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Abstract

Background: Near-infrared optical imaging targeting the intrinsic contrast of tissue hemoglobin has emerged as a
promising approach for visualization of vascularity in cancer research. We evaluated the usefulness of diffuse
optical spectroscopy using time-resolved spectroscopic (TRS) measurements for functional imaging of primary
breast cancer.

Methods: Fifty-five consecutive TNM stagel/Il patients with histologically proven invasive ductal carcinoma and
operable breast tumors (<5 cm) who underwent TRS measurements were enrolled. Thirty (54.5%) patients
underwent '®F-fluoro-deoxy-glucose (FDG) positron emission tomography with measurement of maximum tumor
uptake. TRS was used to obtain oxyhemoglobin, deoxyhemoglobin, and total hemoglobin (tHb) levels from the
lesions, surrounding normal tissue, and contralateral normal tissue. Lesions with tHb levels 20% higher than those
present in normal tissue were defined as “hotspots,” while others were considered “uniform.” The findings in either
tumor type were compared with clinicopathological factors.

Results: “Hotspot” tumors were significantly larger (P=0.002) and exhibited significantly more advanced TNM stage

potential response to treatment.

(P=0.01), higher mitotic counts (P=0.01) and higher levels of FDG uptake (P=0.0004) compared with “uniform”
tumors; however, other pathological variables were not significantly different between the two groups.

Conclusions: Optical imaging for determination of tHb levels allowed for measurement of tumor vascularity as a
function of proliferation and glucose metabolism, which may be useful for prediction of patient prognosis and
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Background

Tumor angiogenesis is a vital process in the early phases
of cancer progression [1-3]. Of late, functional imaging
using near-infrared (NIR) diffuse optical spectroscopy
(DOS) has been used to develop noninvasive measure-
ments for detection of primary breast cancer [4-6]. NIR
time-resolved DOS (NIR-TRS) systems are portable,
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have high data acquisition rates, and can detect varia-
tions in photon transit times resulting from varying
levels of oxyhemoglobin (O,Hb) and deoxyhemoglobin
(HHb), which characterize optical properties of the tis-
sue in terms of absorption coefficient (4,) and decreased
scattering coefficient (4y) [7]. Quantification of O,Hb
and HHD levels in breast tissue allows for the measure-
ment of total hemoglobin (tHb) levels (tHb = O,Hb +
HHb). Blood volume is directly related to tHb levels,
and abnormal tumor vascularization is believed to
contribute to local elevation in tHb levels [8]. Optical
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imaging provides excellent contrast of tHb levels in ma-
lignant tumor tissue and surrounding normal tissues,
and it has been considered useful for detecting tumor
vascularity and differentiating tumors from neighboring
tissues [9].

Zhu et al. first reported that an ultrasonography (US)-
guided optical imaging device could be used to distin-
guish early-stage breast cancer from benign lesions and
that the lesions showed two-fold higher tHb levels than
those observed in benign lesions [10,11]. On the other
hand, in a study of 276 patients in a readers-blinded
comparison study, Collettini et al., a radiologists’ study
group in Germany, reported no significant improvement
in diagnostic performance of initial NIR optical tomog-
raphy for the detection of primary breast cancer compared
with the performance of a combination of mammography
and optical tomography. This was because of the low
spatial resolution of optical imaging [12].

Although the sensitivity for optical detection of tu-
moral lesions cannot be expected to be excellent, intrin-
sic optical contrast of malignant tumors, especially local
elevation of tHb levels, should correlate with biological
and physiological features. We hypothesized that optic-
ally visible tumors with locally elevated tHb levels
relative to those in the surrounding normal breast tissue
have increased angiogenesis and that optically low-contrast
tumors are less aggressive. In this study, we prospectively
enrolled consecutive, operable, TNM stagel/II patients with
relatively small tumors (<5 cm) that were initially diagnosed
as invasive ductal carcinoma (IDC) using biopsy. We inves-
tigated the potential clinical application of optical imaging
as a means of differentiating the unique features of breast
cancer.

