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Abstract

Background: Long-term estrogen deprivation models are widely employed in an in vitro setting to recapitulate the
hormonal milieu of breast cancer patients treated with endocrine therapy. Despite the wealth information we have
garnered from these models thus far, a comprehensive time-course analysis of the estrogen (ER), progesterone (PR),

breast cancer patients.

and human epidermal growth factor 2 (HER-2/neu) receptors on the gene and protein level, coupled with
expression array data is currently lacking. We aimed to address this knowledge gap in order to enhance our
understanding of endocrine therapy resistance in breast cancer patients.

Methods: ER positive MCF7 and BT474 breast cancer cells were grown in estrogen depleted medium for

10 months with the ER negative MDA-MB-231 cell line employed as control. ER, PR and HER-2/neu expression were
analysed at defined short and long-term time points by immunocytochemistry (ICC), and quantitative real-time RT-
PCR (gRT-PCR). Microarray analysis was performed on representative samples.

Results: MCF7 cells cultured in estrogen depleted medium displayed decreasing expression of ER up to 8 weeks,
which was then re-expressed at 10 months. PR was also down-regulated at early time points and remained so for
the duration of the study. BT474 cells generally displayed no changes in ER during the first 8 weeks of deprivation,
however its expression was significantly decreased at 10 months. PR expression was also down-regulated early in
BT474 samples and was absent at later time points. Finally, microarray data revealed that genes and cell processes
down-regulated in both cell lines at 6 weeks overlapped with those down-regulated in aromatase inhibitor treated

Conclusions: Our data demonstrate that expression of ER, PR, and cell metabolic/proliferative processes are
unstable in response to long-term estrogen deprivation in breast cancer cell lines. These results mirror recent
clinical findings and again emphasize the utility of LTED models in translational research.

Background

The pathogenesis of breast cancer is a complex, multistep
process involving multiple genetic changes. A major risk
factor associated with the development of the disease is
the duration of exposure to estrogens, the length of which
is increased in women experiencing early menarche and/
or late menopause. Estrogens are steroid hormones that
play important roles in the growth and development of
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the mammary gland and it is well established that the
growth of breast cancer cell lines in culture or in ovariec-
tomized nude mice is stimulated by estrogens [1-3].
Approximately two-thirds of all breast cancer tumours
are ER-positive [4-6] and more than 50% of these are also
PR-positive [7]. Both receptors are useful in predicting
response to endocrine therapy [5,7-9] and in general
ER-negative tumours are associated with early recurrence
and poor patient survival relative to those that are
ER-positive [5,8,9]. Despite clinical advances of ER-
targeted therapy, de novo and acquired resistance to all
forms of endocrine therapy remains a great obstacle [8,9].
Complicating matters, we and others have shown in
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mostly retrospective studies, that expression of ER and PR
are unstable during tumour progression from a primary
lesion to its corresponding metastasis [10-13].

Long-term estrogen deprived (LTED) cell lines can
serve as an in vitro model mimicking the hormonal
milieu of breast cancer cells in oophorectomized pre-
menopausal women, postmenopausal women and/or
patients treated with primary endocrine therapy, in par-
ticular aromatase inhibitors (Als) [14]. Of note, the use
of Als in place of traditional endocrine treatments re-
sults in a statistically significant survival gain (HR 0.90,
95% CI 0.84 to 0.97) [15].

Whilst previous studies have examined ER, PR and
HER-2/neu expression in an LTED setting, no compre-
hensive gene and protein analysis has been performed
on all three markers. As such, our descriptive study ad-
dresses this knowledge gap by determining the levels of
ER, PR and HER-2/neu gene and protein expression in
two ER-positive and one ER-negative cell line at multiple
time points, coupled with gene expression array profil-
ing, all in a well-described LTED model [16-20]. Adding
further clinical relevance to our analysis, we related our
expression array findings to publicly available array data
of breast cancer patients treated with an aromatase inhibi-
tor. Our work highlights the unstable nature of ER and PR
expression under conditions of estrogen deprivation, and
demonstrates the significant overlap of genes altered in
LTED cell lines and Al-treated patients.

