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Functional p53 is required for rapid restoration of
daunorubicin-induced lesions of the spleen
Lars Herfindal1,2*, Lene Myhren1, Bjørn Tore Gjertsen3, Stein Ove Døskeland1 and Gro Gausdal1
Abstract

Background: The tumour suppressor and transcription factor p53 is a major determinant of the therapeutic
response to anthracyclines. In healthy tissue, p53 is also considered pivotal for side effects of anthracycline
treatment such as lesions in haematopoietic tissues like the spleen. We used a Trp53null mouse to explore the
significance of p53 in anthracycline (daunorubicin) induced lesions in the spleen.

Methods: Mice with wild type or deleted Trp53 were treated with the daunorubicin (DNR) for three consecutive
days. Spleens were collected at various time points after treatment, and examined for signs of chemotherapy-
related lesions by microscopic analysis of haematoxylin-eosin or tunel-stained paraffin sections. Expression of death-
inducing proteins was analysed by immunoblotting. Changes between Trp53 wild type and null mice were
compared by t-tests.

Results: Signs of cell death (pyknotic nuclei and tunel-positive cells) in the white pulp of the spleen occurred
earlier following DNR exposure in wt-mice compared to Trp53-null mice. While the spleen of wt-mice recovered to
normal morphology, the spleen of the Trp53-null animals still had lesions with large necrotic areas and disorganised
histologic appearance eight days after treatment. Immunoblotting showed that only Trp53-wt mice had significant
increase in p21 after DNR treatment. However, both wt and null mice had elevated p63 levels following DNR
exposure.

Conclusions: p53 protects against severe and enduring cellular damage of the spleen parenchyma after DNR
treatment, and initial DNR-induced apoptosis is not predictive of tissue lesions in the spleen. Our data indicate that
p53 induction following DNR treatment serves to protect rather than to destroy normal tissue.
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Background
Numerous studies have demonstrated that the efficiency
of DNA-damaging drugs in cancer therapy is dependent
on the cellular status of the tumour suppressor factor
p53 [1-4]. The p53 pathway is often inactivated in hu-
man cancers, and deletions and mutations in p53 are as-
sociated with progressive and more aggressive disease,
and with poor prognosis and anthracycline resistance in
several types of cancer [1,4-6]. In line with these results,
there has been an increased focus on developing new
drugs aiming to restore p53 activity in tumours [7-12].
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However, the effect of p53 activation by drugs such as
the anthracyclines on healthy tissue has to be considered
in this respect, as induction of cell death and tissue
damage in healthy tissue is an unwanted and severe
side-effect of the anthracyclines.
It is known that anthracyclines cause lesions in haem-

atopoietic tissues [13]. We therefore addressed the role
of p53 in the toxic activity of the anthracycline dauno-
rubicin (DNR) in the spleen, and compared the effect of
DNR on the spleen in C57Bl/6 wild type (wt) and
C57Bl6 Trp53-null mice. DNR induced more rapid cell
death and loss of spleen weight in wild type (wt)
compared to Trp53-null mice. However, whereas the
Trp53-null mice had severe lesions of the spleen at day
4 after treatment, there was spleen structure recovery in
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Trp53-wt animals. Our data points to p53 as a protective
factor in chemotherapy-induced normal tissue damage.
Methods
Mice
The Trp53-null mouse was generated by Jacks et al. [14],
and was provided by Prof. Lozano, MD Anderson
Cancer Center, Houston, TX, USA. Trp53-wt and null
mice (C57BL/6) were generated by litter-mate inbreed-
ing. Genotypes of weaned mice were determined by PCR
analysis of DNA from an ear biopsy [14].
The mice used were male, and age matched. DNR

