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Abstract

Background: Defects in tight junctions, gate-keepers of the integrity of the epidermal barrier function, are known
to contribute to cancer development. As such, enhancing our understanding of how the expression of proteins
involved in these junctions is regulated in cancer, remains a priority. Although the expression of one of these
proteins, claudin 1, is down regulated in most invasive human breast cancers (HBC), we have recently shown that
high levels of claudin 1, characterized tumors belonging to the very aggressive basal-like breast cancer (BLBC)
subtype. In these tumors, the claudin 1 protein, usually localized in the cell membrane, is often mislocalized to
the cytoplasm.

Methods: To examine the clinical relevance of this observation, we have generated and analyzed an invasive HBC
tissue microarray consisting of 151 breast tumor samples; 79 of which presented a basal-like phenotype (i.e. ER-ve,
PR-ve HER2-ve, CK5/6 or EGFR+ve). We also interrogated the outcome of claudin 1 knockdown in a human BLBC
cell line, BT-20.

Results: Immunohistochemical analysis of this patient cohort revealed a significant association between high
claudin 1 expression and BLBCs in women 55 years of age and older. Interestingly, no significant association was
found between claudin 1 and nodal involvement, tumor grade or tumor size. Regression analysis however, showed
a significant positive association between claudin 1 and claudin 4, even though claudin 4 did not significantly
correlate with patient age. Claudin 1 knockdown in BT-20 cells resulted in decreased cell migration. It also
significantly altered the expression of several genes involved in epithelial-mesenchymal-transition (EMT); in
particular, SERPINE 1 (PAIT) and SSP1 (osteopontin), known to inhibit EMT and cancer cell migration. Conversely,
genes known to maintain EMT through their interaction, SNAIL2, TCF4 and FOXC2 were significantly down
regulated.

Conclusions: The association of high claudin 1 protein levels observed in tumors derived from older women with
BLBC, suggests that claudin 1 has the potential to serve as a marker which can identify a specific subgroup of
patients within the BLBC subtype and thus, further contribute to the characterization of these ill-defined breast
cancers. More importantly, our studies strongly suggest that claudin 1 directly participates in promoting breast
cancer progression, possibly through the alteration of expression of EMT genes.
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Background

A growing understanding of the heterogeneous nature of
breast cancer has stemmed primarily from gene expres-
sion analysis studies, and more recently, integrated ana-
lysis of copy number and exome sequencing [1]. This
has led to a redefinition of breast cancer subsets [1].
This new classification of breast cancer subtypes, fo-
cused on 10 genetically distinct groups, confirmed the
prevalence of four previously identified molecular sub-
types (luminal A, luminal B, HER2 +ve and the basal-
like) [1]. Whereas the luminal A and B subtypes are
characterized by their epithelial phenotypes, hormone
sensitivity (estrogen receptor positive, ER+/ progester-
one receptor positive, PR+), mildly invasive capacity and
relatively good clinical outcome, the HER2+ and basal-
like breast cancer (BLBC) subtypes are characterized by
their mesenchymal phenotype, insensitivity to hormonal
therapy (ER-ve; PR-ve), enhanced invasiveness and
metastatic capacity [2] and poor clinical outcome [3-7].

The claudins belong to a family of tight junction (T7)
proteins (24 identified to date), that are crucial for the
organization of epithelial cell polarity [8]. They con-
tribute to the trans-epithelial barrier that controls the
transport of ions and small molecules. They are also
considered essential for the overall maintenance of the
differentiated state of epithelial cells [9,10]. The claudins
share a very distinct transmembrane topology: each fam-
ily member is predicted to possess four transmembrane
domains with intracellular amino and carboxyl-termini
in the cytoplasm and two extracellular loops [11,12].
The expression pattern of the claudins is usually tissue
specific; however, most tissues express multiple claudins
that can interact in either a homotypic or heterotypic
fashion to form the TJ strand. As well, the exact com-
bination of claudin proteins within a given tissue deter-
mines the selectivity, strength and tightness of the TJ
[11]. The claudins are also capable of recruiting signaling
proteins, thereby regulating various cellular processes in-
cluding cell growth, differentiation and tumorigenesis
[13,14].

