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Abstract

Background: In normal prostate epithelium the TMPRSS2 gene encoding a type Il serine protease is directly
regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently
gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although,
the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may
interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context.

Methods: Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses
were performed by the Genomatix Software. NKX3.7 and ERG genes expressions were evaluated by immunoblot or
by quantitative Real-Time PCR (gRT-PCR) assays in response to siRNA knockdown or heterologous expression.
QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional
regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was
monitored by Chromatin Immunoprecipitation assay.

Results: Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the
conservation of binding sites for the androgen inducible NKX3.7 tumor suppressor. Defects of NKX3.1, such as, allelic

loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in
prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively
regulates the expression of the £FRG protooncogene through the TMPRSS2-ERG gene fusion.

Conclusions: These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the
activation of TMPRSS2-ERG fusions in prostate tumorigenesis.
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Background

Activation of the ERG oncogene [1] represents an early
event in pre-neoplastic to neoplastic transition during
prostate tumorigenesis [2-4]. Rearrangements between
the androgen regulated TMPRSS2 gene promoter and
the ETS-related ERG gene result in TMPRSS2-ERG fu-
sion transcripts that have been found in approximately
half of prostate cancer cases in the Western world [5].
Fusion of other androgen regulated genes, such as, the
prostein coding SLC45A3, prostate specific antigen
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homologue kallikrein 2 (KLK2) or the N-MYC down-
stream regulated gene 1 (NDRGI) contribute to ERG ac-
tivation with lower frequencies [6]. At protein levels
ERG is detected as a nearly uniformly overexpressed
protein in over 60% of prostate cancer patients as re-
vealed by the diagnostic evaluation of ERG oncoprotein
detection in prostatic carcinoma [7,8].

Much has been learned about the androgenic regula-
tion of TMPRSS2 promoter [9-13] in prostate cancer. In
contrast, other control elements of the TMPRSS2 pro-
moter are largely unexplored both in the wild type, as
well as, in the TMPRSS2-ERG fusion genomic context.
In the current study comparative analysis of TAMPRSS2
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promoter upstream elements among different species re-
vealed the presence of a conserved NKX3.1 binding site.

NKX3.1 is a bona fide tumor suppressor gene with
prostate-restricted expression [14]. Loss or decreases in
NKX3.1 levels has been frequently observed in prostatic
intraepithelial neoplasia and at the pre-neoplastic to
neoplastic transformation stages of prostate cancer
[15,16]. Loss of Nkx3.1 cooperates with loss of Pten in
engineered mouse models of prostate tumorigenesis
[17,18]. Furthermore, Nkx3.1 defects cooperate with
Pten-Akt pathways [19] and disrupt cellular response to
DNA damage [20]. Nkx3.1 was also shown to oppose
the transcription regulatory function of C-Myc [21] in
mouse models. In prostate cancer cells C-MYC is acti-
vated by ERG [22-24]. A recent study has shown that
ERG is a repressor of NKX3.1 raising the possibility of a
feed-forward circuit in prostate tumorigenesis [25]. Our
observation of conserved NKX3.1 binding elements in
the TMPRSS2 promoter prompted us to examine the
hypothesis that NKX3.1 is a repressor of ERG in the
TMPRSS2-ERG fusion genomic context in prostate
cancer.

Results

Identification of an NKX3.1 binding site within the
TMPRSS2 gene promoter upstream sequences