(Sanofi-Aventis, Lysaker, Norway,) was administered
intravenously (10 mg/kg) through the tail vein for three
consecutive days. Control animals received relevant ve-
hicle. Health status and weight of the mice were moni-
tored daily. The mice experiments were approved by the
Norwegian Animal Research Authority and conducted
according to the European Convention for the Protec-
tion of Vertebrates Used for Scientific Purposes.
Preparation and analysis of histological specimens
Spleens were excised from euthanized mice and
washed in ice-cold PBS. Formalin-fixed tissues were
embedded in paraffin, cut into 2-μm-thick sections and
stained with haematoxylin and eosin (H&E). Terminal
deoxynucleotidyl transferase-mediated dUTP-biotin
nick end-labelling (TUNEL staining, In situ Cell Death
Detection Kit, POD, Roche) was used for in situ stain-
ing of apoptotic DNA fragmentation. Pyknotic nuclei
and cells containing lipofuscin-like pigments were
assessed by microscopy of H&E-stained paraffin sec-
tions. The number of pyknotic nuclei in all the white
pulp areas was counted and then divided by the num-
ber of white pulp regions.
The spleens were cut with scissors and cell suspen-

sions were prepared by crushing the tissue pieces be-
tween two glass slides in PBS. Cell suspensions were
filtered through a nylon cell strainer (40 μm), washed in
PBS by centrifugation (160 × g, 6 min) and re-suspended
at 0.5 × 106 cells/ml in RPMI-1640 (Sigma-Aldrich Inc,
St. Louis, MO) supplemented with 10% FCS (Gibco,
Grant Island, NY). Cell death was assessed by flow
cytometry after AlexaFluor 647-AnnexinV (Molecular
Probes, Eugene, OR) and propidium iodide (PI) labelling.
At least 30 000 non-gated live cell events were collected
for each sample on an AccuriC6 cytometer (Ann Arbor,
MI). Cells positive for AnnexinV alone or together with
PI were counted as dead (apoptotic or necrotic). Un-
treated cells had less than 15% spontaneous cell death,
and this was subtracted from the data on anthracycline-
treated cells.
The data was compared by one-way analysis of vari-
ance (ANOVA) using IBM SPSS Statistics for Mac (ver-
sion 19.0; IBM Corp.: Armonk, NY, 2010).

Immunoblotting
Protein lysates were prepared from excised spleens,
snap-frozen in liquid N2 and stored at −80°C. Tissue was
grinded with a pestle and lysed in RIPA buffer
supplemented with Complete mini protease inhibitor
(Roche Diagnostics, Mannheim, Germany). The relative
protein concentration was determined by Bradford and
adjusted by Coomassie staining, and immunoblotting
was as described [15]. Primary antibodies were from
Santa Cruz Biotechology (Santa Cruz, CA, USA; p21,
p63, Bax), and Imgenex (San Diego, CA, USA; p73) and
secondary alkaline-phosphatase-conjugated antibody (a-
3687 and a-3562) were from Sigma. CDP-Star substrate
was from Tropix (Bedford, MA, USA). Chemilumines-
cence was detected using a Luminescent Image Analyser
Apparatus (LAS 3000, FujiFilm, Tokyo, Japan) and
Image Gauge Software (FujiFilm, Tokyo, Japan).

Results and discussion
Since p53 status is often coupled to therapy response to
anthracyclines like daunorubicin (DNR) and idarubicin
(IDA) [5], we examined the effect of anthracyclines on
splenocytes and spleen histology. We first studied if
p53-status affected the in vitro response to the
anthracyclines daunorubicin (DNR) and idarubicin
(IDA) in cells isolated from the spleen, since p53 defi-
ciency is often coupled to anthracycline resistance [5].
Both DNR and IDA are used as part of the standard
treatment regime in leukaemia. We found that both
drugs induced cell death to a similar degree
insplenocytes from both wt and Trp53-null mice
(Figure 1A). Hence, lack of p53 did not significantly seem
to render the splenocytes resistant to anthracycline-
induced death in vitro.
We next studied the in vivo effect of DNR treatment