Claudin 1, the first member of this family to be identi-
fied, forms the backbone of the TJ strands and is crucial
for the epidermal barrier function [15]. In cancer, an ab-
sence of, or defects in tight junctions have been associ-
ated with the development of the neoplastic phenotype.
Although long suspected to play an active role in
tumorigenesis, only recently have a number of studies
demonstrated that claudin 1 directly participates in
the progression of several cancers including melano-
mas [16], oral squamous cell carcinomas [17] and colon
cancers [18].

Studies from our laboratory [19] and others [20-22]
point toward a putative tumor suppressor role of claudin
1 in breast cancer as it is frequently down regulated in
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human invasive breast cancer and its absence or the
down regulation of its expression is associated with poor
prognosis [23]. We have however, also found high
claudin 1 and claudin 4 protein expression associated
with the BLBC subtype [19]. The BLBCs correspond to a
subgroup of breast cancers that are poorly characterized
and thus, mostly insensitive to most classical therapeutic
strategies. Although a large cohort of human invasive
breast cancers (350 samples) was examined in this earl-
ier study, these tumors were of mixed pathological le-
sions (ductal, lobular, medullary, papillary, metaplastic),
and of these, only 18 were of the BLBC subtype. As
such, the clinical relevance of claudin 1 expression to
the BLBCs could not be fully addressed.

The present study was carried out to determine whe-
ther the observed significant association between claudin
1 and the BLBC subtype could be clinically relevant.
Specifically, we wanted to address whether there was an
association between high levels of claudin 1 and disease
recurrence and patient survival. However, since gene-
rally <15% of breast cancers are basal-like [24], the con-
struction of a BLBC enriched tissue microarray (TMA)
warranted the screening of a large number of tissue
specimens. Thus, our strategy was to first pre-select tu-
mors that were ER-ve and PR-ve (previously carried out
by the ligand binding assay) and then identify those
tumors that exhibited HER2 negativity as well as EGFR
or CK5/6 positivity by immunohistochemistry (IHC).
Seventy-nine out of 151 tumors were confirmed to be
“basal-like” in our basal-like enriched TMA. Additio-
nally, in vitro studies were carried out to examine whe-
ther claudin 1 had a direct functional role in human
breast cancer. For these studies we used the human
breast cancer cell line, BT-20 which is both phenotypi-
cally basal-like [25,26] and endogenously expresses high
levels of this protein. Altogether this study provides evi-
dence that claudin 1 identifies a specific subgroup of
BLBC patients. We also demonstrate that claudin 1 could
directly contribute to breast cancer progression.

Methods

Tissue microarrays

All invasive breast cancers used in the present study
were obtained from the Manitoba Breast Tumour Bank
(MBTB, University of Manitoba), which operates with
the approval from the Faculty of Medicine, University of
Manitoba, Research Ethics Board. As well the studies
reported in this manuscript have been performed with
the approval of the Bannatyne Campus, University of
Manitoba, Research Ethics Board. Collection, handling
and histo-pathological assessment of tumor tissues have
been previously described [27,28]. The breast cancer tis-
sue microarray (TMA) was constructed by the MBTB
using a cohort of 151 breast tumor samples, which were
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determined to be estrogen receptor negative (ER-ve),
progesterone receptor negative (PR-ve) by the ligand
binding assay (ER-ve <3 fmol/mg protein, PR-ve <10
fmol/mg protein). Further, using a strict criteria for the
basal-like subtype (ER-ve, PR-ve, HER2-ve and EGFR
and/or CK5/6 +ve), 79 tumors were identified by IHC as
having the BLBC phenotype. The remaining 72 tumors
were designated as “non-basal”. The clinico-pathological
characteristics of the patient cohorts were provided by
the MBTB and used for statistical analyses.

Immunohistochemical analysis of TMAs

IHC was performed as described previously on the
BLBC enriched TMA [28]. Briefly, serial sections (5 um)
of the TMAs were stained with rabbit polyclonal anti-
bodies to claudin 1 at a dilution of 1:150 (Life Technolo-
gies Inc,, Burlington, ON, Canada), or claudin 4 at a
dilution of 1:1200 (Abcam, Toronto, ON, Canada). The
paraffin-embedded tissue sections were processed using
an automated Discovery Staining Module, Ventana Sys-
tem (Tucson, AR, USA). Tissues were processed and in-
cubated for 60 minutes with the primary antibody and
30 minutes with the secondary antibody following stan-
dard protocol. Validation of claudin 1 and claudin 4
antibodies has also been described previously [19]. Anti-
bodies to CK5/6 (D5/16B4, Life Technologies Inc.), EGER
(3C6, Ventana Systems), and HER2 (Cb11, NovaCastra,
Concord, ON, Canada) were used as previously detailed
[28]. The TMA consisted of a total of 151 human invasive
breast tumor biopsies, however only those tumors from
which we were able to retrieve interpretable data (intact,
unfolded tumor sections) were considered for our analysis.
The IHC data, compiled into the database maintained by
the MBTB, was made available for correlation ana-
lyses and other statistical comparisons [27,29].