Within the TMPRSS2 gene locus promoter downstream
sequences beyond the +78 position of the first non-coding
exon (NM_005656) frequently participate in genomic re-
arrangement events. These genomic rearrangements are
characterized by the recurrent TMPRSS2 (first non-
coding exon:+78) [26] to ERG (exon 8 or Exon 9)
[1,27,28] fusion junctions also known as fusion type “A”
or “C”, respectively [11]. In this gene fusion event the
TMPRSS2 promoter-proximal and promoter upstream
sequences are retained. Towards the bioinformatic ana-
lysis of TMPRSS2-ERG regulatory elements we mapped
the transcription start sites (TSS) of TMPRSS2 gene in
TMPRSS2-ERG fusion harboring human prostate tu-
mors. From a carefully characterized RNA pool of ERG
expressing and TMPRSS2-ERG fusion harboring pros-
tate tumors obtained from six radical prostatectomy
specimens [29], cDNA molecules were generated and
amplified using 5 cap-specific forward primers and
ERG-specific reverse primers. Amplicons were isolated
and cloned. Individual clones (n =20) were analyzed by
DNA sequencing and the frequency of cap-tags were
plotted on the transcription start region (TSR_200587)
of the TMPRSS2 gene (Figure 1A). The DNA sequence
analysis revealed that the most frequent (50%) tran-
scription start of TMPRSS2-ERG fusion transcripts is at
+5, relative to the wild type TMPRSS2 promoter +1 pos-
ition. By confirming the TSS position we focused our in-
vestigation on the +78 t015,000 upstream regulatory
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region of the TMPRSS2 gene on chromosome 21 (NCBI
build 36.3) for further analyses. This genomic region en-
compasses upstream regulatory elements (-13.5 kb)
shown to control cancer-associated expression of the
ERG oncogene [30].

Comparative analysis of modular regulatory sequences
of various species is a powerful approach for pinpointing
functionally relevant regulatory elements [31-33]. We ap-
plied a computational approach (FrameWoker software,
release 5.4.3.3) that has been shown to identify conserved
orientation, relative position and relative distance of bind-
ing motif (matrix) clusters [34,35] also known as the
“motif grammar” [36] using the Matrix Family Library
Version 7.1. We have examined the -15,000;+78 bp re-
gions of human, rhesus monkey, rat and mouse TMPRSS2
gene promoter upstream sequences for the conservation
of composite regulatory elements. Striking conservation of
a composite model was noted in this analysis that was
mapped to the human TMPRSS2 -2350; -2258 sequences
relative to the TSS. Within the composite model we have
identified the vertebrate NKX3.1 matrix (VSNKXH) as the
prostate-specific component of the model and putative
binding site was termed as NKX3.1 binding site 1 (NBS1)
(Figure 1B).

NFkB-centered network of NKX3.1 target gene signatures

Utilizing this highly conserved model the entire human
genome was searched for model matches (Modellnspector
Release 5.6) to define gene loci potentially targeted by
NKX3.1. After filtering for non-redundant, intronic, ex-
onic and promoter model matches within gene loci of an-
notated genes, knowledge-based pathway analysis was
performed using functional co-citation settings. The ana-
lysis revealed a network with NFxB in the central regula-
tory node (Additional file 1: Figure S1). As expected,
searching of the entire human genome for this composite
model precisely identified the TMPRSS2 gene upstream
-2350; -2258 sequences. In contrast, search of the dog,
bovine, opossum and zebra fish genome failed to identify
model matches within the Tmprss2 loci of these species.
In a meta-analysis approach we compared the comparative
genome analysis-derived network to the signature of
Nkx3.1-targeted genes defined by in vivo ChIP assay in a
mouse model (Additional file 1: Figure S2) [21]. Strikingly
similar NFxB-centered regulatory network was revealed
by the analysis (Figure 2). NKX3.1 target genes within the
compared datasets were enriched in functionally related
genes. Moreover, the analysis highlighted orthologues of
TMPRSS2, JARID2 and the NFxB genes. The apparent
similarity between these datasets has prompted us to
examine the disease association of NKX3.1 target genes by
gene ontology analyses. Enrichment of chromosome aber-
rations, inversion, breakage and associated diseases was
revealed by the analysis (Table 1).
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Figure 1 Defining a conserved composite model for NKX3.1 binding within the TMPRSS2 gene promoter upstream sequences.

(A) Frequency of TMPRSS2-ERG transcript initiation sites within the TMPRSS2 promoter transcriptional start region (TSR). (B) NKX3.1 model match

within the human TMPRSS2 promoter upstream region with conserved distance, positions and orientations (arrows) of transcription factor
binding sites.
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Figure 2 Summary of NFKB centered NKX3.1 target gene signatures from in silico (left panel) and from the meta-analysis of in vivo
data (right panel). Experimentally validated human genes and their orthologues in mouse are highlighted in yellow. Secondary nodes
representing genes with four or more functional connections are stemming from the central regulatory node (green boxes). Nodes with four or
more functional connections are outlined by red. Connected genes are marked with white background color.
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Table 1 Disease association analysis of predicted NKX3.1
targeted genes within the human genome reveals the
enrichment of chromosome aberrations, inversion,
breakage gene ontology categories

