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matrix-rich, chemoresistant phenotype offering a
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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer related death.
It is lethal in nearly all patients, due to an almost complete chemoresistance. Most if not all drugs that pass
preclinical tests successfully, fail miserably in the patient. This raises the question whether traditional 2D cell culture
is the correct tool for drug screening. The objective of this study is to develop a simple, high-throughput 3D model
of human PDAC cell lines, and to explore mechanisms underlying the transition from 2D to 3D that might be
responsible for chemoresistance.

Methods: Several established human PDAC and a KPC mouse cell lines were tested, whereby Panc-1 was studied
in more detail. 3D spheroid formation was facilitated with methylcellulose. Spheroids were studied morphologically,
electron microscopically and by qRT-PCR for selected matrix genes, related factors and miRNA. Metabolic studies
were performed, and a panel of novel drugs was tested against gemcitabine.

Results: Comparing 3D to 2D cell culture, matrix proteins were significantly increased as were lumican, SNED1,
DARP32, and miR-146a. Cell metabolism in 3D was shifted towards glycolysis. All drugs tested were less effective in
3D, except for allicin, MT100 and AX, which demonstrated effect.

Conclusions: We developed a high-throughput 3D cell culture drug screening system for pancreatic cancer, which
displays a strongly increased chemoresistance. Features associated to the 3D cell model are increased expression of
matrix proteins and miRNA as well as stromal markers such as PPP1R1B and SNED1. This is supporting the concept
of cell adhesion mediated drug resistance.
Background
Over the past decades pancreatic ductal adenocarcinoma
(PDAC) has become the subject of increased research
activity, however, the prognosis of this disease remains
the worst amongst solid tumours. The 5-year survival
rate is still below 5%, and this is at least partially due to
an almost complete resistance against both conventional
and targeted chemotherapy. With the present standard
of care, conventional chemotherapy results in a median
life expectancy of around 6 months [1]. Recent evidence
suggests that the molecular basis for this chemoresistance
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is multifaceted and reflects a wide range of genetic
changes in a multitude of cellular pathways and response
[2], including drug transportation [3] and microenviron-
mental alterations [4]. A better understanding of the
underlying mechanisms is key to the identification of
novel therapeutic strategies capable of overcoming this
chemoresistance.
Three-dimensional culture of tumour cells was intro-

duced as early as the 1970s. Initially, investigations fo-
cused on the morphology of and interactions between
tumour cells [5]. Various PDAC cell lines were tested for
their ability to grow as spheroids in 3D culture [6,7].
Among these, the widely used Panc-1, which carries
both KRAS and p53 mutations, was shown to form ag-
gregates under appropriate culture conditions [6]. It be-
came apparent that 3D cultures are generally more
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resistant to chemo- and radiotherapy than their 2D
counterparts [8,9], however validated three-dimensional
in vitro tumour cell models allowing for fast and stan-
dardized drug screening are not routinely employed.
Based on these observations, a new hypothesis relating
chemoresistance to the microenvironment, i.e. the
stroma and extracellular matrix, was proposed. This
novel concept, coined cell adhesion mediated drug resist-
ance (CAM-DR), was proposed for bone-marrow de-
rived malignancies [10], but has not been applied to
solid tumours, including PDAC [11]. In this study, we
characterize a 3D tumour model in which the PDAC ac-
quires a more stroma-rich phenotype, which simulates
more closely the in vivo situation, and provides evidence
for the CAM-DR concept.

Methods
Cell culture
The following well-characterized human pancreatic
ductal adenocarcinoma cell lines (ATCC) were used:
AsPC-1, BxPC-3, Capan-1, Panc-1 [6,12]. A human im-
mortalized pancreatic stellate cell (PSC) line [13] was
used as a non-transformed control cell line. KPC cells
were established from a mouse PDAC model, carrying
pancreas-specific Kras and p53 mutations (KrasLSL-G12D/+;
Trp53LSL-R172H/+;p48-Cre; hence KPC) [14]. Cells were
cultured under standard culture conditions (5% CO2, at
37°C) in DMEM/F12 or phenol red-free DMEM/F12
medium (Gibco) containing 10% fetal calf serum (FCS,
Invitrogen).

