any good
prognosis in our data. Generally, when the distribution
of risk scores depends on platform and normalization
procedure, cutoffs for risk group assignment need to be
recalibrated. The population-based strategy is more gen-
eral and applicable for a study with a pure prognostic
purpose, but requires the tumors to be representative of
the population of breast cancer.

Time- and ER-dependency of prognostic gene signatures
Prognostication by gene-expression signatures seemed
harder for ER-negative than for ER-positive tumors. It
should be noted that most of the signatures have been
trained on populations containing a majority of ER-
positive tumors. All studied signatures except for
Hypoxia showed prognostic power in assessing DMFS in
ER-positive breast cancer in the first few years after diag-
nosis. Only the 76-gene, Wound-Response and Hypoxia
signatures were prognostic in the ER-negative group
within the first five years. The time-dependent prognos-
tic effect was previously reported for the 76-gene [26]
and RS [31].
Most of the signatures were tightly correlated. We be-

lieve this may be due to common underlying biological
processes. Studies [16,27,48-50] suggest that cell prolif-
eration is a common characteristic among many signa-
tures (e.g. 76-gene, 70-gene, RS, GGI, PAM50, WR). If
the proliferation module drives prognostication in ER-
positive tumors, the risk-group separation will be highly
comparable to the classification of LumA and LumB tu-
mors within the ER-positive subgroup, as LumB tumors
are characterized by higher proliferation. This seemed to
be the case for the majority of the signatures (Figure 3). Dif-
ferent signatures essentially detect the low-proliferation
subset as low-risk in the ER-positive group [27,48,49]. Fur-
thermore, histological grade, which strongly reflects prolif-
eration, shows prognostic value only in the ER-positive
subgroup (Additional file 5: Figure S4B; ER + p = 0.0002 vs
ER- p = 0.57). This highlights the need for robust prognos-
tic tools designed for each ER subgroup.
The dismal performances in ER-negative tumors of

most of the signatures, except 76-gene and Hypoxia, re-
sulted from classifying most of them into the high-risk
category [48,51]. This elevated risk score was predomin-
antly driven by highly proliferative basal-like and Her2-
enriched tumors (Figure 3), and left the signatures with
poor discriminative power for risk assessment within
ER-negative tumors. Clinically, patients with ER-negative
tumors are heterogeneous with respect to age as well as
treatment received. Most patients with ER-negative tu-
mors receive cytotoxic chemotherapy. All these factors
pose difficulties in marker identification and further
building prognostic/predictive signatures specific for this
subgroup. The ER-specific markers within the 76-gene
signature (60 genes from ER + and 16 from ER-) contrib-
ute to its prognostic ability in both ER stratifications.
Intriguingly, signatures characterizing tumor microenvir-
onment (Hypoxia and Wound-Response) showed prog-
nostic values for ER-negative breast cancer. In line with
previous indications [18,30], Hypoxia seems to carry bio-
logical and prognostic information distinct from the
other signatures (Figure 1A). More specifically, certain
genetic components and the microenvironment of breast
tumors are likely to be important for the predictive abil-
ity of the Hypoxia signature. Tumors with “high hypoxia
response” were more likely to have TP53 mutations and
to be ER negative [30]. In this study, TP53-mutated and
ER-negative tumors had elevated hypoxic score (one-
tailed t-test p = 0.029; Additional file 5: Figure S4C),



Figure 3 Gene-signature risk scores in relation to biological entities. Distributions of the subtypes (called by PAM50) stratified by ER status
for individual gene signatures. Note that we used PAM50-classifications as proxy of proliferation. Luminal tumors dominate ER-positive group,
while basal and Her2-enriched tumors drive the risk score higher in ER-negative group. In the ER-positive stratum, the risk assessment in most of
the gene signatures is highly consistent with classification of luminal A and B tumors. Being more proliferative is known to distinguish luminal B
tumors from luminal As. This indicates that the proliferation module, underlying many signatures, may drive the prognostication in
ER-positive tumors.
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while no significant differences in the hypoxic score asso-
ciated with TP53 status were found in the ER-positive tu-
mors (one-tailed t-test p = 0.29). Distinct features of the
tumor microenvironment associated with basal-like and
luminal tumors [52] possibly underlie the variation in hyp-
oxia responses observed in different ER subgroups.
Proliferation seems to be the common driving force

for prognostication in ER-positive breast cancers, while
different biological mechanisms such as stress response
may be crucial for risk stratification in ER-negative
tumors. Additionally, immune-related gene modules
have been implicated to be prognostic in high-risk ER-
positive breast cancers [53] and ER-negative breast can-
cers [54,55].
In most gene expression studies, information on pa-

tient treatment is limited and inconsistent. In our com-
bined cohort, treatment data were compiled for systemic
adjuvant treatment. Results for patients that did not re-
ceive systemic treatment (Additional file 5: Figure S3A-C)
were consistent with the main findings. Data on patient
cohorts homogeneously treated is important to be able to
distinguish between ability to predict treatment response
to a specific therapy and prediction of prognosis.
In multivariate analyses on the ER-positive tumors