Methods

Patients

We enrolled 88 patients from July 2012 to December 2012
at the Department of Breast Oncology, International
Medical Center, Saitama Medical School (Saitama,
Japan). Seventy women were diagnosed with IDC using
vacuum-assisted biopsy (Mammotome®, Johnson &
Johnson, USA) after identification of tumors by X-ray
mammography, ultrasonography (US), and/or dynamic
magnetic resonance imaging (MRI). Specialized breast
radiologists used US and/or MRI to determine the clin-
ical size of the lesions. Histopathological analysis of
breast cancer, including determination of grade and in-
trinsic subtype, was performed by at least two experi-
enced pathologists who used hematoxylin—eosin-stained
and immunohistochemical-stained slides of all core bi-
opsy and surgical specimens. Two patients with bilateral
lesions, eight with large lesions (diameter >5 cm), 10
who had already received neoadjuvant therapy, and 13
who were diagnosed with non-IDC or special types of
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breast carcinoma were excluded. The final study group
comprised 55 consecutive TNM stagel/II breast cancer
women (62.5%) with IDC (diameter <5 cm) who ranged
in age from 22 to 81 years (mean, 58.6 years). The study
protocol was approved by the Institutional Review Board
of Saitama International Medical Center (Saitama, Japan).
Informed consent was obtained from all patients prior to
the study.

TRS breast imaging system

A dual-channel TRS system (TRS20, Hamamatsu
Photonics K.K., Japan) was used to measure the optical
properties of breast tissue at three wavelengths (760 nm,
800 nm, 834 nm). This system uses a time-correlated
single-photon counting (TCSPC) method for measuring
temporal response profiles of tissue against optical pulse
inputs and enables quantitative analysis of light absorp-
tion and scattering in tissue as per the Photon Diffusion
Theory [13]. The nonlinear least squares method was
used to fit the solution of the photon diffusion equation
in the reflectance mode to the observed temporal pro-
files. The coefficients p, and yuy were obtained at three
wavelengths, and the O,Hb and HHb levels were calcu-
lated from the spectroscopic O,Hb and HHb data [14].
Then, the tHb levels were calculated by adding the
O,Hb and HHD levels.

The TRS imaging system is presented in Figure 1. A
handheld probe with a 3-cm source—detector distance
was used to measure the breasts with the patients in
a supine position. On the basis of the information
obtained from the US system (HI VISION Preirus™,
Hitachi, Japan) in which the probe was combined with
an optical probe as shown in Figure 1, a 10-mm square
grid map (Figure 2) was constructed on the lesion and
surrounding normal tissue. The points of maximum
tumor size were arrayed in the center of the map. The
grid map of a tumor-burdened breast basically com-
prised 7 x 7 points with a 10-mm interval between two
points in the x—y dimension. A minimum of 49 meas-
urement points was obtained for each breast map. Be-
cause the spatial resolution of diffused light is poorer
than that of US, a lesion region of interest (ROI) used
for two-dimensional (2D) image reconstruction of tHb
distribution that was at least two-fold larger than that
observed by using US in the x—y dimension was chosen.
For the contralateral normal breast, a grid map com-
prising 5 x 5 points with a total of 25 points in the x—y
dimension was constructed in the quadrant region
corresponding to the lesion. For spline interpolation,
2D image processing, and analysis, custom software
(DataGridViewer, version 12; SincereTechnology Corp.,
Kanagawa, Japan) was used.

Average lesion tHb levels were calculated from tissue
O,Hb and HHb levels obtained using TRS measurement
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TRS20 imaging systemy

lesion can be measured.

US.quided optical probe

Figure 1 A dual-channel TRS system. The patient lies in the supine position on the bed. A US-guided optical probe from the TRS imaging
system (TRS20, Hamamatsu Photonics KK, Japan) is used to acquire measurements of a patient's breast and define an ROl in which the breast

Ultrasound device

of breast tissue corresponding to the ROIL The measure-
ment procedure and grid maps of tHb levels are shown
in Figure 3.

Nuclear grading system

The nuclear grade of IDC was determined by at least
two pathologists according to General Rules for Clinical
and Pathological Recording of Breast Cancer, 15" edi-
tion [15]. Nuclear atypia and mitotic count scores were
classified as low (1) and high (2 and 3).