Methods

Cell culture

A long-term estrogen deprivation (LTED) model was
used to study the three commonly used breast cancer
cell lines MCF7, BT474 and MDA-MB-231 [7,8]. MCF7
and MDA-MB-231 cells were newly purchased from
Sigma-Aldrich and BT474 cells from the American Type
Culture Collection (ATCC). Control and LTED cells
were routinely maintained in phenol red containing
MEM or DMEM supplemented with 10% fetal bovine
serum (FBS) or phenol red-free MEM or DMEM
supplemented with 10% dextran-coated charcoal-stripped
FBS (DCC-FBS) to remove substantial amounts of estro-
gen, respectively. Each culture medium was further
supplemented with 100 IE/ml penicillin and 100 pl/ml
streptomycin. All cells were grown at 37°C in a humidified
atmosphere of 5% CO, and 95% air.

Immunocytochemistry

50 000 cells per cell line (MCF7, BT474 and MDA-MB-231
cells) were attached to slides (ChemMateTM Capillary
Gap Microscope Slides, DAKO) by centrifuging them in
a Cytospin 3 centrifuge (Shandon, Thermo Electron
corporation, Waltham, Massachusetts), at 1000 rpm for
4 minutes in room temperature. The slides were then
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fixed in 4% formalin for 10 minutes at room temperature,
followed by PBS for 10 minutes, methanol for 4 minutes
in —20°C, and acetone for 1 minute in —-20°C, before being
placed in TBS. Automatic immunostaining was performed
in a DAKO Tech Mate instrument (DAKO, Glostrup,
Denmark). Staining of ER and PR was done using the
recommended DAKO ChemMate Detection Kit (Peroxid-
ase/DAB Rabbit/Mouse). The MDA-MB-231 cell line
served as negative control for ER, PR and HER-2/neu ex-
pression. MCF7 cell line was used as positive control for
ER expression, while BT474 cell line served as positive
control for PR and HER-2/neu expression.

Immunoslides were assessed in a microscope by
counting of positive cells and degree of staining. We
used a modified H score system, using the formula: H
score = (0 x% tumour cells negative) + (1.5 x% tumour
cells moderately positive) + (3 x% tumour cells strongly
positive), giving a range 0—300. Five hundred cells were
counted per slide. Two observers (JM and JK) evaluated
the immunoslides, and the final score was calculated by
taking the mean score. If the ratio between two scores
was higher than 1.5, the slides were re-evaluated to
reach consensus.

The following primary antibodies were used for
immunocytochemical analyses: Monoclonal mouse anti-
human progesterone receptor (PR) antibody (Clone PgR
636, DAKO, Glostrup, Denmark), diluted 1:1000, mono-
clonal mouse anti-human estrogen receptor antibody
NCL-ER-6 F11 (NovoCastra Laboratories Ltd, Newcastle,
UK), diluted 1:50, monoclonal mouse anti-human HER-2
(c-erbB-2 Oncoprotein) antibody (NCL-CB11), diluted
1:250 (Novocastra Laboratories Ltd., Newcastle, UK).

RNA isolation

RNA extraction was performed according to the RNeasy
mini protocol (Qiagen, Germany). Briefly, one to five mil-
lions cells were collected for isolation of RNA from each
sample before being applied to the MicroSpin affinity col-
umns in the Qiagen kit. The quality of RNA was assessed
using an Agilent 2100 bioanalyzer (Agilent Technologies,
Rockville, MD, USA).