Quantification and cut-off selection

Positive staining was assessed by light microscopy. A
semi-quantitative assessment was used. Both staining in-
tensity (scale 0-3) and the percentage of positive cells
(0-100%) were multiplied to generate an H score ranging
from 0-300, as previously described [27,28]. TMA stain-
ing was evaluated independently by two investigators AB
and CP. Where discordance (i.e. different scores given
by different investigators) was found, cases were re-
evaluated commonly and a consensus reached. Only
tumor biopsies whose ER/PR status was determined
by both ligand-binding assay (ER-ve <3 fmol/mg pro-
tein, PR-ve <10 fmol/mg protein), and by IHC (ER-ve/
PR-ve <10% positive cells) were considered as negative in
this study. Primary categorical analysis was carried out as
follows: positivity for CK5/6 and EGFR was set as >10% of
cells staining, and for HER2, tumor cores that showed
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membrane-staining intensity of 2 or 3 were considered
positive.

Human breast cancer cell lines and cell culture

The HBC cell line BT-20 was obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA).
Cells were cultured in Eagle’s Minimum Essential Medium
(EMEM, Hyclone Laboratories Inc., Logan UT, USA) with
10% fetal bovine serum (PAA Laboratories Inc. Etobicoke,
ON, Canada) supplemented with 100 units/mL penicillin,
100 mg/mL streptomycin, and 1mM pyruvate. Cells were
grown at 37°C in an atmosphere of 95% air and 5% CO..

Generation of stable claudin 1 knockdown clonal cell

lines

BT-20 cells were stably transfected with a SureSilen-
cing shRNA control sequence plasmid (SA Biosciences
Corporation, Frederick, MD, USA), and two different
shRNA sequences (sequence 3 and 4; SA Biosciences)
specific for the claudin 1 gene using Lipofectamine 2000
(Life Technologies Inc,). Single clones were selected
using Hygromycin B (Life Technologies, Inc.), and
knockdown of claudin 1 was confirmed by Western
blot analysis.

Subcellular fractionation

BT-20 cells were grown to 80% confluency and subcellu-
lar fractions were isolated using the ProteoExtract® Sub-
cellular Proteome Extraction Kit (S-PEK, Calbiochem,
Billerica, MA, USA) according to the manufacturer’s in-
structions. Protein fractions were subjected to acetone
precipitation and pellets were reconstituted in sample
isolation buffer (50 mM Tris-Cl pH 6.8: 5% SDS: 5mM
B-glycerophosphate, containing complete mini protease
inhibitor cocktail, Roche Diagnostics, Mississauga, ON,
Canada). The mini BCA assay (ThermoScientific,
Ottawa, ON, Canada) was used to determine the protein
concentration of each fraction, prior to equal loading in
15% SDS-polyacrylamide electrophoresis gel and Western
blotting.

Wound healing/migration assay

BT-20 cells were grown to full confluency on 6-well
plates and a scratch was made through the cell mono-
layer using a pipette tip. After washing twice with PBS,
fresh tissue culture medium was added and photographs
(ScopePhoto 3.0, ScopeTek DCM130 microscope camera)
of wounded areas were taken in a time-dependent manner
up to 18 hours after making the scratch. Measurements of
the wound area were evaluated using the Image-] program
(National Institutes of Health).
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Western blot analysis