3D culture
Cells were trypsin-treated and counted using the Casy Cell
Counter according to the manufacturer’s recommenda-
tions (Schärfe System GmbH, Reutlingen, Germany). Sub-
sequently, they were seeded onto round bottom non-tissue
culture treated 96 well-plates (Falcon, BD NJ, USA) at a
concentration of 2500 cells/well in 100 μl DMEM-F12 or
phenol red-free DMEM-F12 medium, containing 10% FCS
and supplemented with 20% methyl cellulose stock solu-
tion. For preparation of methylcellulose stock solution we
autoclaved 6 grams of methylcellulose powder (M0512,
Sigma-Aldrich) in a 500 ml flask containing a magnetic
stirrer (the methylcellulose powder is resistant to this pro-
cedure). The autoclaved methylcellulose was dissolved in
preheated 250 ml basal medium (60°C) for 20 min (using
the magnetic stirrer). Thereafter, 250 ml medium (room
temperature) containing double amount of FCS (20%) was
added to a final volume of 500 ml and the whole solution
mixed overnight at 4°C. The final stock solution was
aliquoted and cleared by centrifugation (5000 g, 2 h, room
temperature). Only the clear highly viscous supernatant
was used for the spheroid assay (about 90-95% of the stock
solution). For spheroid generation we used 20% of the
stock solution and 80% culture medium. corresponding to
final 0.24% methylcellulose. Spheroids were grown under
standard culture conditions (5% C O2, at 37°C) and
harvested at different time points for RNA isolation or
drug testing as stated below.

mRNA isolation and RT-PCR analysis
Cells or spheroids were collected, washed once with cold
PBS, and processed for total RNA isolation using the
RNeasy or the miRNeasy Mini Kit (Qiagen). RNA integ-
rity and concentration were analyzed using agarose gel
electrophoresis and Nanodrop Spectrophotometer. One
μg of total RNA was retrotranscribed (First Strand
cDNASynthesis kit, Roche). In the case of microRNA
analysis, the NCode™ VILO™ miRNA cDNA Synthesis
Kit (Invitrogen) was used for retrotranscription.
SYBR-Green Technology (Fermentas) was used for all

qRT-PCR experiments. Further detailed information re-
garding qPCR reactions and oligonucleotide primers se-
quences is included in Additional file 1: S1.

SDS-PAGE and western blotting
Whole cell lysates from 2D or 3D cultured cells were
prepared using M-PERW Mammalian Protein Extraction
Reagent lysis buffer (Pierce Biotechnology, Thermo Sci-
entific, Rockford, USA). The protein concentrations
were measured using a BCA Protein Assay kit (Pierce).
Cell lysates (50 μg) were resolved on 8% SDS-PAGE and
analysed by immunoblotting. Anti-E-cadherin antibody
was from BD transduction laboratories (BD610182, dilu-
tion 1: 2500). Anti-HIF1α antibody was from NOVUS
Biologicals (NB100-449, dilution 1:500. Anti-Glut-1 and
Anti-GAPDH (used as loading control) antibodies were
from Abcam, Cambridge, UK (ab40084, dilution 1:2000
and ab9483, dilution 1:5000, respectively). Primary anti-
bodies were detected with peroxidase-conjugated donkey
Anti-rabbit immunoglobulin antibody (Amersham)
and visualized with Immun-Star WesternC Chemilu-
minescence Kit (BIO-RAD) by a cooled CCD camera
system (molecular Imager Chemo DocTM XRS Sys-
tem, BIO-RAD).

Immunofluorescence and electron microscopy
Spheroids were harvested at fixed time points and
washed twice with PBS. For immunohistochemistry,
spheroids were fixed in 4% paraformaldehyde, embedded
in paraffin and sectioned. Seven μm sections were
stained as described below. Prior to blocking (PBS-tween
1% BSA), 0.01 M Sodium Citrate Buffer, pH 6.0, was
used as an antigen retrieval solution. Anti-collagen I
(rabbit polyclonal, ab292, Abcam, dilution 1:500) and
Anti-fibronectin (mouse monoclonal, ab6328, Abcam,
dilution 1:200) were used as primary antibodies.
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Biotinylated Anti-rabbit or Anti-mouse secondary anti-
bodies from Vector Laboratories (Bulingame, CA, USA)
were used in combination with streptavidin-coupled
DyLight 549 from Jackson ImmunoResearch for fluores-
cence detection.
For electron microscopy, spheroids were fixed in phos-