MeSH Disease/input n =464 Genes
P-value Expected Observed

Chromosome inversion 1.67e-04 120 152
Chromosome aberration 2.06e-04 13 27
Angelman Syndrome 2.99%-04 3 10
Chromosome breakage 345e-04 20 36
Uniparental disomy 3.95e-04 4 12
Prader-Willi Syndrome 8.64e-04 5 13
Translocation, genetic 9.83e-04 59 82

Altered expression of predicted downstream target genes
in response to NKX3.1 depletion

To evaluate NKX3.1 in TMPRSS2-ERG fusion harboring
prostate cancer cells we utilized the siRNA depletion
strategy. Consistent with a negative regulatory function
of NKX3.1, the transcripts of endogenous TMPRSS2-
ERG fusion allele, as well as, the wild type TMPRSS2
showed elevated expression along with HDAC9, RUNX1,
NFxB and JARID2 genes in response to NKX3.1 inhib-
ition (Figure 3A). In line with previous reports we also
noted the reduction of CFTR expression in response
NKX3.1si. This finding suggests that CFTR expression
in the human prostate may indeed positively regulated
by NKX3.1 [37]. Gene expression response to NKX3.1
knockdown was noted in approximately half of the ex-
amined NKX3.1 target genes. Whole genomic search for
model matches in human, rhesus monkey, rat and
mouse TMPRSS2 promoter upstream sequences pre-
cisely identified matches of the NKX3.1 model. Thus
NKX3.1 as a negative regulator of TMPRSS2 may evolve
in this lineage, since, we found no evidence of model
matches within Tmprss2 promoter upstream regions of
zebra fish, opossum, dog and cow genomes. Despite of
known informatics constrains, such as, model overfitting
and limitations in the employed functional assays the re-
sults suggest that comparative analyses for defining con-
served repressor elements is a valid approach providing
efficient guidance for the experimental validation.

To assess the function of NKX3.1 in regulating the
TMPRSS2-ERG fusion gene we evaluated ERG expression
in response to specific inhibition of NKX3.1. Knockdown
NKX3.1 with siRNA resulted in elevated ERG protein levels
(Figure 3B). Increased expression and nuclear localization
of ERG oncoprotein in response to NKX3.1 siRNA further
supported the repressor role of NKX3.1. Consistent with
elevated ERG levels we observed marked decreases in
prostein. This prostate differentiation associated protein is
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encoded by the SLC45A3 gene that is negatively regulated
by ERG [22].

