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Abstract

Background: Circulating tumour cells (CTC) are receiving increasing attention as prognostic, predictive and
pharmacodynamic biomarkers in cancer patients. However, their clinical significance can be dependent on an
accurate determination of CTC around cut-off values at low cell counts (<10 cells/7.5 ml). Consequently, we have
conducted method validation of the CellSearch™ system focusing on clinical samples containing CTC in the cut-off
region.

Methods: Analytical accuracy was first assessed employing quality controls (QC) and spiked healthy volunteer
blood specimens. Results were analysed by 3-expectation tolerance intervals (BETI). Inter-operator error (6 different
readers) was then characterised in 38 different patient samples, 68% of which had <5 CTC and data were analysed
by 3-content y-confidence tolerance intervals (BCTI).

Results: Results from QCs and spiked blood confirmed a 3-4-fold higher degree of imprecision at the low (48 cells,
BETI =+ 0.288/-0.345, 3 = 95%) compared to the high QC (987 cells, BETI = +0.065/-0.140, {3 = 95%). However, when
data for individual analysts were interrogated characteristic systematic errors were detected. In the analysis of
patient samples again individual analysts introduced a highly specific error into the interpretation of CTC images,
which correlated to the level of training and experience. When readers were selected based on BETI and BCT!
results, the high level of between-operator error (up to 170%) observed at CTC of <5 was reduced to < 30%.

Conclusions: Inter-operator variability in enumeration of CTC at low cell counts can be considerable, but is also
potentially avoidable by following simple guidance steps.

Statistical analysis
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Background

Detection, enumeration and characterisation of circulating
tumour cells (CTC) as a potential biomarker currently
represents one of the most actively pursued areas in trans-
lational cancer research [1]. CTC are believed to act as the
‘seeds’ for the establishment of metastatic disease, and also
a mechanism to re-populate the primary tumour, and
their presence has been shown to correlate to both pro-
gression free survival and overall survival [2-5]. In these
studies, a discrete cut-off point was discriminated at ex-
tremely low numbers of CTC above which poorer
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prognosis was observed: > 5 in 7.5 ml blood for metastatic
breast cancer, metastatic castration resistant prostate can-
cer and non-small cell lung cancer; > 3 for metastatic
colorectal cancer; > 2 in melanoma and > 1 in neuroendo-
crine tumours [2-8]. In addition, CTC have been shown to
be predictive of response to both chemotherapy and
targeted agents in post-treatment samples and to act as a
pharmacodynamic biomarker [2,9-12].

Isolation of rare cells (1 CTC in 10® leucocytes) presents
considerable technological challenges requiring a robust
analytical technique and a number of different approaches
have been developed based on the physical and biological
properties of CTC [1,13]. To date, the CellSearch™ system
(Veridex, Raritan, NJ, USA) remains the only platform
that is cleared by a regulatory authority (the FDA in the
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USA), as an aid in the monitoring of patients with meta-
static breast, colorectal and prostate cancer http://www.
accessdata.fda.gov/cdrh_docs/pdf7/K073338.pdf. The sys-
tem consists of two major instrumental components: the
AutoPrep station for the fully-automated immunomagnetic
isolation of cells from whole blood and an Analyser for the
semi-automated identification of CTC based on 4-channel
fluorescence microscopy [14]. Although, the subject of
method validation studies in the past, these have tended to
focus on either precision of quality control samples or be-
tween laboratory concordance (reproducibility) [15,16].
Only limited studies have been performed evaluating the
analytical accuracy of the technique - determination of the
true value for CTC in the patient sample [17]. Nonetheless,
CellSearch remains the benchmark against which all new
technologies should be assessed [18].