Immunohistochemistry

The expression of estrogen receptor (ER), progesterone
receptor (PgR), and human epidermal growth factor
receptor-2 (HER2) were immunohistochemically ex-
amined as a routine for all specimens. Monoclonal
anti-ER antibody (clone ID5) (1:100), monoclonal anti-
PgR antibody (clone PgR636) (1:100), and the Herceptest
kit for HER2 were purchased from Dako (Grostrup,
Denmark) and used for immunohistochemical analysis.
The method used for immunohistochemistry was as de-
scribed previously [16]. In brief, the 4 um-thick sections
were deparaffinized in xylene, and dehydrated in a
graded ethanol series. Antigen retrieval was carried out
by incubation of the tissue sections in a microwave oven

in 10 mM sodium citrate (pH 6.0) with 0.1% Tween40 at
120°C for 45 min. After antigen retrieval, the tissue sec-
tions were incubated in 0.3% hydrogen peroxide in
methanol for 30 min, reacted with the primary antibody for
1-3 h, incubated with dextran polymer reagent conjugated
with peroxidase and secondary antibody (envision; Dako,
Glostrup, Denmark) for 1 h, and subsequently reacted
with 3,3-diaminobenzidine tetrahydrochloride-hydrogen
peroxide as the chromogen.

In the present study, a hormone receptor status score
of 3+ (210% nuclear staining) was regarded as positive
while a score of 2+/1+/0 (<10%) was regarded as nega-
tive [17]. With regard to HER2 expression, cases with a
score of 3+ were judged as showing overexpression. If a
score was 2+, fluorescent in situ hybridization (FISH)
was performed. When amplification of the HER2 gene
using FISH was observed, it was considered to be a posi-
tive result [18]. Others were considered to be negative.

8F_fluoro-deoxy-glucose-PET/CT

Thirty enrolled patients (54.5% total) agreed to undergo '*F-
fluoro-deoxy-glucose (FDG) positron emission tomography
(PET)/computed tomography (CT) scans (Biograph-16,
Siemens—Asahi Medical Technologies, Tokyo, Japan) at
the Department of Nuclear Medicine of our institution.
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Figure 2 TRS measurement procedure and 2D hemoglobin
map construction. Optical measurements comprising a grid map
over tumor and normal breast tissue are obtained using a handheld
probe. The tumor is always located in the center of a map.

Details of the measurement procedure are as previously
described [19,20]. Patients fasted for at least 6 h before
the "®F-FDG PET/CT study. One hour after intravenous
administration of 3.7 Mbq/kg '®F-FDG, a transmission
scan using CT for attenuation correction and anatomical
imaging was acquired for 90 s. PET data were recon-
structed via a combination of Fourier rebinning and the
ordered subsets expectation maximization at iteration
number 3 and subset 8 with attenuation correction based
on CT data. An ROI was placed on the primary lesion, in-
cluding the highest uptake area (circle ROI, diameter 1 cm),
and the maximum standardized uptake value (SUV )
in the ROI was calculated. SUV was calculated according
to the following formula: SUV =ROI activity (MBq/ml)/
injected dose (MBq/kg of body weight).
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Binary classification of spatial distribution patterns of
lesion tHb

Unique features of tumoral lesions were determined
from an evaluation of tissue tHb distribution patterns in
the breast map. Spatial variations in the lesion tHb map
allowed us to easily locate the maximum optical contrast
corresponding to the tumor site. Figure 3(a) shows rep-
resentative 2D images of tHb distribution patterns in
breasts with tumors. We found two qualitative features
that enabled differentiation of optically and visually de-
tectable tumors from undetectable ones on the basis of
the distribution pattern of tHb. In this study, approxi-
mately half the tumors showed excellent tHb contrast
against the surrounding normal breast tissue. Others
showed equivocal results because of poor contrast
between the tumor and surrounding normal tissue.
Considering the results presented in Table 1 and from
visual assessment, we defined a visually detectable tumor
with at least >20% local elevation in tHb levels com-
pared with those in both the contralateral breast tissue
and surrounding normal tissue as a “hotspot” tumor. The
others were described as “uniform” tumors, which did not
form a hotspot in the lesion and exhibited a more uniform
distribution pattern of tHb or a <20% increase in tissue tHb
levels compared with those in the surrounding normal tis-
sue and/or contralateral breast tissue.