NKX3.1 is a repressor of the TMPRSS2 gene
Although, NBS1 is the only evolutionarily conserved
NKX3.1 binding site prediction within the TAMPRSS2
promoter upstream region, transcription factor binding
site model match search by MatInspector identified fur-
ther stand-alone NKX3.1 binding sites. The single
matrix prediction identified a tight cluster of five single
NKX3.1 matrix model matches (VSNKX31.01) between
positions —2298 and -2168 relative to the transcription
initiation site that showed partial overlap with NBSI1.
Further upstream clusters of single NKX3.1 model
matches were identified and were designated as NBS2
(-3292; -3277), NBS3 (-8019; -7902), NBS4 (-10684;
-10615), and NBS5 (-14628; - 14614). For the assess-
ment of transcription regulatory functions, NBS1-5 sites
were cloned upstream to a Luciferase reporter vector.
The assay result indicated negative regulatory functions
for NBS1, NBS2 and NBS4 sequences (Figure 4A). To
evaluate the endogenous TMPRSS2-ERG gene expres-
sion response to NKX3.1 inhibition, VCaP cells were
grown in hormone depleted media for three days. Cells
were transfected by NKX3.1 siRNA or by non-targeting
control siRNA molecules. Synthetic androgen (R1881) was
added to the media to induce the expression of androgen
regulated genes, including NKX3.1 and TMPRSS2-ERG.
After 24 h induction cells were processed for Chromatin
Immunoprecipitation (ChIP) assay examining the recruit-
ment of NKX3.1 to NBS1, NBS2 and NBS4. NBS ampli-
cons were excised from the gel and were confirmed by
DNA sequencing. The experiment confirmed the recruit-
ment of NKX3.1 to NBS1 and NBS4 regions (Figure 4B).
Although ChIP assays provided an estimated region of
recruitment within the chromatin context of NBS1 and
NBS4 it does not reveal the actual position and specifi-
city of transcriptional regulatory elements. To address
the specificity of NBS1 and NBS4 core binding sites we
have introduced transversion point mutations to the core
cognate elements aiming to disrupt the NKX3.1 homeodo-
main DNA recognition (Figure 5A). To reduce the possi-
bility of generating of de novo TF binding sites we have
used the SeqenceShaper program (www.genomatix.de).
Wild type and corresponding mutant NBS1 and NBS4
harboring reporter vectors were assayed for reporter
gene activity by transfecting HEK293 cells in the pres-
ence of NKX3.1 expressing pcDNA-NKX3.1-HA ex-
pression vector or control pcDNA. The transfection
efficiency was monitored by co-transfecting phRGB-TK
Renilla-Luc control vector. In the presence of heterolo-
gously expressed NKX3.1 the expression of wtNBS1 and
wtNBS4 reporters were reduced 4-3 folds, respectively.
NBS1- and NBS4-mediated transcriptional repression
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Figure 3 Expression of predicted NKX3.1 target genes in response to NKX3.1 inhibition. (A) Depletion of NKX3.1 results in increases in
mMRNA levels of wild type TMPRSS2, TMPRSS2-ERG fusion (T2-ERG), HDACY, RUNX1, NFkB and JARID. In contrast, robust reduction of CFTR levels is
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prostein (SLC45A3). Schematic depiction of the negative regulatory role of NKX3.1 in the context of TMPRSS2-ERG (T2-ERG) gene fusion (inset).
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was disrupted by specific mutations within the VSNKXH
core recognition sequences, accompanied by a modest
activation in reporter expressions (Figure 5B).

Discussion

Comparative assessment of evolutionary conserved cog-
nate sequences within the TMPRSS2 promoter upstream
sequences revealed strong conservation of an NKX3.1
binding site. Experimental evaluation of the predicted

composite element suggested that this element confers
NKX3.1-mediated repression to the TMPRSS2-ERG fu-
sion gene in prostate cancer cells. Inhibition of NKX3.1
resulted in elevated expression and nuclear localization
of ERG and resulted in reduced levels of the ERG-
downstream regulated prostein encoded by the SLC45A3
gene. Assays for the transcription regulatory function of
NKX3.1 binding sites indicated repressor function that
was disrupted by specific mutations affecting the DNA
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Figure 4 Predicted NKX3.1 binding sequences of the TMPRSS2 promoter are portable repressor elements. (A) The transcriptional
regulatory function of predicted NKX3.1 binding sites (NBS1-5) was assessed by luciferase reporter systems. Relative luciferase units are shown
as fold changes relative to the control expression levels. Significant (P < 0.05) reduction of reporter gene expression are marked by asterics
(B) Specific recruitment of endogenous NKX3.1 to predicted NBST and NBS4 binding sites of the TMPRSS2 promoter upstream regions was
assessed by in vivo ChIP assay in the absence (NT) or presence of NKX3.1 siRNA (NKX).

recognition of NKX3.1 transcription factor. Recruitment
of endogenous NKX3.1 to the evolutionarily conserved
cognate element was confirmed by in vivo ChIP assay.
Loss of NKX3.1, contributes to the cancer associated
function of AR [38,39], C-MYC [21], p53, PTEN [40],
Topoisomerase I [41] and TWIST1 [42] in prostate can-
cer. ERG oncogene, a result of the TMPRSS2-ERG fu-
sions, negatively regulates NKX3.1 through EZH2 [25].
In the current study we have examined evolutionary
conserved composite regulatory models of the TMPRSS2
gene. The analysis revealed a remarkable conservation of
a composite model with an NKX3.1 binding site in the
lineage of mouse, rat, rhesus monkey and human species
members of the Euarchontoglires (Supraprimates) super
ordo. This composite model identified sequences within
intronic regions of the human genome. Increased ex-
pression of evaluated NKX3.1 target genes (HDACY,
RUNXI, TMPRSS2, TMPRSS2-ERG, NFxB and JARID2)
was observed in response to NKX3.1 inhibition. Meta-
analysis of Nkx3.1 target genes from in vivo ChIP assay
of mouse prostates indicated that upstream regulatory
regions are indeed enriched in core elements, such as, V
$NKXH, VSHOXF and V$BRNF (Table S3 in [21]) simi-
lar to the model we have obtained from in silico analysis.
Pathway analysis of NKX3.1 target genes from the
current study, as well as, from the reported in vivo
model [21] revealed NFkB as the central regulatory node