Assays employed as a prognostic or predictive biomarker
require a credible level of analytical validation [19,20] and
in the case of CTC that should include a demonstration
that the technique is accurate and reproducible at the cut-
off level [18,21]. Therefore, in the present study method
validation of the CellSearch system was conducted focusing
on the analysis of patient samples containing low cell
counts, in the region of the published clinically relevant
cut-off points. To address the issue of analytical accuracy
statistical approaches to the interpretation of data including
[-expectation tolerance intervals (BETI) were employed
[22]. In addition, a major goal was to achieve a reduction in
inter-operator variability and this aspect utilised a modifica-
tion of incurred sample reproducibility (ISR) and -content
y-confidence tolerance intervals (BCTI) [23].

Methods

Patients and blood sample collection

Blood samples (7.5 ml) for CTC enumeration were collected
from a total of 38 different lung, prostate, melanoma and
colorectal patients receiving standard of care chemotherapy
at the Christie Hospital, Manchester and entered into a
number of experimental medicine studies being conducted
at the Paterson Institute for Cancer Research. Written in-
formed consent was obtained from all subjects and the stud-
ies were ethically approved by the Tameside and Glossop
Research Ethics Committee (Manchester, UK) and the Dec-
laration of Helsinki Principles was followed. Samples were
harvested into CellSave tubes (Veridex, Raritan, NJ, USA),
containing EDTA and a cellular preservative and maintained
at room temperature for no longer than 72 hours prior to
analysis. Blood was also collected from healthy volunteers
for recovery experiments according to a local ethics com-
mittee approved protocol.

CTC enumeration by CellSearch
CTC were essentially enumerated as previously described
in detail [7,24,25]. In brief, blood was diluted, centrifuged
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and incubated with ferrofluid particles coated with anti-
EpCAM antibodies utilising the CellTracks AutoPrep
station (Veridex). After immunomagnetic enrichment,
ferrofluid-captured cells were permeabilised and fluo-
rescently labelled using phycoerythrin-conjugated anti-
cytokeratin antibodies (pan-keratin antibody C-11) to
identify epithelial cells and allophycocyanin conjugated
anti-CD45 antibody to identify and discount leucocytes.
4-6-Diamidino-2-phenylindole (DAPI) was incorpo-
rated to identify cell nuclei. Upon repeated magnetic sep-
aration, the fluorescently labelled cells were oriented to
the surface of the (MagNest™) cartridge for interrogation
using the CellTracks Analyser II (Veridex). Image frames
covering the entire surface of the cartridge were captured
by the software and a gallery of objects meeting pre-
determined criteria presented to the analyst to confirm or
otherwise the presence of CTC. Image galleries were
assessed by the operator without prior knowledge of pa-
tient data. A CTC is defined as a nucleated cell staining
positively for cytokeratin and negatively for CD45 and re-
sults are reported as CTC number per 7.5 ml of blood.

Experimental studies

To establish the level of analytical accuracy achievable by
the CellSearch system, the quality control (QC) reagents
provided by Veridex were utilised. These are certified to
contain a specified range of human tumour cells (SK-BR3
cells), at a high and low cell count, and are integral to the
quality control procedures of the system. The statistical
evaluation of analytical accuracy employed [-expectation
tolerance intervals (see below). QC data obtained over a 3
month period during the analysis of 27 different batches
of patient samples were collated for statistical evaluation.
Variables investigated included the influence of two differ-
ent CellSearch systems and 3 different operators.

In a second statistical evaluation of analytical accuracy
by BETI, healthy donor blood was spiked with a known
number of human tumour cells according to the following
protocol. Approximately 30 ml of normal donor blood was
collected into a CellSave tube. Growing cultures of either
SW620 or H1048 cells were trypsinised and re-suspended
in 1 ml phosphate buffered saline (PBS) and counted. Cells
were re-suspended to a final concentration of either 3 or
25 in 100 pl (ie. 30 or 250/ml) in PBS. 100 pl of cell sus-
pension was then added to 3 empty CTC isolation tubes
followed by 7.5 ml of normal donor blood. A control sam-
ple of 7.5 ml of normal donor blood with no spiked cells
was also included. The number of cells spiked to each tube
was unknown to the 6 different operators who then
enumerated the cell numbers by CellSearch.