Cells were lysed in an isolation buffer (50 mM Tris-Cl
pH 6.8: 5% SDS: 5mM p-glycerophosphate, containing a
complete mini protease inhibitor cocktail, Roche Diag-
nostics, Laval, QC, Canada) and mixed 3:1 with 4X so-
dium dodecyl sulfate (SDS) buffer [(500 mM Tris, pH
6.8), 40% glycerol, 8% SDS, 0.04% (w/v) bromophenol
blue and 0.4M dithiothreitol (DTT)]. The samples were
boiled for 5 min. at 100°C and electrophoresed in 15%
SDS-polyacrylamide electrophoresis gel. Proteins were
transferred to nitrocellulose, membranes were blocked
in 5% non-fat milk in Tris-buffered saline with 0.05%
Tween-20 (TBS-T) for 1 hr. Membranes were then incu-
bated overnight at 4°C with primary antibodies (claudin
1, Life Technologies Inc; p-actin, Abcam) diluted
1:1000, and 1:5000 respectively in blocking solution.
Subsequently, the membranes were washed with TBS-T
(three times 10 min.) and incubated with goat anti-
rabbit or goat anti-mouse immunoglobulin G horserad-
ish peroxidase conjugate (1:10000; Bio-Rad Laboratories
Inc.) for 1 hr. at room temperature. The membrane was
washed with TBS-T (three times 10 min.) and developed
with Pico chemiluminescence substrate (Pierce Biotech-
nology, Rockford, IL, USA).

Fluorescent microscopy

For immunofluorescence staining, BT-20 cells were cul-
tured on glass cover slips and fixed with 100% methanol
for 20 min at -20°C. Cover slips were then rinsed with
PBS and the cells were permeabilized with 0.2% Tween-
20 in PBS for 5 min., followed by three 20 min. washes
with PBS. After blocking with 1% BSA in PBS for one
hour at room temperature, cells were incubated with the
claudin 1 rabbit primary antibody (Life Technologies
Inc,, dilution 1:50) overnight at 4°C in a humid chamber.
The cells were washed three times for 10 min. with PBS
and incubated with secondary anti-rabbit antibody con-
jugated with Cy3 (dilution 1:100) for one hour at room
temperature. Cells were washed again with PBS, incuba-
ted with 4', 6-diamidino-2-phenylindole-dihydrochloride
(DAPI) and mounted in FluorSave (Calbiochem).

Real-time PCR arrays

Cells were grown in EMEM in 6-well plates until 75-85%
confluent and directly lysed by adding 350 uLl Buffer
RTL Plus from the RNeasy RNA extraction kit (Qiagen
Sciences, Mississauga, ON, Canada). Equal amounts of
RNA from two control clones were pooled and compared
in triplicate with RNA from two claudin 1 knockdown
clones. RNA (1pg/reaction) was reverse transcribed using
the RT? First Strand Kit (SA Biosciences Corporation).
c¢DNA samples (25ng) were applied to each real-time PCR
reaction on the human EMT RT? Profiler PCR array (SA
Biosciences Corporation) containing 84 key genes that
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change their expression during EMT. Real time PCR was
carried out using the iCycler (BioRad Laboratories). The
cycle profile consisted of denaturation at 95°C for 10 min.,
followed by 40 cycles of 95°C for 15 secs. and 60°C for 1
min. The iCycler iQ Optical System Software Version 3.0a
(BioRad Resource Guide) was used to determine the cycle
threshold (Crt) for each reaction. Data was analyzed using
the web-based PCR Array Data Analysis Software (SA
Biosciences Corporation; http://www.sabiosciences.com/
pcrarraydataanalysis.php). Five housekeeping genes were
used as controls.

Statistical analysis

Analysis was carried out as previously described [27,28],
using SAS 9.2 (SAS, Cary, NC) statistical software. The
Wilcoxon Two Sample test and the Kruskal-Wallis test
were used to interrogate claudin 1 levels in tumor sub-
types and tumors from different age groups of patients.
Associations between claudin 1 and other clinical-patho-
logical variables were tested using contingency methods
(continuity adjusted Chi-Square was used for node, age
and size data; Exact Linear Association was used for
grade). Linear regression analyses with claudin 1 levels
as dependent were also carried out. Univariate survival
analyses were performed using Cox regression to gene-
rate Kaplan-Meier curves. Overall survival (OS) was de-
fined as the time from initial surgery to the date of
death attributable to breast cancer only. Recurrence time
was defined as the time from initial surgery to the date
of clinically documented local or distant disease recur-
rence. Analysis of Variance (ANOVA) followed by
Bonferroni’s Multiple Comparison Test were used to as-
sess differences in migration rates in the wound healing
assays.