of NKX3.1 target gene signatures. Furthermore, the ana-
lyses indicated, robust enrichment of genes controlling
chromosomal integrity. These findings are consistent
with the reported role of NKX3.1 in cellular response to
DNA damage [20,41]. These observations are also con-
sistent with an NFkB-mediated protective function of
NKX3.1 linked to inflammation and tumorigenesis
[15,43-47]. Taken together our study highlights NKX3.1
as a negative regulator of theTMPRSS2 promoter. Thus,
the frequently observed haploinsufficiency of NKX3.1 in
prostate cancer may significantly contribute to the acti-
vation of ERG protooncogene in the TMPRSS2-ERG fu-
sion genomic context. This finding highlights the
integrated role of TMPRSS2-ERG gain and NKX3.1
losses as cooperating events in prostate tumorigenesis
(Figure 6).

Conclusions

Approximately half of the prostate cancer cases
harbor the TMPRSS2-ERG gene fusions in Western
countries. This recurrent oncogenic event leads to
the activation of the ERG oncogene. In the current
study evaluation of conserved regulatory elements
of TMPRSS2 promoter upstream sequences revealed
conservation of binding sites for the NKX3.1 tumor
suppressor. NKX3.1 binds to these sequences and
represses the TMPRSS2-ERG fusion gene. Thus, the
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Methods

Cell lines, cell culture and reagents

Human prostate tumor cell line, VCaP and human em-
bryonic kidney HEK293 cells were obtained from the
American Type Culture Collection (ATCC, Rockville,
MD) and were maintained in growth medium and under
conditions recommended by the supplier. The synthetic
analogue of androgen, R1881, was purchased from New
England Nuclear (Boston, MA).

Inhibition of NKX3.1 and ERG with small interfering RNA
and heterologous expression of NKX3.1

Small interfering RNA (siRNA) oligo duplexes against
human NKX3.1(L-015422-00), and Non-targeting con-
trol siRNA (D-001206-13-20) were from Dharmacon
(Lafayette, CO), ERGsi RNA as previously described
[22]. Transfection or co-transfection of 50 nM siR-
NAs and 1pM of plasmids was carried out with
Lipofectamine 2000 (Invitrogen, Carlsbad, CA) in trip-
licates. The wild type human NKX3.1I expressing
vector pcDNA3.1-NKX3.1-HA was a kind gift from
Dr. Charles J. Bieberich, University of Maryland
Baltimore County, Baltimore, Maryland. In six-well
plates HEK293 cells were transfected in triplicates with
the pcDNA3.1 control or with the pcDNA3.1-NKX3.1-
HA expression vectors by using Lipofectamine 2000.
Cells were harvested for protein and mRNA analysis after
48 h incubation.

Chromatin immunoprecipitation assay

For assessing the specific recruitment of endogenous
NKX3.1 to the predicted NKX3.1 binding sites in vivo
ChIP assays were carried out in the presence of NKX3.1
siRNA or control NT siRNA [35]. VCaP cells were
grown in 10% charcoal stripped serum (cFBS) containing
media (Gemini Bio-Products, Carlsbad, CA) for 48 h
and were transfected with 50 nM NKX3.1 siRNA or 50
nM of NT control. Cells were incubated for 24 h
followed by the addition of 0.1 nM of R1881. At the
48 h time point following hormone induction formalde-
hyde was added to the cell culture media to 1% and the
cells were processed for ChIP assay [48] by using the
mouse monoclonal anti-ERG antibody (CPDR ERG-
MAD, clone 9FY, currently available from Biocare Med-
ical, Concord, CA) [7]. NBS1 region from input and
ChIP DNA samples were amplified by the forward 5'-
TGTTTCTCTGGAGAACCCTGA-3’ and reverse 5- GC
AGGTGCAGTTGTCTTTCA-3’; NBS2 region was amp-
lified by the forward 5- CAATCCAGGCAGGGCTA
TTA and reverse 5- GGGCAATAGCTGGTGTTTGT-
3; the NBS4 region was amplified by the 5- TCA
TCTATTTTCACCGCCATC-3’ and 5- ACACGCACAC
ACCACATCAT-3 primer pairs under previously de-
scribed PCR conditions [22,35].
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Assessment of the transcription initiation site of
TMPRSS2-ERG transcript by 5’ oligocapping