Figure 3(b) shows the result of TRS line measurement
of the breast through the tumor center. Ratios of the
tumor tHb and background normal tissue tHb (relative
tHb level) were compared between the two groups. The
line scan “hotspot” tumors showed a clear maximum on
the lesion.

Statistical analysis

Student’s ¢ test was used to calculate significance for com-
parison between continuous variables because the data
followed a normal distribution. The Fisher’s exact test and
Pearson’s chi-square test were used to test the statistical sig-
nificance of the relationship between the independent
groups. The Pearson’s correlation coefficient was used to
analyze the degree of association between two continuous
variables. A level of P<0.05 was considered to indicate
statistical significance. Logistic regression analysis was per-
formed to find the best-fitting model to describe the rela-
tionship between dichotomous characteristics of tumor
tHb distribution (“hotspot” and “uniform” patterns) and a
set of the possible discriminators of clinicopathological fac-
tors. Statistical software (MedCalc Software, Broekstraat,
Belgium) was used for calculation.

Results

Baseline characteristics of the patients

Measurement data from a total of 55 tumors were evalu-
ated in this study. There was a minimum 14-day interval
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Figure 3 Optical imaging of tHb level in the breast. (a) A 2D image of the breast total hemoglobin level (tHb) is constructed by applying a
spline interpolation algorithm to the raw data. In this example, maps of “hotspot” and “uniform” patterns are shown. (b) A line scan shows that
compared with tumors with a “uniform” pattern, tumors with a “hotspot” pattern exhibit a significantly higher ratio of tHb levels to that in the

(average, 29.5 days; range, 15-55 days) between the
diagnostic core needle biopsy and baseline TRS mea-
surements before surgery. Clinicopathological data
were obtained from medical records and pathological
reports of the surgical specimens. For nine patients
(16.4%) who received neoadjuvant endocrine treatment
after undergoing TRS scans, pathological data regard-
ing the diagnostic core needle biopsy specimens were
obtained for this study. Table 2 presents the patient
and tumor characteristics.

Comparison of Hb levels in tumors and normal tissue
Absolute values of tHb, O,Hb, and HHb levels were
compared between the lesions and the surrounding nor-
mal tissue and between the lesions and the normal
contralateral breast tissue (Table 1). The mean tHb
levels of lesions were 27.6% higher than those in the sur-
rounding normal tissue and 24.6% higher than those in
the contralateral tissue.

According to our tHb distribution pattern criteria, 31 tu-
mors (56.4%) were “hotspot” tumors and 24 (43.6%) were
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Table 1 Comparison of hemoglobin parameters of lesion, surrounding tissue, and contralateral tissue

Optical parameters mean
(uM) =SD

Lesion (n=55)
(n=55)

Surrounding tissue

Contralateral tissue p value”

(n=55)

O;Hb 20.4+10.9 14.8+9.2

HHb

6.7+28

tHb 293+ 14.5 21.2+11.7

153+12.8 Lesion vs. surrounding tissue:
p=0.001

Lesion vs. contralateral tissue:
p=0.03

Lesion vs. surrounding tissue:

p=0.001

6.8+4.6

Lesion vs. contralateral tissue:
p=0.01

Lesion vs. surrounding tissue:
p=0.001

Lesion vs. contralateral tissue:

p=0.02

22.1+17.2

SD, standard deviation; “Student's t test.

“uniform” tumors. There were no significant differences be-
tween the two groups in absolute values of O,Hb (P =0.9),
HHb (P =0.7), or tHb (P =0.8).