Quantitative real-time PCR analysis

The mRNA expression levels of ESRI, PGR, ERBB2 and
an endogenous housekeeping gene encoding for 18S
ribosomal RNA as a reference were quantified using
TagMan® technology on an ABI PRISM 7500 sequence
detection systems (PE Applied Biosystems). Sequence-
specific primers and probes were selected from the Assay-
on-Demand products (Applied Biosystems), including
ESRI (assay ID: Hs01046817_m1), PGR (Hs00172183_m1),
ERBB2 (Hs00170433_m1) and I8S ribosomal RNA (Hs9
9999901_s1). All qRT-PCR experiments included a no
template control and were performed at least in duplicate.
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Microarray analysis

A total of eight samples, four from each cell line (control,
2 days, 6 weeks and 10 months), were selected for
microarray analysis, performed at the core facility for Bio-
informatics and Expression Analysis (BEA) at Karolinska
Institutet. Briefly, biotinylated cRNA was hybridized to
HG-U133 Plus 2.0 oligonucleotide arrays (Affymetrix In-
corporated, Santa Clara, CA, USA), washed and scanned
according to the protocol recommended by the supplier.
Gene Chip Operating Software (GCOS) was used for cal-
culation of detection calls, signal values and for calculation
of the target intensity scaling of each array to an identical
value and quantification of the signal log ratio. An average
signal log ratio value was calculated for all transcripts in
the long-term estrogen deprived cell lines compared to
the cell lines cultured in medium containing estrogen. A
minimum signal log ratio of 0.7 in each of four pair-wise
comparisons was set as a threshold for significant differen-
tial expression. The quality of the data was verified by
correlation analysis and multidimensional scaling plots in
R statistical environment using Bioconductor packages
(http://www.bioconductor.org). This data has been made
publically available at NCBI GEO with series accession
number GSE50820. Gene Ontology (GO) terms enriched
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in the lists of up-regulated and down-regulated genes
including the 300 genes with highest SLR, were identified
by Fisher’s exact test. For comparison of genes signifi-
cantly changed in response to estrogen silencing to those
significantly altered in our LTED model, we accessed pub-
lically available data (Gene expression omnibus number:
GSE27473) from the NCBI GEO repository. The data is
taken from a publication by Al Saleh et al. [21] where
gene expression changes are determined in MCF7 cells
after estrogen receptor silencing. In order to directly com-
pare with our data, we downloaded and re-analysed the
dataset using the statistical parameters outlined above to
determine genes significantly changed in response to es-
trogen silencing.

Statistical analysis

All statistical analysis were performed using SPSS data
analysis statistics software system version 17.0 (SPSS
Inc., Chicago, IL, USA), the statistics tool in Microsoft
Excel or R. ANOVA with post-hoc Tukey was performed
on H-score and qPCR data and significance was calcu-
lated relative to day O control. Experimental results are
expressed as mean + SEM, where applicable. P-values
of < 0.05 were considered statistically significant.

2 days, 6 weeks and 10 months after estrogen deprivation.

Figure 1 Experimental flowchart. ER, PR and HER-2/neu expression were analysed by gRT-PCR and immunocytochemistry (ICC) at selected time
points (control, 2 days, 4 days, 1-8 weeks and 10 months after estrogen deprivation). Microarray analysis was performed on control cells and at
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Results
Re-expression of ER in an estrogen deprived environment
occurs in the absence of PR in MCF7 cells
The breast cancer cell lines MCF7 and BT474 were
cultured without estrogen for up to 10 months and exam-
ined by immunocytochemistry (quantified by H-score)
and qRT-PCR for changes in expression of ER, PR and
HER-2/neu at the time points shown in our experimental
overview (Figure 1). The ER, PR and HER-2/neu nega-
tive MDA-MB-231 cell line served as negative control.
Cultured without estrogens, both ER positive cell lines
initially stopped growing but MCF7 cells had returned
to control levels of growth after ten months of continu-
ous culture as determined by Ki67 (Additional file 1:
Figure S1, upper panel), in line with previous studies
[22]. BT474 cells displayed increased Ki67 expression
after 10 months in LTED culture relative to 6 weeks,
but had still not returned control levels of proliferation
(Additional file 1: Figure S1, lower panel).