on the intact spleen in wt and Trp53-null mice. A typical
therapy regime for AML patients consists of multiple 1–
3 hour infusions of DNR during 3–6 days [16]. To study
how p53 is involved in the drug-induced damage and re-
covery of the spleen, we administered DNR (10 mg/kg) i.
v. to the mice every day for three days. Whereas spleen
weight reduction was evident two days after onset of
DNR-treatment in wt-mice (Figure 1B), in the Trp53-
null mice reduced spleen weight was not observed until
about five to six days after onset of treatment
(Figure 1C). Also, weight reduction was more prominent
in the wt mice compared to Trp53-null animals. A p53-
dependent decrease in spleen mass has similarly been
reported by others after ionising radiation [17]. Two
weeks after treatment, there was an increase in spleen
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Figure 1 DNR treatment reduces spleen weight in wt and p53-
null mice. (A) Cells isolated from the spleen of Trp53-wt and -null
mice were treated for 7 h with DNR (10 μM) or IDA (0.5 μM). Cells
were stained with AnnexinV and PI, and analysed by flow cytometry.
Data are given as mean and SEM, n = 3. (B,C) Trp53-wt and -null
mice were treated for 3 consecutive days with vehicle or 10 mg/kg
DNR, and the spleen mass recorded and related to total animal
weight at the given time points. The plots show relative spleen
weight in treated animal to untreated animals. The arrowheads
indicate days of DNR treatment. Diamonds represent untreated
animals, and dots represent DNR-treated animals. The plots to the
right show increase in spleen weight of DNR-treated animals
14 days after treatment. Note the difference in the scale between
the left and right vertical axes. Each symbol represents one animal.
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weight in both wt- and Trp53-null mice treated with
DNR (Figure 1B,C; right plot).
We suspected that the early reduction in spleen weight

could be due to cell death in the spleen. Accordingly, we
found two hallmarks of cell death in spleens from wt-
mice: 4 hours after the last treatment, the white pulps
were scattered with i) pyknotic nuclei (Figure 2A, left
panel), which corresponded with an increase of ii)
TUNEL-positive nuclei (Figure 2A, right panels). The
presence of both pyknotic and TUNEL-positive nuclei
decreased during the next 20 hours (Figure 2A). Spleens
from Trp53-null mice had no cells with pyknotic or
TUNEL-positive nuclei in the white pulp 4 or 24 hours
after DNR treatment (Figure 2A), suggesting that this
early cell death was p53-dependent. Hence, a late onset
of spleen weight reduction in Trp53-null mice corre-
sponds to lack of early induction of cell death.
However, when we studied spleens from 3 Trp53-wt

and 4 -null mice 4 days after the last DNR injection, we
found pyknotic nuclei and gross pathological lesions in
histological sections in both red and white pulp of the
spleen only in the Trp53-null mice (Figure 2B). At this
time, the wt mice had established normal spleen morph-
ology with little or no signs of cell death (Figure 2B).
Thus a late wave of p53-independent cell death seems to
appear in the spleen of the Trp53-null mice. This later
wave of cell death coincides with decreased spleen
weight (Figure 1C).
We also found signs of DNR-induced cell death in the

red pulp of the wt-mice. An increasing number of
cells containing lipofuscin-like pigments were detected
4 hours after the last DNR injection (Figure 2C).
Elevated levels of lipofuscin-like pigments have been
found in the spleen of mice subjected to ionising radi-
ation [18], and could be due to accumulation of non-
degradable debris in for instance macrophages [19]. The
number of cells positive for lipofuscin-like pigments de-
creased during the next 20 hours (Figure 2C), as was
seen for pyknosis and TUNEL-positive cells (Figure 2A).
Interestingly, Trp53-null mice had high numbers of cells
containing lipofuscin-like pigments both in the red pulp
(Figure 2C) and in the white pulps (not shown), and
treatment with DNR did not increase the number of
cells containing lipofuscin-like pigments (Figure 2C).
This suggests that natural turnover of cells in the spleen
of Trp53-null mice leave degradation products such as
lipofuscin-like pigments.
Four hours after completed DNR treatment we also

detected a 4–5 fold increase in the number of mature
and maturing polymorphonuclear cells in the red pulp
both in Trp53-wt and null mice (Figure 2D). Stem cells
and progenitors have been reported to migrate between
bone marrow and spleen after induction of haematopoi-
etic cell stress [20]. This migration could be a response
to bone marrow deprivation after DNR treatment, and
indicate that the spleen red pulp partly replaces haem-
atopoietic functions after extensive DNR treatment.
The late wave of cell death that we observed in the