Results

High level of claudin 1 protein is associated with BLBCs
derived from older women

Claudin 1 expression was higher in the basal-like tumors
compared to the non-basal tumors, confirming the ob-
servations made in our previous study [19]. A signifi-
cantly higher median H-score (40) was associated with
the basal-like tumors (n=79) versus the median H-score
(20) of the non-basal tumors (n=72; p=0.02; Wilcoxon
two sample test; Table 1). When both non-basal and
basal-like tumors were included in the analysis, tumors
originating from patients 55 years of age and older were
more likely to have a higher median score for claudin 1
(H-score =55) than tumors derived from younger pa-
tients (p=0.06, Table 1). Overall, the highest level of
claudin 1 protein expression was observed in the tumors
from patients with BLBC who were older than 55 years
of age (median H-score=90, p=0.004, Table 1). While a
significant association between patient age and claudin 1
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Table 1 Expression of claudin 1 and 4 in the combined basal-like and non-basal human invasive breast cancer cohort

Claudin 1 Claudin 4
n Mean Median p value' n Mean Median p value'
Age <55 yr 64 486 20 0.063 59 412 20 0.70
> 55yr 80 81.1 55 76 515 35
Basal no 65 548 20 0.017* 62 418 17.5 0.18
yes 79 764 40 73 514 40
Group a) non-basal <55 yr 22 445 15 0.0036** 19 279 10 0.46
b) non-basal > 55 yr 43 60.1 20 43 480 20
) Basal <55 yr 42 50.7 25 40 475 35
d) Basal >55 yr 37 1055 90 33 56.1 40

'Statistical test Wilcoxon or Kruskal-Wallis for groups. * Statistically significant, p<0.05; ** p<0.01.

expression was observed in the BLBC group, no such as-
sociation was observed with any other clinical param-
eter. Claudin 1 levels did not correlate with nodal status
(p=0.21), tumor grade (p=0.92), nor tumor size (p=1.0,
Table 2). Similarly, no significant association was
found between claudin 1 expression and patient sur-
vival (p=0.93), nor recurrence of the disease (p=0.29); al-
though a trend appeared towards significance for disease
recurrence (Figure 1). EGFR and CK5/6, both markers for
the BLBC phenotype, were found to be predictive for
claudin 1 expression in the non-basal tumors (Table 3,
p<0.0001, p=0.0007 respectively) but not in the basal-like
tumors (p=0.12, p=0.20 respectively).

There was a significant association between claudin
1 and claudin 4 protein expression in both the basal-like
(p=0.032) and non-basal (p=0.017) tumors (Table 3).
However, claudin 4 protein level was not significantly as-
sociated with patient age (Table 1). Moreover, as with
claudin 1, the protein expression of claudin 4 was also

found not to be related to nodal status, size of the tu-
mors nor tumor grade (Tables 1 and 2). However, there
was a trend towards higher expression of claudin 4 in
the BLBC, although not statistically significant (p=0.18,
Table 1).

Loss of membrane-associated claudin 1 protein in the
BLBC

Our results also showed membranous staining as well as
cytoplasmic staining for claudin 1 in the breast tumors
analyzed in the TMA (Figure 2). Some tumors cells
exhibited membrane staining alone, cytoplasmic staining
alone, or both cytoplasmic and membranous staining. Of
the 79 basal-like tumors, 1 tumor was negative for both
membranous and cytoplasmic staining, 11 tumors
exhibited no membrane staining in any cells, while 67
tumors showed partial membrane staining, 51 of these
in 10% or more tumor cells. The median percentage of
tumor cells with membrane stain was 10%, whereas the

Table 2 Claudin 1 but not claudin 4 expression in basal-like breast tumors was significantly associated with patient

age
Claudin 1 Claudin 4

Clinical Subgroup High Low n p value' High Low n p value'

parameters cutoffs H-score >40 H-score <40 H-score >25 H-score <25

Node +ve 18 13 31 0.21 15 14 29 0.64
-ve 17 25 42 23 15 38

Age >55 23 14 37 0.034 * 20 13 33 0.81
<55 15 27 42 22 18 40

Grade low (3-5) 3 0 3 092 3 0 3 045
moderate (6-7) 25 33 58 27 27 54
high (8-9) 10 8 18 12 4 16

Size >2cm 27 31 58 1 32 23 55 1
<2cm 8 10 18 9 7 16

Breast tumors derived from women >55 years of age, had the highest claudin 1 levels. Expression was not significantly associated with other

parameters examined.