ER expression in MCF7 cells decreased gradually from
2 weeks to 8 weeks after estrogen deprivation, but was re-
expressed at 10 months as determined by immunocyto-
chemistry, qRT-PCR and H-score (Figures 2A, 3A and
Additional file 2: Figure S2A, respectively). Using identical
methods, we found PR significantly down-regulated 2 days
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after estrogen deprivation (Figures 2B, 3B and Additional
file 2: Figure S2B). After 1-2 weeks its expression was no
longer detectable and remained so for the 10 month dur-
ation of the study. Changes in ER and PR protein expres-
sion at early time points were also confirmed by western
blot (Additional file 3: Figure S3). Whilst we noted no
change in HER-2/neu expression in response to estro-
gen deprivation by ICC (Additional file 4: Figure S4-
upper panel), we did find a small increase at the mRNA
level (Figure 3C). It should be highlighted however, that
given the scale of ERBB2 expression it is unsurprising
that this increase is not reflected by ICC. No expression
of ER, PR or HER-2/neu was found in MDA-MB 231
cells as determined immunocytochemically (Additional
file 5: Figure S5).

These results demonstrate the ability of MCF7 cells to
up-regulate ER in the absence of PR under LTED condi-
tions and moreover, highlight the unstable nature of ER
and PR expression on both the gene and protein level
when external estrogen levels are depleted.

Reduced ER and PR expression in BT474 cells exposed to
long-term estrogen deprived conditions

In BT474 cells, no clear trend in ER expression was
noted during the first 8 weeks of estrogen deprivation,

magnification 40x.

Figure 2 Characterization of ER and PR expression by ICC at selected time points. (A) ER expression in MCF7 cells. Cells stained brown are
positive for the receptor. (B) PR expression in MCF7 cells (C) ER expression in BT474 cells (D) PR expression in BT474 cells. Original
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but a significant reduction was noted after 10 months by
ICC and qRT-PCR (Figures 2C, 3D and Additional file 2:
Figure S2C). Similarly to MCF7 cells, PR expression fell
dramatically following 2 days of estrogen deprivation,
was no longer expressed after 2-3 weeks, and remained
undetectable on the protein level for the remainder of the
study (Figures 2D, 3E and Additional file 2: Figure S2D).
These changes were also confirmed by western blot at
early time points (Additional file 3: Figure S3). HER-2/neu
expression was not changed at any of the tested time
points by ICC (Additional file 4: Figure S4, lower panels)
but a weak trend towards increased ERBB2 was seen in
the first 8 weeks of estrogen deprivation by qRT-PCR
(Figure 3F).

These experiments again emphasize the instability of
ER and PR in response to estrogen deprivation. More-
over, whilst the reduction in ER after 10 months in
BT474 cells contrasts its increased expression at the
same time-point in MCF7 cells, these results are consist-
ent with the idea that individual cell lines can respond
differently to LTED conditions [23].

Metabolic and cell cycle related genes down-regulated in
initial response to estrogen deprivation are re-
upregulated in long-term culture

Gene expression profiles were analysed in MCF7 and
BT474 cells at 0 and 2 days, 6 weeks and 10 months

after estrogen deprivation in order to examine gene ex-
pression changes in response to estrogen deprivation
(see Figure 1, experimental overview).