Comparison of clinicopathological factors between
“hotspot” and “uniform” tumors

Table 2 shows the patient age, TNM stage, tumor size,
nuclear atypia score, mitotic counts, nodal status, ER
staining, PgR staining, and HER2 status for the “hotspot”
and “uniform” tumors. The “hotspot” tumors showed

significantly more advanced stage than “uniform” tumors
(P=0.01). The diameters of the “hotspot” tumors were
significantly higher than those of the “uniform” tumors
(P=0.002). There were no significant differences be-
tween the two groups in any other clinicopathological
factors: age (P=0.3), nuclear atypia score (P=0.8),
nodal stage (P=0.4), ER staining (P =0.3), PgR staining
(P=0.2), or HER2 status (P =0.9). The number of “hot-
spot” tumors showing high mitotic count scores (52.2%)
was significantly higher than that of “uniform” tumors

Table 2 Clinicopathological factor and biomarker results in hotspot versus uniform-patterned breast cancers assigned

by tHb optical imaging

Variables Values Total Hotspot Uniform p value

Age Mean(year) = SD 58.6+12.3 599+ 11.7 56.5+13 NS”

TNM Stage | 25 9 16 p=0.01"
] 30 22 8

Tumor size Mean(mm) = SD 21.5+9 24.8+9.9 174+5.6 p= 0.002"

Nuclear atypia High 37 20 17 NS™
Low 5 3 2

Mitosis High 14 12 2 p=0.01"
Low 28 11 17

Nodal status Positive 10 4 6 Ns™
Negative 33 20 13

ER Positive 45 24 21 NS™
Negative 6 5 1

PgR Positive 41 21 20 NS™
Negative 10 2

HER2 Positive 6 4 2 NS™
Negative 44 24 20

FDG SUVmax Mean £ SD 5+33 6.6 +3.2 26+1.7 p=0.0004"

SD, standard deviation; NS, not statistically significant; “Student’s t test; " Fisher's exact test, "Pearson’s chi square.
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showing high scores (10.5%; P=0.01). Tumor SUV
measured by FDG PET/CT was significantly higher in
“hotspot” tumors than in “uniform” tumors (P = 0.0004).

The relationship between FDG SUV,,,,, and tHb

When tumor size, TNM stage, mitotic count, and FDG
SUVmax were loaded in logistic regression analysis,
none of these variables contributed significantly to the
prediction of “hotspot” tumor. Figure 4 shows FDG
SUVmax was significantly correlated with relative tHb
level of tumor (coefficient r=0.49; 95% CI, 0.15-0.75,
P =0.007).

Discussion

In this study, we investigated the clinical application of
functional NIR-DOS imaging for the measurement of
intrinsic contrast of early-stage breast cancer. Signifi-
cantly higher tHb levels were observed in early-stage
breast cancer tumors than in the surrounding normal
breast tissue and contralateral normal breast tissue.
However, there were a wide range of tHb levels between
the individual tumors and the normal tissues, and >40%
tumors did not show a clear elevation in tumor tHb
levels because of the presence of equal tHb levels in the
normal tissue. This finding is understandable because
mammary glandular tissue has much denser vascularity
compared with fatty tissue, and the absolute values of
tissue tHb levels vary among individuals. Tumors pro-
gress with the growth of new vessels from pre-existing
vessels so that lesion tHb levels continue to correlate
with the extent of vascularity in the background normal
tissue. In addition, tumor Hb levels are reportedly more
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sensitive to hormonal fluctuations induced by the men-
strual cycle compared with those in the normal breast
tissue, with 10%—14% deviation [21]. Therefore, we fo-
cused on increased ratios of tHb levels in lesions to tHb
levels in the surrounding normal tissue and eventually
established a certain criteria for “hotspot” tumors, which
were detectable with a >20% local elevation in tHb levels
relative to that in the normal tissue. The other tumors,
which were visually equivocal or not clearly detected by
optical imaging, were classified as “uniform” tumors.

The “hotspot” pattern of tHb level was detected in
56% patients with early-stage breast cancer. Tumor size
was significantly greater in “hotspot” tumors than in
“uniform” ones, but this finding did not act as a pre-
dictor of excellent optical contrast because of a remark-
able overlap between the two groups. This indicated that
the size of a tumor did not dictate its clarity on optical
imaging.