The final experiment involved the interrogation by 6
different operators of the same image galleries obtained
from the analysis of 38 different patient samples. Ana-
lysts were selected on the basis of varying levels of
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training and experience. In the statistical evaluation of
the resultant data a two-sided p-content y-confidence
tolerance interval was employed (see below).

Mathematical calculations and statistical analysis
Calculation of BETI was preformed utilising MATLAB
(Version R2009a, MathWorks, Natick, MA, United States)
as described previously [26]. Tolerance intervals were cal-
culated at B =67%, 80% and 95%. A plot of BETI (y-axis)
against the nominal concentration of the QCs or spike (x-
axis) is referred to as the ‘accuracy profile’ and is used ex-
tensively throughout this report.

Evaluation of ISR utilised BCTI for statistical analysis of
data. This yields an upper and lower interval where a speci-
fied (B) proportion of measurements will lie with a specified
(y) level of confidence and was calculated as previously
reported [23]. In our adaptation of this methodology, where
normally a single operator assays the same samples twice
(or more), data from a pair of operators who assayed the
same samples a single time were substituted into the calcu-
lations in order to characterise the relative error introduced
by each. Here,

Yio = the original measurements (i.e. analyst 1).

Y® = the repeat measurements (i.e. analyst 2).

A; = log(YF)-log(Y?)
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Where, A; is the difference between original and repeat
measurements in log transformed concentrations, N is
the number of patient samples, A is the mean of the dif-
ferences between the log transformed concentrations
and 63 is the variance of the differences between the log
transformed concentrations. The two tailed p-content
y-confidence tolerance interval is therefore defined as:

A£ZappV1+NT \/(N—l)f?i/xiz_l.l_y

Z +py2 is the upper (1 + $)/2 quantile of the standard
distribution and x?\ifmfy is the lower y quantile of the
chi-squared distribution (N-1 degrees of freedom). Cal-
culation of BCTI was performed utilising MATLAB (as
above) at p=67% and 95% [26]. A plot of BCTI (y-axis)
against the operator pair (x-axis) represents a modified
form of the ‘accuracy profile’. All code developed in
MATLAB was validated against previously published
data sets as reported previously [26].
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Results

Analytical accuracy of the CellSearch system characterised
by B-expectation tolerance intervals

Figure 1A contains the accuracy profiles and BETI gener-
ated from the QC data obtained over a 3 month period
during the analysis of 27 different batches of patient sam-
ples. In keeping with previously published data [15,27], the
error associated with the analysis of CTC at lower numbers
was 2-3 fold greater than at higher numbers. There
appeared to be little evidence of bias (systematic error) at
either high or low CTC numbers, where the tolerance in-
tervals at p =67, 80 and 95% were symmetrically centred
about the mid-point of the certified range for the QCs. In
absolute terms, the tolerance intervals rarely exceeded a
margin of 30% (even at 95% probability), the recommended
benchmark for a biomarker assay in the fit-for-purpose ap-
proach to method validation [17].

Nonetheless, when the equivalent data were plotted for
each operator involved in the analysis (see Figure 1B-D),
striking differences in the resultant accuracy profiles
emerged (P < 0.05, ANOVA). Analyst 1 introduced a posi-
tive bias in the determination of the low QC which was sig-
nificantly different from the performance of the other two
analysts (Newman-Keuls multiple comparison test) while
Analyst 2 introduced a negative bias in the low QC. A large
degree of imprecision (random error) was evident in the
low QC data attributed to Analyst 3 coupled to a small
negative bias in the high QC. Identification of such
discrete analytical errors allows for the possibility of their
correction, demonstrating the potential power of the BETI
approach to method validation. No significant differences
in QC values were recorded when the results obtained
from the two separate CellSearch systems were compared
(Student’s t test).