Under approved protocol from the WRAMC IRB six
cases were identified with TMPRSS2-ERG fusion harbor-
ing prostate tumors. Total RNA was isolated from the
tumors and were pooled [29]. From the pool 4.2 pug of
total mRNA was subjected to 5 oligocapping procedure
(FirstChoice, RLM-RACE, Ambion, Austin, TX) pairing
the 5-GGCGTTGTAGCTGGGGGTGAG-3" [11] with
the outer, and 5- CAATGAATTCGTCTGTACTCCA
TAGCGTAGGA-3" with the inner primer. Amplicons
were gelpurified and cloned into pUC19 vector and were
subjected to DNA sequencing in forward and reverse
directions.

Comparative analysis of the TMPRSS2 gene promoter
upstream sequences

DNA sequences of the 15,000; +78 bp region of Homo
sapiens, Macaca mulatta, Rattus norvegicus and Mus
musculus genomes were extracted from the NCBI build
36.3 database. Scanning from the proximal promoter to-
wards the distal sequences 3,000 bp homologue segments
were evaluated allowing 500 bp overlap of segments at
each composite model scanning step. DNA sequence
segments of all examined species were analyzed by
the FrameWorker (version 5.4.3.3, www.genomatix.de)
for conserved composite model matches by using the
Matrix Family Library 7.1 at the following settings:
core promoter elements 0.75/optimized, vertebrates
(0.75/optimized); distance between adjacent elements:
5-200; distance band with: 10, exhaustive model search
with minimum number of elements =2 and max number
of elements = 6. Overall the highest number of common
single element match was the VSNKXH, a binding site for
NKX3.1. Ranking the composite models revealed only one
model that reached the maximum (four element) com-
plexity. The top scoring model was defined as VSHOXF
(strand orientation (+), distance to next element 43-51 bp),
V$NKXH (strand orientation (-), distance to next element
7-14 bp), V$PARF (strand orientation (-), distance to
next element 17-23 bp); V$BRNF (strand orientation
(-), distance to next element O bp) at settings of
minimum core similarity = 0.75 and minimum matrix
similarity “optimized”. Next the entire human genome
(NCBI build 36.3) was searched with this composite
model for matches by the Modellnspector 5.6 pro-
gram (www.genomatix.de). Whole -genomes model
searches confirmed the model match within the TAMPRSS2
gene promoter upstream sequences in Homo sapiens,
Macaca mulatta, Rattus norvegicus and Mus mus-
culus genomes and indicated the absence of model
match within the Tmprss2 gene loci of Canis lupus
familiaris, Bos Taurus, Monodelphis domestica, and
Danio rerio.
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Pathway and meta-analyses of NKX3.1 genomic targets
Predicted gene targets for NKX3.1 were obtained by in
silico composite model match analysis of the entire hu-
man genome. Among the total 1636 (1371 non-
redundant) model matches 559 were non-annotated.
Within the annotated 1037 model matches (Additional
file 2: Table S1) 627 was found in intronic, 10 and 12
matches were found in exonic or promoter sequences,
respectively. Intronic, exonic and promoter model
matches were further filtered for genes with defined
gene symbols and the final set of 452 genes were used as
input for pathway analysis (Additional file 2: Table S2).
Prostate Cancer meta-analysis dataset used in our study
was based on the report of Anderson et al. [21]. NKX3.1
target genes were imported into the Genomatix Pathway
System (GePS, www.genomatix.de). In GePS genes were
mapped into networks based on the information ex-
tracted from public databases including National Cancer
Institute Pathway Interaction Database (http://pid.nci.
nih.gov) and Biocarta (www.biocarta.com). The gener-
ated network displayed as nodes and connections fo-
cused on functional relationships between genes based on
the number of evidences in literature (Figures S1 and S2).
For the analyses we have used function word evidence
level to generate the network where gene pairs are noted
if they occur in the same sentence connected with a
function word.