Trp53-null mice (Figure 2B) has similarly been reported
to occur in the intestine of the Trp53-null mice after
gamma-irradiation and has been assigned to induction
of mitotic catastrophe due to lack of p53-induced cell
cycle arrest [21]. We therefore analysed spleens from
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Figure 2 DNR-induced apoptosis in the spleen is p53 dependent. Wt and p53-null mice were treated with vehicle (ctrl) or 10 mg/kg DNR for 3 days.
4 and 24 h after the last DNR injection, the spleens were removed, fixed and processed for paraffin sectioning for histological examination as described in
the Experimental section. (A) Presence of pyknotic nuclei in the lymph nodules/white pulp in the spleen (bar diagram), or cell death visualised by TUNEL
staining (right panels). The data represent the average number of pyknotic nuclei/lymph nodule. The data in the diagrams in (A,C,D) are mean ± SEM,
n = 3-7 mice. (B) Haematoxylin- and eosin (H&E) stained paraffin sections of the spleen from Trp53-wt and -null mice four days after the last DNR injection.
RP = red pulp, WT =white pulp, arrowheads indicate pyknotic nuclei. (C) Presence of lipofuscin-like pigments in the red pulp of the spleen. The diagram
shows the average number of cells with lipofuscin-like pigments per 400 μm2 of red pulp. H&E-stained sections from red pulp are shown in the panel to
the right. The arrowheads indicate cells with lipofuscin-like pigments. (D) Content of mature or maturing granulocytes, identified by nuclear morphology in
the spleen. The diagram represents the average number of polymorphonuclear cells per 400 μm2 of red pulp. The right panels show typical appearance of
granulocytes (arrowheads) in the red pulp of wt and p53-null mice. Asterisks indicate p < 0.05 (*), p < 0.01(**) or p <0.005 (***), one-way ANOVA.
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DNR-treated Trp53-wt and -null mice for p21 induction.
Immunoblotting showed elevated expression of p21 in
spleens from wt-mice at 24 and 48 hours after DNR
treatment (Figure 3, left panel) similar to what is seen
with other DNA-damaging agents [22,23]. The Trp53
null mice had only modest increase in p21 levels
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Figure 3 Expression of p21, p63 and Bax in the spleen after
DNR treatment. Protein extracts from spleens excised from animals
before or after treatment with DNR at the indicated time-points
were analysed for levels of p21, p63 or Bax by immunoblotting, as
described in the methods section. Actin was used as
loading control.
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(Figure 3, right panel). The early elevation in p21 in the
spleen from wt-mice could offer protection against se-
vere tissue damage by induction of transient cell cycle
arrest that allows the cells to repair drug-induced DNA
damage and hence protect against mitotic catastrophe.
p63 is, together with p73, shown to be crucial for p53-

meidated cell death after DNA damage [24], and can in-
crease Bax expression and sensitise cells to apoptotic
stimuli [25]. We found that p63 and to some degree Bax
was elevated in spleens from wt-mice at 24 and 48 hours
after DNR treatment (Figure 3), the same time points
where there was an increase in apoptotic nuclei and
lipofuscin-like pigments (Figure 2A and C). We did not
find any change in the expression of p73 neither in
Trp53-wt nor null mice (data not shown). The Trp53-
null mice had a prolonged increase of p63 and Bax,
which lasted until 96 hours after termination of DNR
treatment (Figure 3). This coincides with the late wave
of p53-independent cell death that appeared in the
spleen of the Trp53-null mice. It thus appears that in
addition to lack of early p21-mediated cell cycle arrest
(eventually resulting in mitotic catastrophe), the late
massive cell death seen in the spleen of Trp53-null mice
(Figure 2B, right panel), but not in Trp53-wt mice
(Figure 2B, left panel) could also be mediated by up-
regulation of p63 and Bax in the absence of p53.

Conclusion
This report indicates an anthracycline-induced early
p53-dependent cell death in the spleen. In the Trp53-wt
mice, the spleen appeared to recover after DNR treat-
ment with no histopathological signs of cell death or
tissue deterioration present four days after end of treat-
ment. However, Trp53-null mice suffered from large le-
sions in the spleen parenchyma corresponding to a later
induction of p53-independent cell death. These findings
have clinical implications for therapy aiming to restore
p53-dependent cell death pathways in cancer cells with
non-functional p53. The efficacy of this therapy ap-
proach is debated [26], and the response apparently var-
ies between drugs [27]. We show here that restoration of
p53 activity does not damage the anthracycline-sensitive
spleen, but may rather serve to protect this during inten-
sive chemotherapy.
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