In MCF7 cells, when comparing the 2 day and 6 week
time points to control (0 days), the most down-regulated
genes were those involved in metabolic processes and cell
cycle, as expected. Figure 4A depicts the genes affected in
cell cycle after 2 days and similar results were noted after
6 weeks (Additional file 6: Figure S6A). A full list of the cell
cycle gene altered in MCF7 cells after 2 days LTED is pro-
vided in Additional file 7: Table S1. In the same samples
the most notable up-regulated genes were TIMP2- which
is involved in negative regulation of cell proliferation and
NOTCHI. In the 10 month vs. control comparison we
noted a reversal of these trends and genes involved meta-
bolic and proliferative processes were up-regulated. Inter-
estingly, genes down-regulated in the 10 month samples
included those putatively involved in cell migration and
motility (DNALII, DNAH1, CXorf61), the apoptotic gene
SULFI and the PR gene PGR. Of note, a similar study of
gene changes in MCF7 LTED cells over time has been pre-
viously performed, albeit in shorter time frame of 180 days
[24]. Despite this difference, we saw a similar effect of
LTED on the expression of the ESRI, MKI67, EGFR and
RAFI genes in our study as that found in the work of
Aguilar et al. (Additional file 8: Figure S7), highlighting the
reproducibility of LTED models.
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Figure 4 Cell cycle genes affected in estrogen deprived cells. Red and blue boxes indicate up- and down regulated gene expression in
response to estrogen deprivation relative to untreated control. Small circles (red and blue) mark a statistically significant increase or decrease in
expression. (A) MCF7 cells at 2 days after estrogen deprivation versus control cells. (B) BT474 cells at 6 weeks after estrogen deprivation versus

control cells.

In general, similar results were noted for BT474 cells
at early time points, however the effect on cell cycle was
less obvious after 2 days (Additional file 7: Figure S6B)
but became apparent after 6 weeks (Figure 4B). A full
list of the cell cycle gene altered in BT474 cells after
6 weeks LTED is provided in Additional file 9: Table S2.
Again, the 10 month vs. control comparison showed up-
regulation of genes involved in metabolic and prolifera-
tive processes (CXCR4, INHBA), and down-regulation of
those involved in cell motility (KIF6, VIM, TUBAIA),
apoptosis (SEMA6A) and the PGR gene.

Together, these results point to an early down-regulation
of genes involved in metabolic processes and cell cycle, as
would be expected from estrogen deprivation. In long-term
LTED culture, the situation is reversed and genes involved
in the same processes are up-regulated whilst notably,
genes implicated in cell motility and epithelial-to-mesen-
chymal transition (VIM) are down-regulated, in line with
the “go or grow” hypothesis [25].

Strong similarity between cell line genes altered in
response to estrogen deprivation and those found in Al-
treated breast cancer patients

Next, with the aim of comparing the observed gene
expression changes following estrogen deprivation in
breast cancer cells to patients who received aromatase
inhibitor (AI) treatment, we analysed a publicly available
array data set consisting of 58 postmenopausal breast
cancer patients with array profiles assessed before and
after neoadjuvant treatment with letrozole (Gene expres-
sion omnibus number: GSE5462) [26].

In order to determine if similar processes were af-
fected between our cell lines in response to estrogen
deprivation and Al treated patients, we performed gene
ontology analysis on our day 2 vs. control gene expression
from MCF7 (Additional file 10: Table S3) and BT474
(Additional file 11: Table S4) cells. We found that the
most changed processes in our cell line model including
metabolic pathways, cell cycle, DNA replication, develop-
mental processes and ion transport were also significantly
changed in Al treated patients (see Miller et al. [26]).

Next, we examined the specific genes that were differen-
tially expressed in our cell line model with those signifi-
cantly changed upon letrozole treatment (Miller ez al
[26]). We found that 14 of the 52 genes displaying de-
creased expression in Al-treated patients were also down-
regulated in MCF?7 cells after 2 days. This number rose to

25 out of 52 when considering genes down-regulated in
MCF7s 6 weeks after estrogen deprivation (Figure 5A).

Similarly in BT474 cells after 2 days, only 2/52 genes
overlapped with those down-regulated in Al patients,
but this increased to 31/52 when comparing to the
6 week estrogen deprived (Figure 5A) samples. Of note,
19/52 gene probes down-regulated in both BT474 and
MCE?7 cells at 6 weeks after estrogen deprivation were
also down-regulated in Al-treated patients (Figure 5A).