Immunoblot assay

At the specified time points VCaP cells treated with
NKX3.1si or control NTsi were lysed in M-PER
Mammalian Protein Extraction Reagent (Pierce, Rockford,
IL) supplemented with protease (Roche Applied Science,
Indianapolis, IN) and phosphatase inhibitor cocktails
(Sigma, St. Louis, MO). ERG proteins were detected by
Western blot (NuPAGE Bis-Tris gel, Invitrogen) as
described previously using immunoaffinity-purified anti-
ERG mouse monoclonal antibody 9FY [7]. The anti-
NKX3.1 polyclonal antibody (T-19) and anti-alpha tubulin
(B-7) antibodies were obtained from Santa Cruz
(Santa Cruz, CA) and the anti-prostein antibody rec-
ognizing the protein product of the SLC45A3 gene
was obtained from DAKO (Carpinteria, CA). Repre-
sentative images of two independent experiments are
shown in the Results.

Immunofluorescence assay of siRNA treated VCaP cells

VCaP cells were fixed in 4% paraformaldehyde and cen-
trifuged onto silanized slides (Sigma, St.Louis, MO) with
a cytospin centrifuge. Cells were immunostained with
anti-ERG (9FY) and anti-NKX3.1 (Santa Cruz) followed
by goat anti-mouse Alexa-488 and anti-goat Alexa-594
secondary antibodies (Invitrogen, Carlsbad, CA). Images
were captured by using a 40X/0.65 N-Plan objective on
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a Leica DMLB upright microscope with a QImaging
Retiga-EX CCD camera (Burnaby, BC, Canada) con-
trolled by OpenLab software (Improvision, Lexington,
MA). Images were converted into color and merged by
using Adobe Photoshop.

NKX3.1 binding site (NBS) luciferase reporters and
dual-luciferase reporter assays

Mutant NBS sequences were designed to minimize the
generation of artificial binding sites by the Sequence
Shaper (www.genomatix.de). Wild type and mutant NBS
sequences were chemically synthesized adding a cohesive
overhang for Nhel site (CGCGT) at the 5-end of the
sense strand and an overhanging Bgl2 site (TCGAG) at
the 3‘ as follows: wild type NBS1 5-CTCCATAATTG
TATGAGTCAATTTCTTATAGTAAATCTTTATATATA
TTATAAATAATATTTATTACATATAAGCTGTGTATA
ATATATATCAT-3; mutant NBS1 5-GAACGCCGGG
TATGAGTCAATTTCTTATAGTAAATCTTTATATATA
TTATAAATAAGCAAACTTACATATAAGCTGTGTAT
AATATATATCAT-3" ; wild type NBS2 5-CACATAACT
TAAGGCATATTGACTTTATATCATTGTATTAAGTAT
TGTTAATTTTACATTA-3; mutant NBS2 5-CACAT
AAAGGCCTGCATATTGACTTTATATCATTGGCGGC
CTTATTTGGCCGGTTACATTA-3’; wild type NBS3 5'-
CGAGAAAAGGATTCAAATACTTAGGAAGATTGAA
ATGTGAGGGT-3; mutant NBS3 5-CGAGAAAAGGA
TTCAAAGCCGGCGGAAGATTGAAATGTGAGGGT-3};
wild type NBS4 5'- CGAGTGGCATTAAGTACATTCAC
ACTGTCATGCAATCATCTATTTTCACCGCCATCTA
TTTTCAGAATGTTCTCA-3’; mutant NBS4 5- CGAG
TGGCATGCCTGCCATTCACACTGTCATGCAATCA
TCTATTTTCACCGCCATCTATTTTCAGAATGTT
CTCA-3; wild type NBS5 5-CAAAACCAAATACTG
CATGTTCTCACTTATAAGTGGGAGCTGGACAATG
AGAACACATGGACACAGGGAGA-3’; mutant NBS5
5-CAAAACCAAATACTGCATGTTCTAACAGGCTAC
TGTGGAGCTGGACAATGAGAACACATGGACACAG
GGAGA-3. The 5 end of synthetic oligonucleotides
were phosphorylated by using polynucleotide kinase,
the complementary strands were annealed and gelpuri-
fied and ligated to the Nhel-BglII sites of the gelpurified,
pPhRG-TK reporter (Promega, Madison, WI). The phRG-
TK vector is a synthetic reporter vector that has been
designed to minimize binding sites for transcription
factors. HEK293 cells were transfected with the re-
porter and pGL3 luciferase control vectors in tripli-
cates. Forty-eight hours after the transfection, the
activities of control phRG-TK reporter Renilla luciferase
and pGL3 Firefly luciferase constructs were determined
by the Dual-Luciferase Reporter Assay system (Promega,
Madison, WI). Cells were rinsed with phosphate-
buffered saline, and lysed with 1 x passive lysis buffer.
Twenty pl of cell lysates were transferred into the
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luminometer tube containing 100 pl luciferase assay re-
agent II. Firefly luciferase activity (N1) and were measured
first, and then Renilla luciferase activities (N2) were
determined after the addition of 100 ul Stop & Glo
reagent. N2/N1 light units were averaged from three
measurements and were expressed as relative luciferase
units (RLU).