Six different operators independently interrogated the
image galleries produced by the analysis of volunteer blood
samples spiked with low numbers of tumour cells (3 and
25, n = 3). Here, BETI for the samples spiked with 25 cells
was +0.562 and -0.546 at [ =95%, total error was 24.5%
and average recovery 101% + 24% coefficient of variation
(CV), consistent with a large degree of random error but
absence of systematic error and in keeping with previous
studies [16]. Due to the relatively small number of speci-
mens in this study, it was not possible to discriminate the
individual contribution of each analyst towards the overall
level of error. BETT for the samples spiked with 3 cells was
+0.486 and -0.264 at p =95%, total error was 28.3% and
average recovery was 90% = 9.6%.

Incurred sample reproducibility of the CellSearch system

characterised by B-content y-confidence tolerance intervals
The nature and extent of inter-operator error in CTC
enumeration by CellSearch was investigated through
ISR and applying this concept to different pairings of



Cummings et al. BMC Cancer 2013, 13:415
http://www.biomedcentral.com/1471-2407/13/415

Page 4 of 8

05
041 @
0.3
02 4

0.1 4

-0.1 4
0.2 4
-0.3 4
04 4
-0.5

Relative Error (BETI)
o

48 987
CTC Number in Quality Control Sample

0.5
0.4 c

0.3

0.2
0.1

-0.1

Relative Error (BETI)

-0.2
-0.3

-0.4

-0.5

48 987
CTC Number in Quality Control Sample

Figure 1 Determination of analytical accuracy in CTC enumeration utilising BETI and QC samples. Certified QC samples containing SK-BR3
human tumour cells spiked at high and low numbers were assayed by a pool of analysts over a 3 month period in order to construct tolerance
intervals (+) at 3 =95%, 80% and 67%. Combined tolerance intervals for all analysts (a) versus tolerance intervals for a single analyst: (b), (c) and (d).
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analysts (Figure 2A-D). Of all patient samples analysed
and interrogated in this evaluation a total of 68% had
nominal CTC values of <5. Figure 2A contains the ‘modi-
fied’ accuracy profiles and BCTI for a pairing of all 6 oper-
ators, each of whom was selected on the basis of differing
levels of training and experience. Analyst 1 was the bench-
mark, the most highly trained and experienced member of
the group. The level of error recorded between the differ-
ent pairings was comparable and in certain cases (e.g. ana-
lyst pair 1 and 4) less than that observed in the analysis of
the QC samples (see Figure 1), a phenomenon previously
noted in biomarker method validation of 2 cell death
ELISA assays [26]. The magnitude of error between pairs
of operators followed very closely their level of training
and experience. Analysts 4 and 5 underwent professional
training at the Veridex European Centre and were highly
experienced whereas Analyst 6 had only recently received
in-house training, while Analysts 2 and 3 were intermedi-
ate in experience.

When Analyst 2 was compared against the other opera-
tors, there was a considerable increase in the tolerance inter-
vals recorded (approximately 2-fold) and the introduction of
a strong positive bias (Figure 2B). Likewise, in the case of
Analyst 3, who was intermediate in experience, there was

also a large increase in the level of random error but with-
out any notable bias (Figure 2C). Analyst 6, the most in-
experienced operator, was consistently associated with a
much greater level of error than any other analyst (see
Figures 2A-D). Apart from Analyst 1, the benchmark oper-
ator, the two other experienced analysts - 4 and 5 -
appeared to be able to function within or close to the 30%
margin of error recommended as acceptable for biomarker
assays [17] (Figure 2D).