Up-regulated genes showed a smaller overlap with pa-
tient data; in MCF7 cells 4/36 and 8/36 gene probes up-
regulated after 2 days and 6 weeks estrogen deprivation
respectively were also up-regulated in Al treated patients
(Figure 5B). In BT474 cells these numbers fell to 2/36
and 7/36 gene probes after 2 days and 6 weeks respect-
ively (Figure 5B). Two genes were up-regulated in both
MCF7 and BT474 cells at 6 weeks (TGFBR2 and CLU)
were also upregulated in Al treated patients (Figure 5B).

Finally, in order to determine if gene changes caused
specifically by loss of estrogen receptor are also present
in the genes of LTED cells and Al —treated patients, we
utilised publically available data (Gene expression omni-
bus number: GSE27473) of MCF7 cells treated with
siRNA against the estrogen receptor [21]. Notably, we
found an overlap of 4 genes significantly up-regulated
and 11 genes significantly down-regulated in all three
datasets (Additional file 12: Table S5). Of the up regulated
genes, both SNAI2 and TGFBR?2 are associated with pro-
motion of epithelial-to-mesenchymal transition, whilst
among the down-regulated genes were those responsible
for the suppression of EMT including RACGAPI, TFF3
and IRSI. These results again implicate the induction of
EMT through loss of estrogen receptor, in line with the
work of others [21].

Taken together these data lend weight to the ability of
this established model to provide relevant translational in-
formation and further support its use as a testing ground
for elucidation of factors that mediate anti-estrogen treat-
ment resistance.

Discussion

In spite of the substantial progress that has been achieved
in recent years in the treatment of hormone receptor posi-
tive breast cancer, de novo and acquired resistance to endo-
crine therapy is still a major clinical problem [8,9]. In this
descriptive study, we employed a LTED model to gain a
greater understanding of how estrogen deprivation impacts
clinically relevant prognostic markers and gene expression
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A Down-regulated genes

B Up-regulated genes

Figure 5 (See legend on next page.)
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Figure 5 Venn diagram comparing significantly changed genes in MCF7, BT474 cell lines and Al-treated patients. (A) Genes significantly
down-regulated in response to estrogen deprivation after 6 weeks vs. control in MCF7 and BT474 cells compared with those significantly down-
regulated in Al-treated patients (B) Genes significantly up-regulated in response to estrogen deprivation after 6 weeks vs. control in MCF7 and
BT474 cells compared with those significantly up-regulated in Al-treated patients.

over time. To our knowledge, this is the first report to
comprehensively investigate ER, PR and HER-2/neu ex-
pression along with qRT-PCR and gene expression array
profiles at multiple early and late time points, in breast
cancer cell lines after estrogen deprivation. Overall, our
data are in line with previous reports showing that breast
cancer cells can survive estrogen deprivation and re-grow,
creating a phenotype that is likely less responsive to anti-
hormonal therapy [27]. Additionally, due to the multiple
consecutive time points examined, we note clear trends in
how the expression of ER and PR change over time on
both the gene and protein level. Lastly, we underline the
similarities between the specific genes changed in our
LTED cell lines and patients treated with aromatase inhibi-
tors, demonstrating the strong translational value of this
model, as others have also noted [23,24,28].

In order to put our work in the context of other
studies and strengthen our findings, we compared our
gene expression results to that of Aguilar et al., who
performed a similar study in an MCF7 LTED model
[24]. Through integrated aCGH and gene expression
analysis the Aguilar study demonstrated that there may
be shift towards a transcriptomic program in LTED cells
that is independent of ERa transcriptional function.
Whilst we did not perform matching aCGH analysis on
our LTED samples, and despite the differences in time
points assessed in both studies, we did note similar
changes in gene expression probes over time. Specific-
ally, we noted analogous changes in the probes for ESRI,
MKI67, EGFR and RAFI (but not GATA3), thus lending
support to hypotheses proposed by Aguilar et al.