phate buffer pH 7.4 containing 4% glutaraldehyde and
1% paraformaldehyde, and subsequently embedded and
processed. Imaging was performed on a Tecnai 12 Spirit
Bio TWIN transmission electron microscope (Fei Com-
pany, Eindhoven, The Netherlands) at the Central Elec-
tron Microscopy Unit of Karolinska Institutet.
Lactate accumulation measurement
Cells were grown both in 2D and 3D culture (2500 cells/
well in 96 well plates) without medium change for the
whole experiment time (from day 1 to day 10). Lactate
accumulation was measured in the medium of four dif-
ferent wells at each time point using the YSI 2700
SELECT™ Biochemistry Analyzer (YSI life sciences, Yel-
low Springs, Ohio, USA) according to manufacturer’s
recommendations. Cell-free medium was used as a con-
trol. Mean concentrations of lactate were calculated after
subtracting lactate levels measured in the cell-free
medium. Cells in corresponding wells (2D or 3D cul-
tures) were lysed with M-PERW Mammalian Protein Ex-
traction Reagent (#78501, Pierce). Protein quantification
was performed using Pierce BCA protein Assay Reagent
kit (#23225) and quantified with the ELISA reader (Mo-
lecular Devices Spectra MAX 250). The number of lac-
tate moles per well was calculated from the measured
lactate molar concentration, normalized for the total
protein content of the cells/spheroid from the same well.
Table 1 Experimental drugs used in 2D and 3D cultures with

Name Class Conc

Gemcitabine nucleoside analogue 1 μM

H107 microtubulin inhibitor 10 μM

CB5 microtubulin inhibitor 10 μM

CB7 microtubulin inhibitor 10 μM

CB13 microtubulin inhibitor 10 μM

AXP-107-11 genistein derivative 100 μ

6-MP mercaptopurine 200 μ

6-MPR mercaptopurine 200 μ

MT100 allicin derivative 200 μ

Allicin diallyl thiosulfinate 200 μ

act16412 sHH inhibitor 20 μM

GANT61 sHH inhibitor 20 μM

The concentrations with the greatest effect are recorded. For details see Figure 7.
The metabolite concentration was then expressed as
mol/g total protein.

Drug test, acidic phosphatase (APH) assay
For 2D culture, cells were seeded on flat bottom 96 well
plates (Costar) at a concentration of 2500 cells/well in
100 μl phenol red-free RPMI-F12 medium containing
10% FCS. For 3D culture, cells were seeded according to
the description for spheroid preparation in phenol-free
medium. On day 4 drugs (see Table 1 and Additional file
2: S2) were added at the indicated final concentrations
in an extra volume of 10 μl/well and in 8 replicates for
each time point. On day 7, a slightly modified acidic
phosphatase (APH) assay (see Additional file 3: S3) was
performed [15]. The viability rate was calculated as a
percentage of the untreated cells. All data were
expressed as the mean ± SD of at least 8 replicates. All
experiments were performed at least three times. To
confirm the reliability of the APH assay on 3D culture, a
re-growth assay was performed. After drug treatment,
half of the spheroids (control and treated; 4 for each
sample) were disaggregated by trypsin without chelators
for fifteen minutes at 37 degrees and re-seeded as single
cell suspensions on flat bottom 96 well plates for con-
ventional 2D culture. After one day, APH assay was
performed on both the 3D and the derived 2D cultures.
Comparison of results demonstrated the same reduction
in cell viability (data not shown).

Results and discussion
Formation of compact 3D spheroids
To date, many approaches and techniques have been de-
scribed for culturing cells in 3D [16]. In this study, we
grew cells in the absence of exogenous ECM components,
respective viabilities