Amelioration of the inter-operator error associated with
the enumeration of low CTC utilising BETI and BCTI
Through the application of both certified QCs and
patient samples, and employing the statistical proce-
dures of BETI and BCTI in data interpretation, distinct
performance characteristics associated with different
analysts have been identified. Figure 3A displays the
inter-operator error in CTC enumeration at low counts
as CVs when data from all 6 analysts were included.
The graph illustrates a profile typical of that obtained in
previous analogous studies, where there is essentially an
exponential increase in error as the cell count ap-
proaches zero [16,24,27]. By selecting only analysts who
through BETI and BCTI analysis have demonstrated
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Figure 2 Characterisation of inter-operator variability in CTC enumeration at low cell counts utilising BCTI and patient samples. Image
galleries generated from the analysis of different cancer patient blood samples, 68% of which had <5 CTC, were enumerated by a pool of
operators. Results were analysed by a modification of incurred sample reproducibility where the counts obtained by a pair of operators who
interrogated the same samples were substituted into the calculations. Tolerance intervals (+) were constructed at 3 =95% and 67% and the +
30% error line is shown for reference. (a), Analyst 1 versus analysts 2-6; (b), analyst 2 versus analysts 3-6; (c) analyst 3 versus 4-6 and (d) analyst
4 versus 5 and 6 and analyst 5 versus 6.
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(Figure 3B). BCTL In a seminal paper published by scientists based at
200 200
= 180y 5 CTC Line a 180 - 5 CTC Line b
i 160 ® 160 A
O =
= 140 Q 140 |
S 5
I.'ul: 120 Iu‘i 120
£ 100 {o 5 100 1
g g i
80 -
o L] 53
5 60 u,:, 60 -
[} . 30% Error Line
% 40 _..o . 30% Error Line 2 404 °
@ &
20
g « °* . . R 0] e .
0 losel —° - ‘ - - 0 q ¢ o hd hd b
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 00 70 80
Average CTC Number Average CTC Number

Figure 3 Amelioration of inter-operator variability in CTC enumeration in patient samples at low cell counts. Between-operator error was
calculated as the coefficient of variation (CV) in the mean cell count obtained by a panel of analysts enumerating CTC in 38 different cancer
patient blood samples. (a) Inter-operator error for all 6 operators. (b) Reduced level of error obtained when only analysts 1, 4 and 5 (see Figure 2)
who had demonstrated consistency were included. The 30% error line and 5 CTC line are shown for reference.
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Veridex (then called Immunicon Corporation) a statistical
model was developed to describe the main sources of
error associated with the determination of CTC in human
blood [24]. Three major error components were identified:
a) sample collection, b) recovery of CTC through
immunomagnetic depletion and c) inter-reader variability
in the assignment of objects. A stimulus to conduct this
study was based on the apparent arbitrary nature of the
cut-off point of 5 CTC observed in metastatic breast can-
cer patients [2,24]. No clear biologic basis could be prof-
fered for such a discrete value [3,8,24,28].

To explain the uncertainties associated with sample
collection in CTC enumeration Poisson statistics were
incorporated into the error model [24]. Poisson statistics
are believed to describe most accurately the effect of
counting randomly distributed objects, such as CTC, in
a discrete volume [28]. The effect of Poisson statistics on
CTC enumeration is illustrated as follows. Where the
true number of CTC is 5, the probability of detecting 5
cells in a single sample collected from a patient is rela-
tively small (17.5%). A feature of the Poisson distribution
is that the variance is equal to the population mean.
Thus, the theoretical CV for a set of measurements car-
ried out on the same samples, based entirely on statis-
tical probabilities, is 44.7% at 5 CTC. A number of
previous validation studies, including the present work,
have confirmed good agreement between the level of ex-
perimental error measured at low CTC and the theoret-
ical level of error dictated by Poisson statistics [16,27].

While it is difficult to control for the uncertainties in-
troduced in the analysis of CTC by Poisson statistics,
other than collecting a larger volume or many replicates
of the same sample [24,28,29], the other two compo-
nents in the error model are more amenable to correc-
tion. In the case of sample recovery, this component has
been demonstrated to exert only a modest effect [16,27],
which was confirmed in the present study using spiked
healthy volunteer blood samples.

Where there is scope for improvement is in the area of
inter-reader variability, which has been proposed as one
of the main reasons to explain the arbitrary nature of the
cut-off levels observed in clinical trials [3,24,28]. Indeed,
it is possible that due to experimental error the true cut-
off levels may be even lower than those previously
reported [24]. Inter-operator error was also identified as
the major contributor to between-laboratory variations
observed during an external quality assurance assess-
ment programme [21].