Recent publications including two prospective studies,
indicate lack of stability of ER and PR during tumour
progression, in particular they seem to be altered when
adjuvant therapies are given [29-31]. This loss of recep-
tors, at least in the examined parts of the biopsies, may
be a further factor involved in resistance to endocrine
therapies. It is also apparent from these studies that ER
and PR seem to be more discordant in patients receiving
more abundant adjuvant therapies and a similar finding
has been demonstrated with chemotherapy and tra-
stuzumab in the comparison of HER-2/neu status in the
primary tumour and the corresponding recurrence [31].
This clinical instability is reflected in our present cell
line model, again underlining the suitability of LTED
studies for investigating the time related alteration of

receptors during conditions which mimic endocrine
therapy with aromatase inhibition.

Previous studies have shown the propensity of breast
cancer cells to adapt to conditions of long-term estrogen
deprivation by up-regulating expression of ER, but not
PR [19,32], thus developing hypersensitivity to the mito-
genic effect of estradiol. In our experiments, we observed
a marked up-regulation of ER in the MCF7 but not BT474
cell line at 10 months after estrogen deprivation. Some re-
ports claim that this estradiol hypersensitivity is not a con-
sequence of ER-mediated gene transcription but rather
related to activation of the MAPK/ERK [19] and EGFR/
ERBB/AKT pathways [24]. Similarly, recent evidence has
also implicated a switch from ERa to NOTCH signalling
in LTED cells [28], a finding supported by our analysis
where we see an up-regulation of the NOTCHI in MCF7
cells relative to control after 6 weeks of LTED culture.

The up-regulation of NOTCHI1 fits well with our find-
ings of increased expression of genes that promote
EMT in both LTED MCEF7 cells at 6 weeks and Al
treated patients. Previous studies have linked induction
of EMT under hypoxic conditions to Notch signalling
[33], whilst ectopic expression of Notchl intracellular
domain (N1CD) has been demonstrated to trigger an
EMT in epithelial cancer cells [34]. Of particular note,
others have shown that a decrease in estrogen depend-
ency is correlated with an increase of the EMT marker
Snaill in an MCF7 LTED model [35]. What these results
mean in the context of Al treatment of breast cancer
patients is difficult to ascertain. One might expect that
as induction of EMT leads to an enhancement in the
migratory capacity of cells, treating breast cancer pa-
tients with Als would push tumour cells towards a more
invasive metastatic phenotype. However, given the high
success rates of endocrine treatments and reduced
numbers of metastasis seen amongst these patients
(relative to those who receive chemotherapy), this hy-
pothesis would seem unlikely.

The down-regulation of PR following estrogen de-
privation observed in our experiments could be caused by
multiple cellular mechanisms. Cui et al. have shown that
insulin-like growth factor-1 (IGF-1), independent of ER
activity, considerably down-regulates PR through the PI3K
(Akt/mTOR) pathway [36]. Along with others, they
propose that low PR status may serve as an indicator of
substantial activation of the growth factor signalling
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cascade, leading to hormonal therapy resistance [37-40].
However, our gene array data did not support any signifi-
cant involvement of the PI3K/Akt pathway and as such
the mechanisms governing loss of PR in our model will re-
quire further investigations.

Conclusions

Our data highlight the instability of ER, PR and meta-
bolic/proliferative processes in response to short and
long-term estrogen deprivation. Additionally we demon-
strate considerable the overlap between genes altered in
LTED culture and Al-treated breast cancer patients.
These results further strengthen the use of LTED models
as a valuable translational research tool to further our
understanding of the major clinical obstacle that is hor-
monal resistance.

Additional files

Additional file 1: Figure S1. Characterization of Ki67 expression by ICC
in MCF7 and BT474 cell lines at consecutive time points. Cells stained
brown are positive for Ki67. Upper panel: MCF7 cells, Lower panel: BT474
cells. Original magnification 40x.