entration Viability after treatment,%

2D 3D

63 83

10 97

58 93

55 100

70 95

M 40 65

M 53 97

M 52 95

M 19 37

M 19 46

72 100

85 100
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and instead, the crowding agent methylcellulose, a
cellulose-derived inert compound which helps cells to ag-
gregate and form spheroids, was added [17]. The cells
built up a 3D microenvironment that closely resembles
the in vivo situation (Figure 1), while avoiding the known
bias that exogenous ECM components may have on cell
signaling [16]. We tested various starting cell numbers per
well (data not shown) and 2500 cells were found to be op-
timal for a 7-day growth period. This allows for sufficient
ECM production and keeps the diameter below the crit-
ical size of 500 μm, when necrosis starts to develop in the
spheroid center [18]. This size was in the range of what
had been described regarding viability of other cancer type
cells in spheroid [19]. Various PDAC cell lines were tested
for their ability to form spheroids. We investigated Panc-1,
MiaPaCa2, BXPC3 and ASPC-1, which are poorly differ-
entiated [6] and carry both KRAS and p53 (Panc-1 and
MiaPaCa2) or either p53 (BXPC3) or KRAS (ASPC-1)
mutations. In addition, Capan-1 was included in the study
as a well-differentiated PDAC cell line, and a pancreatic
stellate cell (PSC) line was used as a non-transformed con-
trol cell line [13]. Of those, Panc-1 cells formed relatively
compact and round spheroids whereas BXPC3 and PSC
formed extremely compact spheroids with a well-defined
contour (Figure 1A). In contrast, MiaPaCa2 lacked any de-
gree of cell aggregation and ASPC-1 or Capan-1 cells were
aggregating without generating a compact spheroid
(Figure 1A). As the Panc-1 cell line is reported as less
Figure 1 Spheroid development. [A] Different PDAC cell lines grown in 3
[6], Panc-1, BXPC3 and ASPC-1 are poorly differentiated and carry both mu
whereas Capan-1 is a well differentiated PDAC cell line. A previously establ
transformed control cell line. [B] Development of a single representative Pa
the Boyden chamber the cell number of trypsinized spheroids and taking p
3D cultures at different time points. Bars correspond to 500 μm.
differentiated and more aggressive than others [6], it was
selected for further testing.
The growth kinetic of Panc-1 spheroid formation was

assessed longitudinally (Figure 1B). Loose cell clustering
occurred on day 2, and was followed by a gradually more
compact growth, until on day 4, a spheroid with a diam-
eter of 450–500 μm had developed and remained rela-
tively stable until day 8. Cell viability, evaluated by
trypan blue staining, was approximately 90% in both 2D
and 3D cultures (data not shown). The increase in cell
numbers over time indicated that proliferation was re-
duced in 3D compared to conventional 2D culture, espe-
cially after day 4 (Figure 1C).
To assess the cellular morphology, spheroids were sec-

tioned and examined by light and electron microscopy
(EM). On H&E staining cells within the spheroid sec-
tions were found to be homogeneously distributed, and,
in accordance with the viability data, no or only small
necrotic areas were detected (Figure 2A). Similar obser-
vations were made on EM examination (Figure 2B),
which also revealed cellular arrangement around an
empty space suggestive of an abortive “lumen” (Figure 2C).
This confirms earlier EM studies of 3D cultures reveal-
ing a spatial organization in 3D similar to that in the
original tumour [20]. Furthermore, tight junctions were
identified between adjacent cells (Figure 2D), whereas
desmosomes were absent, as reported [21]. This is in
agreement with the expression of E-cadherin (CDH1),
D culture for 4 days. According to the grading system by Sipos et al.
tant KRAS and p53 (Panc-1) or either p53 (BXPC3) or KRAS (ASPC-1),
ished pancreatic stellate cell line (PSC) is also included as a non-
nc-1 spheroid, photographed from day 2 to day 8 by counting with
ictures of spheroids at fixed time points. [C] Cell counts from 2D and



Figure 2 Morphological analysis of 3D cultured Panc-1 cells. [A] Hematoxilin Eosin staining and [B-D] electron microscopy analysis of a
central 7 days spheroid section. C and D show details of the same section at EM. In C the arrow indicates the presence of a lumen. In D tight
junction structures are indicated by arrows. [E] E-cadherin expression in both 2D and 3D culture assessed by RT-PCR. Data are calculated as
expression ratio 3D/2D. [F] Western blotting shows E-cadherin protein expression in 2D and 3D culture on day 4 and 7.
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involved in cell-cell interaction and aggregation, to be
increased in 3D compared to 2D culture by RT-PCR
and Western blotting (Figure 2E-F). The mRNA expres-
sion of the cell adhesion protein E-cadherin increased
during the initial phase of spheroid formation and
dropped after day 4, indicating low epithelial cell turn-
over in the spheroid after day 4. In the 2D culture E-
cadherin is expressed at later stages when cells make
contacts upon reaching confluency. In addition, due to
cell-cell contacts over the complete cell surface the E-
cadherin protein expression is always higher in the 3D
culture compared to the 2D culture where cells only
make lateral contacts.