!Continuity adjusted Chi-Square was used for node, age and size data, Exact Linear Association was used for grade. * Statistically significant, p<0.05.
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A
1.00
(@) 0.75
L
= T e eas ~
c
S
0 0.50 -
c
i)
S
Q
)
A 0.25 .
o —o—High Cldn 1
p=0.93 —©—Low Cldn 1
0.00 -
(; 5I0 1C;0 15;0 2(;0 25IO
Survival time (months)
B
1.00
(o)
o
= 0751
(o)
0
c
o
8 0.50
o
c
ke
g 0.25 4
o —o—High Cldn 1
o p=0.29 —©—Low Cldn 1
0.00 A i i . . . .
0 50 100 150 200 250

Time to recurrence (months)

Figure 1 Kaplan-Meier graphs for survival and recurrence in basal-like tumors. Univariate survival analyses were performed using Cox
regression. Symbols on the graph lines represent censored data. No significant association was found between claudin 1 expression and patient
survival (p=0.93), nor recurrence of the disease (p=0.29); although a trend appeared towards significance for disease recurrence. A. Survival

n =79, low claudin 1 (H<40) events = 13, high claudin 1(H>40) events = 12; B. Recurrence n = 79; low claudin 1 (H<40) events = 16, high

median percentage of combined membrane and cytoplas-
mic staining was 30%, suggesting that a decrease in mem-
brane staining resulted in an increase in cells in which
claudin 1 was evident only in the cytoplasm. Patients
whose tumors retained membrane claudin 1 expression in
more than 10% of the tumor cells showed a trend towards
increased survival (Kaplan-Meier analysis, p=0.25). As

observed with claudin 1, claudin 4 was also more preva-
lent in the cytoplasm of the tumor cells (Figure 2).

Claudin 1 is expressed in the membrane of BT-20 HBC
cells

BT-20 is a BLBC cell line [25] which exhibits high en-
dogenous levels of claudin 1. Subcellular fractionation
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Table 3 Linear regression analysis with claudin 1 protein levels as dependent

Basal-like tumors Non-basal tumors
Independent single predictor Slope n p value Slope n p value
EGFR 0.503 79 0.12 1.040 60 <0001
CK5/6 0499 79 0.20 1.288 63 0.0007
Age 1.249 79 0.028 —0.520 65 040
Claudin 4 0341 73 0.032 0426 59 0017
e N

Figure 2 Localization of claudin 1 and claudin 4 proteins in human invasive breast cancers. A,B: Tumors showing both membrane and
cytoplasmic staining with the claudin 1 antibody. C,D: Tumors showing cytoplasmic staining alone with the claudin 1 antibody E: Tumor showing
both membrane and cytoplasmic staining with the claudin 4 antibody. F: Tumor showing cytoplasmic staining alone with the claudin 4 antibody
(black arrows, membrane staining; red arrows, cytoplasmic staining). Scale bars represent 50pm.
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studies were carried out to establish the localization of
claudin 1 in these cells. Claudin 1 was primarily local-
ized in the cell membrane component (Figure 3). Longer
exposure revealed the presence of lower levels of claudin
1 in the cytoskeletal fraction and less so in the nuclear
fraction (Figure 3A, B). This localization to the cell
membrane was confirmed by IHC (Figure 3C).

Identification and characterization of BT-20 claudin 1
knockdown clones

To delineate the loss of claudin 1 function in the BT-20
HBC cells, cells were stably transfected with claudin 1
shRNA constructs as described in the “Methods” section.
Several clones exhibiting various levels of claudin 1 knock-
down were characterized by Western blotting (Figure 4).
Two clones, clones 3 and clone 4, transfected with two
different claudin 1 targeting sequences, were selected for
further studies. Clone 3 exhibited approximately 90% de-
crease in claudin 1 expression and about 70% knockdown
was achieved for clone 4 compared to controls. Immuno-
fluorescence (IF) analysis of the clonal lines show reduced
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level of claudin 1 in the cell membrane (Figure 3C) follo-
wing claudin 1 knockdown.

Knocking-down claudin 1 expression decreases cell
migration

To ascertain whether claudin 1 had a direct effect on cell
migration and motility, claudin 1 knockdown cells were
assayed using a monolayer wound-healing assay. In the
knockdown clones, inhibition of claudin 1 resulted in a
significant decrease (p<0.01, p<0.05, clone 3 and clone 4
respectively) in migration rate compared to controls
(Figure 5). We observed that the clonal line 3, which
exhibited a higher level (90%) of claudin 1 knockdown
than clonal line 4 (70%) migrated at a slower rate than
clone 4.

Knocking-down claudin 1 expression alters the expression
of genes associated with epithelial-mesenchymal
transition.