Additional file 2: Figure S2. Histograms of modified H score analysis.
(A) Expression of ER and (B) PR in MCF7 cells. (C) Expression of ER and (D)
PR in BT474 cells. ***P = 0.001, **P = 0.01, *P 2 0.05 vs. control, ANOVA
with post-hoc Tukey.

Additional file 3: Figure S3. Western blots showing changes in ER and
PR expression in response to estrogen deprivation in BT474 and MCF7
cells at early time points. B-actin is included as loading control and MDA-
MB-231 cells are included as negative control for ER and PR expression.
Blots are representative.

Additional file 4: Figure S4. Characterization of HER-2/neu expression
by ICC in MCF7 and BT474 cell lines at consecutive time points. Cells
stained brown are positive for HER-2/neu receptor. Upper panel: MCF7
cells, Lower panel: BT474 cells. Original magnification 40x.

Additional file 5: Figure S5. Characterization of ER, PR and HER-2/neu
expression by ICC in MDA-MB-231 cell line at consecutive time points. (A)
Lack of ER expression (B) Lack of PR expression. (C) Lack of HER-2/neu
expression. Original magnification 40x.

Additional file 6: Figure S6. Cell cycle genes affected in estrogen
deprived cells. Red and blue boxes indicate up- and down regulated
gene expression in response to estrogen deprivation. Small circles (red
and blue) mark a statistically significant increase or decrease in
expression. (A) MCF7 cells at 6 weeks after estrogen deprivation versus
control cells (B) BT474 cells at 2 days after estrogen deprivation versus
control cells.

Additional file 7: Table S1. Log fold change of cell cycle genes in
MCF7 cells 2 days after estrogen deprivation versus control. This table
displays all genes of the human KEGG annotated cell cycle pathway and
their fold change after two days of estrogen deprivation relative to
control, sorted according to p-value. Note, multiple affymetrix probes can
map to the same gene. *Direction of change: | = Increase, D = Decrease
and NC = No statistically significant change.

Additional file 8: Figure S7. The effect of LTED on selected probesets.
Here, in order to put our results in context with other scientific
publications we reproduced the probeset plots of Aguilar et al. (A) ESR1
affymetrix probesets (B) MKI67 affymetrix probesets (C) Genes related to
ER genomic function.

Additional file 9: Table S2. Log fold change of cell cycle genes in
BT474 cells 6 weeks after estrogen deprivation versus control. This table
displays all genes of the human KEGG annotated cell cycle pathway and
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their fold change after 6 weeks of estrogen deprivation relative to
control, sorted according to p-value. Note, multiple affymetrix probes can
map to the same gene. *Direction of change: | = Increase, D = Decrease
and NC = No statistically significant change.

Additional file 10: Table S3. MCF7 cells 2 days after estrogen
deprivation versus control cells. The table represents the number of
genes matching the 10 most commonly occurring GO terms in the GO
molecular function, biological processes, and cellular component classes.
The 300 genes with highest SLR were selected.

Additional file 11: Table S4. BT474 cells 2 days after estrogen
deprivation versus control cells. The table represents the number of
genes matching the 10 most commonly occurring GO terms in the GO
molecular function, biological processes, and cellular component classes.
The 300 genes with highest SLR were selected.

Additional file 12: Table S5. Genes in common amongst those
significantly altered in all three analysed datasets: MCF7 LTED culture, ER-
silenced MCF7 cells and breast cancer patients treated with aromatase
inhibitors. We determined the genes most significantly altered in three
datasets; our MCF7 LTED samples (control vs. 6 weeks, pvalue cutoff =
0.004), a publically available dataset of MCF7 cells where the ER has been
silenced (control vs. silenced, pvalue cutoff = 0.004, GSE27473) and a
publically available dataset of breast cancer patients treated with
aromatase inhibitors (GSE5462). We then determined the genes in
common amongst those significantly altered in all three studies and
present them here divided into those up and down regulated.
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