Altered energy metabolism and lactate accumulation in
3D spheroids
Growing in 3D induces a different gene expression pat-
tern as compared to 2D [22]. Tumour cell spheroids
have many characteristics in common with native cancer,
such as gradients for oxygen/hypoxia, nutrients, lactate
accumulation, and proliferation and as such they resem-
ble small stroma-embedded cancer cell nests [23]. These
different physical and chemical properties modify cell
behavior and functions, which together result in a
substantially different cellular microenvironment that
mimics more closely that of native tissue, e.g. regarding
mechanical–chemical signaling in the interstitium and
the concentration gradients for nutrition, waste and oxy-
gen [24]. As a principle measure of the cellular energy
metabolism we investigated the lactate accumulation in
the culture medium at various time points, and results
were compared with those from 2D Panc1 cultures. Dur-
ing the first days, lactate is accumulating at similar rates
in 2D and 3D cell cultures (Figure 3A). From day 5–6
onward, however, lactate accumulation increased signifi-
cantly more in 3D than 2D cell culture medium, indicat-
ing a metabolic switch to increased glycolysis in 3D.
This is called the Warburg effect, ie. the transition of the



Figure 3 Metabolical and physiological analyses comparing 2D with 3D culture. [A] Energy metabolism: lactate accumulation
measurements in 3D compared to 2D culture. Data are expressed as ratio μmoles lactate/ μg protein. [B] Western immunoblotting showing
HIF1a protein expression both in 2D and 3D cultures at day 4 and 7. [C] mRNA expression of target genes downstream HIF1a in 2D and 3D
cultures. Real Time-PCR data are calculated as expression ratio 3D/2D. A representative experiment out of three is shown. [D] Western blotting
shows Glut1 protein expression both in 2D and 3D cultures on day 4 and 7. GAPDH is used as loading control.
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energy metabolism from oxidative phosphorylation to aer-
obic glycolysis induced by the lack of oxygen [25], which
is even further supported by an increase in the mRNA ex-
pression of glucose transporter 1 (GLUT1) and lactate de-
hydrogenase (LDHA) after the initial sphere forming
phase (Figure 3C). Under 2D culture conditions, the lac-
tate content of the medium decreases after 4–5 days of
culture without medium change. This indicates, as de-
scribed earlier [26], that, if nutrients are lacking, growing
tumour cells can use the lactate they have produced previ-
ously as an ultimate oxidative energy substrate, even in
normo-oxygenic conditions. While the use of lactate is
impaired by functioning p53, this was absent in all cell
lines tested in this study [27]. Recent evidence suggests
that lactate itself can induce secretion of hyaluran [28], an
ECM constituent expressed by PDAC which binds to
CD44 [29,30]. Lactate can also contribute to an increase
in VEGF [28], as observed in the 3D model.
The increased lactate in 3D, together with the (mild)

hypoxia, could also be thought indicative of cellular
stress that had been shown in other tumor cell models
to increase MRP1 and P-gp expression, increasing sensi-
tivity for gemcitabine [31]. This seems not to be the case
in our 3D model system because we observe a decreas-
ing expression at least for MRP1/ABCC1 (Figure 4A).
As non-vascularized 3D tissue culture may develop

hypoxic regions, the expression of HIF-1α and down-
stream target genes was investigated in both 2D and 3D
Panc-1 cultures on days 4 and 7. The total HIF-1α pro-
tein level was similar in 2D and 3D cultures at day 4 but
was lower at day 7 in 2D culture, whereas it was
maintained at the same level in 3D culture (Figure 3B).



Figure 4 Analyses of chemoresistance related genes. [A] Time
course of mRNA expression in 2D and 3D cultures of drug resistance-
involved genes. Real Time-PCR data are calculated as expression ratio
3D/2D. [B] Time course expression of drug resistance-relevant miRNAs
in 2D and 3D cultures. Real Time-PCR data are calculated as expression
ratio 3D/2D. A representative experiment out of three is shown.

Figure 5 Analyses of extracellular matrix related genes. [A]
mRNA expression of ECM relevant genes in 2D and 3D cultures. Real
Time-PCR data are calculated as expression ratio 3D/2D. A
representative experiment is shown [B] Collagen I and fibronectin I
staining of a central section from 7 day spheroids (right). One
representative picture is shown. Secondary antibody alone staining
is used as negative control (CTR, left). [C] ECM-relevant time course
of selected miRNA expression in 2D and 3D cultures. Real Time-PCR
data are calculated as expression ratio 3D/2D. A representative
experiment out of three is shown.
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This indicates that HIF-1α protein stability is higher in
cells growing in 3D compared to 2D culture.
In order to corroborate this finding, the expression of

genes downstream of HIF-1α, ie. GLUT1, GLUT12,
PTGS2, VEGFA, HK2 and PDGFB, was assessed by RT-
PCR at various time points (Figure 3C). RNA expression
of GLUT1, VEGF and HK2 was found to be higher in
3D compared to 2D culture particularly from day 4 on-
ward, whereas GLUT12 expression was decreased over
time. For GLUT1 this was also verified at the protein
level (Figure 3D).