(Additional file 1: Table S4A), signatures remained
powerful predictors and added significant information
beyond known prognostic parameters, including tumor
size, node and histological grade. Histological grade lost
much of its prognostic power in models with signature,
size and node (Model 1). The signatures’ change in prog-
nostic power over time fell or disappeared in models that
included histological grade (Model 3) or tumor size
(Model 2). More advanced tumors, grade-3 or large tumor
size, tended to experience early relapse, with late relapse
more common in less advanced tumors (grade-1 or small
tumor size). The inclusion of histological grade or tumor
size in the model may thus have captured and masked
some of the time-dependency of the signatures’ prognostic
power (see Additional file 1: Table S5, Additional file 1:
Table S6 and Additional file 5: Figure S4D-E for more de-
tail), although it also indicates that signatures may provide
more accurate long-term prognosis when combined with
information on histological grade or tumor size. Multivari-
ate analyses on the ER-negative group were not presented
because none of the included predicators was significant.
We did not find any notable effect of cohort differences

on our analyses (Figure one and Box five of Additional
file 2).
The METABRIC set [46] served as an independent val-

idation set for our study. We did not have access to this
data until after the original analyses had been performed.
The fact that we are able to confirm the observations from
the original analyses (based on the meta-cohort; n = 947)
in an independent large dataset, undoubtedly validates our
study, greatly strengthens the indications and authenti-
cates the conclusions. These findings were confirmed in
both the systemically treated and untreated groups, and
thus does not seem to be affected by the use of breast can-
cer specific survival as event instead of DMFS. We did not
include the classification for molecular subtype proposed
by Curtis et al. [46] as the IC (Integrative Cluster) sub-
groups are based on clustering on both gene expression
and copy number data through a joint latent model [56].
The majority of samples in our main analysis did not have
copy number data available, while evaluating the ICs in
METABRIC together with other signatures would bias the
results since the IC classification was developed using this
cohort.
The indications from our study that prognostic power

of gene signatures depend on ER-status, has previously
been reported by Desmedt et al. [49]. They used a gene
module score to estimate HER2 and ER activity, and
used this to split the samples by HER2 status, and the
HER2-negative were further split by ER status, resulting
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in three groups. We used ER and HER2 status based on
IHC where available, or imputed from gene expression if
not. Since we did not see a substantial effect of HER2
status on DMFS or time dependency (Additional file 5:
Figure S5), we did not focus on stratification based on
the HER2 status.
By the rule of thumb that 10 events per covariate is

generally sufficient for Cox analyses [57-59,60], we con-
sider the sample size and number of events sufficient to
reliably assess the prognostic power of gene signatures
in the different follow-up time intervals for both ER
states (Table 3 & Additional file 1: Table S7A), although
with some reservations for the last time interval
(>10 years) for the ER-negative group which had few
events (n = 5 in both studied datasets). However, we
consider our results convincing given the consistency
across the two datasets and across several signatures.
It is interesting to observe that higher risk scores asso-

ciated with lower risks for distant metastasis after
>10 years follow-up in the ER-negative group. These es-
timates are based on a small number of events (n = 5 in
both datasets), but the fact that it occurs in both data-
sets lends the finding some credibility. For ER-negative
cases still under study after 10 years, high risk signatures
tended to correspond to higher histological grade and
HER2 positive status.
Compatibility between signatures and target cohort
Some of the signatures had been developed on specific
patient subgroups (Additional file 1: Table S1). In par-
ticular, several of them were developed on node-negative
disease and only later validated on node-positive disease.
Signatures developed on one patient subgroup, may be
expected to have reduced power on other patient sub-
groups despite later validation, and so the use of a signature
from one patient group extended to a larger group should
be done and interpreted with caution.
Specifically in our study, the 76-gene signature is

intended for lymph-node-negative cancers. However,
since it was predictive for the node-positive patients as
well (p = 0.005 for raw relapse scores predicting DMFS,
see Supplement), we judged that the 76-gene signature
was a valid predictor also for node-positive disease, and
could be assessed along with the other signatures with-
out substantial loss of predictive power.
Although the RS was used as a prognostic test in the

tamoxifen-treated breast cancers, we found that RS had sig-
nificant prognostic power for the ER-positive patients in
the untreated cohort as well (Additional file 5: Figure S3C).
The RS signature was only intended for ER-positive, and so
cannot be criticized for performing badly on ER-negative.
Indeed, it performed no worse than many of the other sig-
natures, which were intended to cover ER-negative disease.
The EP signature was designed as a prognostic test in
ER-positive, HER2-negative breast cancer patients treated
with adjuvant endocrine therapy only. We found that the
EP had significant prognostic power on the ER-positive,
HER2-negative, untreated cancers, as well as the complete
set (Supplement). As the treatment information in our
main analysis is limited to systemic treatment, the strati-
fied subset for EP is not strictly based on adjuvant endo-
crine therapy only.
Conclusions
In summary, our study highlights conditions under which
it is appropriate to use individual published gene signa-
tures for survival prediction. The distinctions in prognos-
tic behavior of the signatures with respect to ER status
suggest that different molecular mechanisms are involved
in risk stratifications within each ER stratum. Also, the
signatures were primarily able to predict relapse with the
first 5 years of follow-up, with little ability to predict later
relapses. Incorporating characteristics of the advancement
of the tumor might help improve the quality of the prog-
nosis, perhaps also with respect to long-term prognosis.
While the majority of the tested signatures are strong risk
predictors in the early follow-up time intervals for ER-
positive tumors, there are urgent needs to improve risk
stratifications for long-term prognosis and ER-negative
breast cancers.
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