Mitotic count score, evaluated as a proliferative marker,
was significantly higher in “hotspot” tumors (52.2%) than in
“uniform” ones (10.5%; P=0.01). In addition, tumor
SUV ax measured by FDG PET/CT was a good index for
discriminating between “hotspot” and “uniform” tumors.
Therefore, high-metabolic tumors should be identifiable by
optical imaging because of progressive angiogenesis, but
some tumors with low metabolic activity may absorb the
NIR light for optical measurements to a lesser degree than
that absorbed by the surrounding normal tissue because of
less blood retention due to less aggressive neoangiogenesis.
A biomarker study conducted by Groves et al. revealed that
tumor FDG uptake was significantly associated with angio-
genesis as measured by an immunohistochemical bioassay

16 -
© Hotspot patterned tumor
1Y Uniform patterned tumor
14— r=0.49, p=0.007 =
] 95% Cl0.15t0 0.72
124
& 104 o o
s 0 o
2 o |
8 d o
o
] © | [¢) |
o
g v o &
4 - | v (o]
4 o
v (o]
- ¥ v a L
] YV oy
0 T T T T T T
0.5 1.0 1.5 2.0 2.5 3.0 3.5
relative tHb level
Figure 4 Correlation between FDG uptake and tumor tHb patterns. A scatter diagram of two patient groups (“hotspot” and “uniform”)
showing a significant relationship between FDG SUV,,., and relative tHb level (coefficient r = 0.49; 95%Cl, 0.15-0.72, P = 0.007).
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of CD105 for new vessel formation in patients with
early-stage breast cancer [22]. This finding suggests
that tumor vascularity is closely associated with tumor
glycolytic activity.

Cancer cells respond autonomously to hypoxia, switch
oxidative phosphorylation in mitochondria to glycolysis,
and positively amplify neoangiogenesis [3,23]. Paradoxic-
ally, the phenomenon by which these tumors acquire an
increased glycolytic rate despite normal tissue oxygen
tension is called the Warburg effect [24,25]. Recent re-
search revealed that autonomous upregulation of several
oncogenic signaling mechanisms independent of hyp-
oxia, including a PIBK-AKT pathway, transcriptional
activity of HIF1, and aberrant function of p53, affects
overexpression of glucose transporters and related en-
zymes. The activation of these mechanisms contributes
to hypermetabolism and neoangiogenesis of the tumor
[22,26]. Therefore, it is evident that increased glucose
metabolism and angiogenesis may be, to some extent,
different phenotypical expressions of common under-
lying genetic and/or physiological processes [27].

Currently, FDG PET/CT attracts the attention of on-
cologists because the biological basis of FDG uptake in
cancer metabolism could be the Warburg effect [28].
The result that elevation of tumor tHb levels relative to
those in background normal breast tissue was correlated
with high FDG uptake is consistent with the observation
of recent research that showed the coupling of increased
glucose metabolism of cancer cells to neoangiogenesis
and hypoxia. Therefore, these features of “hotspot” and
“uniform” patterns can add functional information re-
garding the physiology of the tumor. For example, early-
stage breast cancer patients with “hotspot” tumors could
initially be considered chemotherapy candidates in terms
of cancer cell activity.

Furthermore, breast cancer is known to have heteroge-
neous characteristics of gene expression patterns that
are strongly associated with prognosis and response to
therapy [29]. In the future, we believe that breast cancer
may be further classified into types on the basis of spec-
tral differences.

The strength of this study was that we enrolled a
homogeneous group of consecutive TNM stagel/II pa-
tients with small-size (mean, 21.5 mm) IDC tumors,
whereas previous studies on optical breast imaging have
included advanced-stage or various histological types of
breast cancers [9,11,30].

Functional imaging using DOS has limitations with re-
gard to the identification of tumor location because in-
tense light scattering in tissues leads to low spatial
resolution and in-depth information of tissue absorption
cannot be assessed [31]. The current study used data
from a small patient population. A large prospective
study is required to further validate the results.
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Conclusions

Optical imaging of breast cancer tHb levels can poten-
tially contribute to the identification of unique func-
tional features of tumor vascularity that add diagnostic
value to cancer management and may assist in the devel-
opment of a monitoring tool for treatment.
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