Increased extracellular matrix (ECM) in 3D culture
PDAC cells express already endogenous ECM compo-
nents such as collagen and fibronectin-1 [32] and the re-
spective integrins [33] as a consequence of TGFß1 [34].
We were therefore interested in the effect of a matrix-
free 3D culture on the ECM production. We investigated
the mRNA expression of relevant genes such as
COL1A1 (collagen I), COL6A1 1(collagen VI), FN1 (fi-
bronectin I), LUM (lumican), SNED1 and SUSD5 (sushi
domain containing 5) by RT-PCR at various time points
in 2D and 3D (Figure 5A). The expression of the ECM
genes FN, COL6A1 and COL1A and membrane trans-
porter genes ABCC1/-3/-5 was higher in 3D during the
sphere formation (contact making) and compaction
phase (Figure 4A and 5A). After day 4 a steady-state
-level was reached in 3D with reduced mRNA expres-
sion, while the 2D culture grows confluent and the
expression of these contact or cell proximity-affected
genes went up. The protein expression of collagen I and
fibronectin I was confirmed by immunohistochemistry
on spheroid sections (Figure 5B). Lumican, a proteogly-
can that is frequently expressed in cancer, co-localizes
with collagens in many tissues, and has a well-defined
biological role in maintaining tissue structural homeo-
stasis [35], was also highly up-regulated in our model
and seemed to be expressed also in 2D cultures from
day 4 when cells became more confluent. We were also
interested in some further molecules bearing distinct
capabilities for our 3D model. SNED1 (sushi, nidogen
and EGF-like domains 1) a protein identified as a stroma
marker [36], was strongly up-regulated, particularly at
early time points (day 2–4). Interestingly, it has been
identified as a cisplatin-resistance related gene in head
and neck squamous carcinoma [37].



Figure 6 Increased chemoresistance against gemcitabine in 3D culture. Cell viability after Gemcitabine treatment of different PDAC cell lines
grown in 2D and 3D culture. A Pancreatic Stellate Cell line (PSC) is included as non-transformed control cell line. Data are plotted as percentage
of untreated control cells. A representative experiment out of three is shown.
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Furthermore, we searched for additional modulators of
ECM. miRNAs have been described recently as a new
class of gene regulators, also in PDAC [38], where some
were reported to regulate stromal molecules. mir-146a
suppresses invasive cell properties and is under-expressed
in Panc-1 cells compared to normal human pancreatic
ductal cells [39]. We found a strong up-regulation of mir-
146a when Panc-1 cells were grown in 3D (Figure 5C).
This may possibly reflect the forced immobilization of
cancer cells in the spheroid [40].

Increased expression of chemoresistance-related genes
Chemoresistance in solid tumors is conveyed by differ-
ent mechanisms. The classical are based on MDR genes
and transporter proteins, all reported to contribute to
chemoresistance in PDAC [3,4,41]. We therefore evalu-
ated the mRNA expression of genes involved in drug re-
sistance by RT-PCR in 2D and 3D Panc-1 cultures. The
ATP binding cassette ABCC1 was up-regulated during
the initial sphere formation period (Figure 4A). Further-
more, expression of miRNAs miR-21 and miR-335 as-
sociated with elevated chemoresistance [42-44] was
increasing in 2D culture until day 4 and then constantly
decreasing until day 10. In contrast, in 3D culture the
expression of miR-21 and miR-335 peaked later on day
8, decreasing slightly thereafter, resulting in higher ex-
pression (Figure 4B). There are other molecules de-
scribed more recently. PPP1R1B (protein phosphatase1,
regulatory subunit1B) formerly called DARPP-32, is a bi-
functional signal transduction molecule acting both as
kinase and phosphatase inhibitor, that has been detected
in several solid tumours including some carcinomas of
the GI tract. The truncated form, t-DARPP-32, has been
demonstrated to confer drug resistance, e.g. against
trastuzumab in breast cancer via the AKT pathway, or
against gefitinib in gastric cancer via EGFR/ERBB3 [45]
and by reducing drug-related apoptosis via CREB/PKA
[46]. T-DARPP is also responsible for the nuclear trans-
location of ß-catenin [47]. We found it highly upregulated
in the 3D culture system. SNED1, as described above, con-
veys drug resistance against platinum [37]. Finally, PDAC
cells become more resistant to drugs if cultivated on fibro-
nectin or collagen I, both found upregulated (see above),
indicating a role for these ECM proteins in protecting cells