RNA extraction, reverse transcription and real-time PCR
quantification

Total RNA was extracted from cell monolayer using
Trizol® total RNA isolation reagent (Gibco BRL, Life
Technologies, Gaithersburg, MD, USA) as per the man-
ufacturer's protocol. Real-time PCR was performed in
triplicates using an Applied Biosystems 7300 Sequence
Detection system using SYBR green PCR mix (Qiagen)
or by TagMan assay (Applied Biosystems). The expres-
sion of GAPDH was simultaneously analyzed as en-
dogenous control, and the target gene expression in
each sample was normalized to GAPDH [49]. RNA sam-
ples without reverse transcription were included as the
negative control in each assay. Amplification plots were
evaluated and threshold cycle (CT) was set for each ex-
periment. Measurements for target gene and GAPDH
endogenous control were averaged across triplicates and
standard deviation for each set was calculated. ACT
values were calculated by subtracting averaged GAPDH
CT from averaged target gene CT and expression fold-
change differences were calculated by comparing ACT
values among sample sets. Primer pairs for the amplifi-
cation of target genes were as follows. HDAC9: forward
5- CAAATGGTTTCACAGCAACG -3} reverse 5'- TGC
GTCTCACACTTCTGCTT -3’; JARID2: forward 5'- AG
GAGACTGGAAGAGGCACA -3 and reverse 5- GTCC
GTTCAGCAGACCTCTC -3’; NFkB: forward 5- TATG
TGGGACCAGCAAAGGT -3’ and reverse 5- AAGTAT
ACCCAGGTTTGCGAAG -3’; RUNXI forward 5'- CAG
ATGGCACTCTGGTCACT-3’ and reverse 5- TGGTCA
GAGTGAAGCTTTTCC-3’; CF1R forward 5- CCAGA
TTCTGAGCAGGGAGA-3’; reverse 5- TTTCGTGTGG
ATGCTGTTGT-3. Primers and probes for TMPRSS2
and TMPRSS2-ERG, as well as for NKX3.1 have been
described before [50,51].

Statistical analysis

Gene expression analyses results are shown by bars
representing mean+/- S.E., from three independent
experiments (n=3). Anova and Dunnett t test were
applied for statistic analysis using the SAS software
(www.sas.com). Significant gene expression differ-
ences, P<0.05, are marked with asterisk. Enrichment
scores and P-values of the bioinformatics analyses
were calculated by the Genomatix Software (www.
genomatix.de).
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Additional files

Additional file 1: Figure S1. NFkB forms the central node of predicted
NKX3.1 target genes within the human genome.

Additional file 2: Table S1. IDs of annotated genes (1037) obtained
from the list of non-redundant model matches of predicted NKX3.1
targets within the human genome. The TMPRSS2 gene ID is underlined
on chromosome 21.
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