To apply BETI to method validation requires that the true
or a certified value of the analyte of interest is known [30].
This limited our evaluation to data derived from the QC
samples provided by the vendor (Veridex). BETT is normally
associated with bioanalytical techniques, although there are
limited examples of its application in cut-off interpretation
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of ELISA data [31]. To the best of our knowledge, the
present report represents the first to apply this approach to
method validation of the CellSearch system for CTC ana-
lysis. The strength of this procedure is that it informs on
analytical accuracy and the quality of result obtained in fu-
ture measurements, at any operator defined level of prob-
ability [30,32]. Results obtained with the QC samples made
two significant observations. First, it confirmed that a high
level of analytical accuracy was possible, with virtually no
bias observed at the high QC coupled to a low level of im-
precision. Here the total error was always less than 15%,
well within the recommended level for a biomarker tech-
nique [33,34]. Second, and most importantly, it identified
that at lower CTC, characteristic systematic and random
errors could be ascribed to individual analysts.

However, it is also well recognised that QC samples often
reflect poorly the analytical behaviour of clinical specimens,
especially in the biomarker field [35,36]. In the case of the
CellSearch system, the QCs comprised breast cancer cells
reconstituted into a non-biologic matrix. Therefore, the
main focus of the present paper revolved around the ana-
lysis of cancer patient specimens containing low numbers
of CTC (<5). To identify inter-reader errors the ISR meth-
odology described by Hoffman was adopted utilising BCTI
[23]. In our modification of this process we substituted a
different operator to analyse the repeat sample. To control
against sampling artefacts, a relatively large number of pa-
tient specimens were analysed in a number of different
assays [23]. Results obtained clearly showed that an individ-
ual analyst could introduce a highly specific error into the
interpretation of CTC images, analogous to the QC data.
However, it was also demonstrated that with training and
experience these errors could be significantly reduced.

Increasingly, the regulators in the USA and Europe are
placing more stringent requirements on the validation of
biomarker assays [36-38]. Hence, validation data will be ad-
judged in the future, not merely on the basis of technical
performance characteristics with QCs [39], but in terms of
the quality and significance of the data generated during
the analysis of clinical specimens. As the gold standard, the
most reliable biomarker data will be derived from multi-
centre trials, where the analysis is subject to external profi-
ciency testing schemes and inter-laboratory comparison
programmes [18]. This is especially true when data gener-
ated by the assay is intended to be used in the stratification
of patients into different treatment arms, thus defining the
biomarker as integral to the progress of the trial [19,20].
Here, the assay will have to be demonstrated to possess a
proven ability to discriminate between different cohorts with
a high degree of diagnostic sensitivity and specificity [37,38].
The first clinical study to conduct patient stratification based
on a CTC cut-off value is SWOG S0500 (NCT00382018) in
women with metastatic breast cancer receiving chemother-
apy [18,40]. Other stratification trials employing CTC as a
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biomarker are likely to follow, such as the ‘CriTiCal Trial
(Circulating Tumour Cell guided Chemotherapy Trial in
Colorectal Cancer) planned in the UK.

Conclusions

It has been shown that while inter-operator variability in
enumeration of CTC at low cell counts can be considerable;
it can be ameliorated by following simple guidance steps.
First, and perhaps logically, operators should be trained to a
high degree and experienced in the field. Second, utilising
statistical based techniques, potential analysts should con-
firm in a training set of images derived from 30-50 patient
samples run in 5-10 different assays, that consistency can
be achieved against benchmark analysts. Finally, CTC enu-
meration in patient samples should be conducted on 2 or
preferably 3 separate collections of blood, with a different
operator analysing each, for two reasons. First by collecting
up to 3 samples, one may attenuate the unavoidable un-
certainties imposed on CTC enumeration by Poisson sta-
tistics, increasing the probability of detecting>1 (when
present) up to 95% [24]. Second, by employing different
analysts one can confirm or otherwise the lack of inter-
operator variability.
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