Figure 7 Comparison of chemoresistance between 2D and 3D culture using multiple cytotoxic compounds. Histogram summarizing the
results from viability assays performed on 2D and 3D Panc-1 cell cultures. Different drugs were used at the indicated concentrations. Data are
plotted as percentage of the respective untreated control (CTR) and each drug was tested three times in octuplets. Gem: gemcitabine. All: allicin.
AX: AXP-107-11.
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from chemotherapy [48,49]. Due to increased extracellular
matrix in vitro 3D systems provide mechanical properties
that act as a barrier to drug diffusion [49,50]. Collagen I,
for example, a major component of ECM, is expressed at
a higher level in 3D than in 2D breast cancer cell cultures
[9]. This observation is of particular interest, as colla-
gen I is involved in gemcitabine resistance in pancreatic
cancer [51]. Fibronectin-1, which mediates cell and tis-
sue cohesion, is also up-regulated in pancreatic and
other cancers [52-54].
In other tumor cell models, cellular stress caused

MRP1 and P-gp overexpression leading to increased
Gemcitabine sensitivity, which could be abolished by
blocking these efflux pumps with verapramil [31].

Increased chemoresistance in 3D culture
Beside the molecules resulting in increased chemore-
sistance, we were also interested whether we could iden-
tify novel substances that would be capable of acting in
3D. A difference in sensitivity to Gemcitabine, the
standard for pancreatic cancer treatment, between 2D
and 3D culture systems, as described previously [15],
was verified in this study as a control: in 2D cultures
Gemcitabine reduced cell viability of BXPC3 and Capan-
1 to 40-60%, whereas Panc-1 cells were rather resistant
to the treatment, and higher Gemcitabine concentrations
were required to affect cell viability (around 95% viability
left at 100 nM concentration) (Figure 6). As expected,
PSC cells included as a non-transformed control cell line
were the most sensitive to treatment both in 2D and 3D
cultures (20% viability with 100 nM GEM). A panel of
drugs with different targets (see Table 1 and for com-
pound details Additional file 2: S2) was tested at two or
three concentration levels on both 2D and 3D cultures
(Figure 7). Many of the compounds tested, includ-
ing the microtubule inhibitors CB5 and CB7, the
anti-metabolites MT100, allicin, and the flavonoid AXP
reduced cell viability to 20-60% at the highest concentra-
tion in 2D culture. The effect of the same compounds on
the 3D culture was much lower and only a few reduced



Figure 8 Spheroids from mouse pancreatic cancer. [A] PDAC
cells from a mouse bearing mutated Kras and Trp53 in the pancreas
(KPC cells) are compared to the human PDAC Panc-1 cell line in
their ability to form spheroids when grown under 3D culture
conditions. [B] Drug assay performed on KPC cells. Different
compounds are used at the indicated concentrations and cell
viability of 2D versus 3D culture is compared. Data are plotted as
percentage of the respective untreated control (CTR). A
representative experiment out of three is shown.
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cell viability maximal to 65% (AXP) and approximately
40% (allicin and MT100)(Figure 7 and Table 1).
The mode of action and molecular mechanisms of

these two compounds are subject of further studies.
Testing drugs in a 3D culture model raises the issue of

drug penetration, which may be impaired by structural
features of the three dimensional culture, including the
size of the spheroids [24]. Drug penetration into the
spheroid is also determined by diffusion through the
ECM. The specific interactions between cancer cells and
their microenvironment, both cell-cell and cell-matrix
adhesion, are amongst the factors that determine the ef-
fect of chemotherapy [55], and are likely to vary from
one cell type to another. PDAC cells express already en-
dogenous ECM components such as collagen and
fibronectin-1 [32]. Higher drug resistance was shown in
PDAC cells grown on fibronectin-1 or collagen coated
culture dishes [49]. In our study the acquisition of ele-
vated drug resistance of cancer cells in the 3D culture
model may be explained by the increased endogenous
ECM protein expression within the microenvironment
of the spheroids, thus supporting the proposed cell
adhesion-mediated drug resistance (CAM-DR), and
upregulation of other, more recently identified molecules
described above, e.g. ABC transporters, PPP1R1B, SNED1.
However, since we have only tested a limited number of
transporters, we can not exclude that other transporters
such as P-glycoprotein may play a role, as described in
other solid tumor cells in vitro [31].
3D culture of pancreatic tumour cells from KRAS mouse
model
Having gone through numerous passages, established
cancer cell lines bear the risk of differing to a more or
less significant extent from their original parent cell line.
To validate and confirm the above findings, experiments
were also performed on a cell line that was freshly
established from the current state-of-the-art pancreatic
cancer mouse model with Kras and p53 mutations in the
pancreas (KrasLSL-G12D/+;Trp53LSL-R172H/+;p48-Cre, KPC)
[14]. These cells, used at low passage numbers, were
able to form spheroids under the same conditions as
Panc-1, and after 4 days the spheroid size reached the
same range (500 μM) as that of Panc-1 spheroids
(Figure 8). Various drugs were tested on KPC cells in
both 2D and 3D culture, and cell viability was measured.
A higher drug resistance observed in cells grown in 3D
compared to 2D conditions validated and extended the
findings from human PDAC cell lines (Figure 8).
Conclusions
For decades, conventional two-dimensional (2D) cell
culture has been the cornerstone of screening of novel
drugs for pancreatic cancer as much as for other solid
tumours [56]. It represents a convenient and high-
throughput but rather artificial method of growing cells.
Nonetheless, the predictive value was satisfactory, espe-
cially in non-solid malignancies.
As cellular response to drugs is profoundly affected by

microenvironmental factors, the use of a 3D-culture
seems more appropriate for drug testing. This applies
in particular to tumours such as PDAC, which are
chemoresistant in most patients, despite a good re-
sponse in (2D) tissue culture and xenograft models
[57]. The newly described genetically engineered mouse
models, namely the KP and KPC mouse, better recap-
itulate the impact that inflammatory and stromal cells
have in the pathogenesis of PDAC [14].
Our results confirm the previously described increased

chemoresistance in 3D; we further demonstrate a more
matrix-rich phenotype in 3D culture that may be advan-
tageous for drug testing as it simulates more closely the
in vivo situation: in 3D culture the microenvironment
acquires new features with altered ECM composition,



Figure 9 3D spheroid model. Representation of the characteristics of the 3D spheroid model in relation to the holistic hallmarks of cancer
according to Hanahan and Weinberg [59] observed in the reductionist pancreatic cancer monospheroid model.
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which has a major role in protecting the cells from drug
activity [10,58]. Expression of several key matrix proteins
and miRNAs related to stromal development is in-
creased, as is glycolysis. These changes mirror features
that are characteristic of PDAC, i.e. a high content in
ECM components [32] and growth factors such as
PDGFB and VEGF, which are responsible for tumour
progression.
In summary, up-regulation of several key ECM compo-

nents in conjunction with a differentiated deregulation of
selective miRNAs and several other novel molecules, eg
SNED1 and DARP32, in 3D PDAC cell culture is indica-
tive of a more matrix-rich and at the same time more
chemoresistant phenotype. The observed poorer response
to a selection of drugs, including several new substances, in
3D compared to 2D cell culture corroborates this notion. Our
data support two of the three mechanisms that are proposed
to underlie chemoresistance according to the novel hypothesis
of cell adhesion mediated drug-resistance (CAM-DR) [10]:
spheroid formation and matrix/fibronectin production (the
third mechanism being related to the stroma). The observa-
tions in human PDAC cell cultures were mirrored by identical
results using primary PDAC cells from the KPC mouse model,
thereby underscoring the universality of the phenomenon.
Taken together, the switch from 2D to 3D growth affects sev-
eral “hallmarks of cancer” and leads to a more aggressive can-
cer phenotype [59] (Figure 9).
In addition to elucidating the mechanisms of
chemoresistance and the role of CAM-DR in PDAC [4],
the 3D model characterized in this study may serve as a
high-throughput screening platform for chemotherapeutic
drug testing that provides a more reliable prediction of the
response to treatment of patients with pancreatic cancer.
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