PCR array analysis of BT-20 knockdown cells (Table 4)
was performed to identify genes whose expressions were

@)

control

Cldn1KD

and reduced fluorescence in the claudin 1 knockdown clone (clone 3).

Figure 3 Subcellular localization of claudin 1 protein in BT-20 cells. Subcellular fractions of control BT-20 cells were analyzed by Western
blot using the claudin 1 antibody. A. Short exposure shows claudin 1 in the membrane fraction only, B. longer exposure reveals some protein in
the cytoskeletal and to a lesser extent, the nuclear fraction. The arrow indicates the 21kD claudin 1 protein. C. Immunofluorescent staining with
the claudin 1 antibody (left panels) shows positive fluorescence for claudin 1 in the cell membrane and the cytoplasm of a control clonal cell line
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Figure 4 Knockdown of claudin 1 protein in stably transfected
BT-20 HBC cells. Cells were transfected with a control sequence
(C1, C2) and two different shRNA constructs targeting claudin 1 (3,4).
The shRNA sequence 4 shows partial knockdown whereas sequence
3 shows >90% knockdown of the claudin 1 protein. (3-actin loading
control; Western blot analysis; Cldn1 = claudin 1).

altered as a direct consequence of claudin 1 inhibition.
Pooled RNA from clone 3 and 4 were used for these
analyses. RNA was analyzed in triplicate (three reverse
transcription experiments and three qPCR arrays). The
results (Table 4) show that the expressions of several
genes involved in EMT were significantly altered. Gene
expression of SERPINE 1 and SSP1 (osteopontin), two
important markers for inhibition of cell migration were
significantly up regulated (>20 fold and >9 fold res-
pectively). As well, a significant increase (>20 fold) was
observed for BMP7 gene expression, a gene usually asso-
ciated with cancer progression [30,31]. At the same time,
a number of EMT genes; TCF4, SNAIL2 (slug), CALD1
generally associated with maintenance of EMT, were sig-
nificantly down regulated (Table 4, Figure 6).

Discussion

Based on the observation that claudin 1 is down regu-
lated or absent in invasive HBC [19-22], and that an ab-
sence of claudin 1 was shown to correlate with poor
prognosis and shorter patient survival time [23], it has
been speculated that claudin 1 could be a putative tumor
suppressor in breast cancer. However, these studies, in-
cluding those from our laboratory, were carried out on
breast tumors of mixed pathological lesions. Moreover,
when the breast cancers were grouped according to ER
status, we observed that not only was the frequency of
claudin 1 expression significantly higher in the ER-ve
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cancers but that a higher level of the protein was also as-
sociated with the BLBC subtype; the latter has recently
been confirmed by a report by Lu et al.,, [32] as well as
our present study. Additionally, in The Cancer Genome
Atlas (TCGA) breast carcinoma provisional dataset,
RNAseq analysis has shown claudin 1 to be up regulated
in 17/81 (21%) of basal-like tumors compared with 2/
324 (<1%) of luminal A/B cases [33]. Since BLBCs are
usually mesenchymal in phenotype and high claudin 1 is
generally associated with epithelial phenotype, this result
was unexpected. However high endogenous claudin 1
levels have also been observed in HBC cell lines as in
the case of the BT-20 cell line and several other basal-
like cell lines such as HCC1143, and HCC1937 [34]. It is
possible that in these breast cancer cells, claudin 1 has a
different function.

An important finding of the present study was the sig-
nificant association between claudin 1 and patient age.
BLBC derived from women over 55 years of age were
more likely to exhibit high claudin 1 expression. The sig-
nificance of this observation is not known, but it is
plausible that increased claudin 1 levels in these women
may be related to decreased hormonal levels generally
associated with the post-menopausal stage in a woman's
life. As we have previously shown, there is a positive as-
sociation between claudin 1 expression and ER-ve breast
cancers [19]. Thus, the relationship between estrogen
and claudin 1 warrants further examination.

The present study also reveals a significant positive re-
lationship between claudin 1 and claudin 4. However,
interestingly, no significant association between claudin
4 and patient age was established suggesting that claudin
1 may have a unique role independent of claudin 4.

We also observed that mislocalization of claudin 1 to
the cytoplasm was a frequent occurrence in BLBC. Such
mislocalization of claudin 1 in the cytoplasm is not
unique to breast cancer, as indeed there have been sev-
eral recent reports of claudin 1 mislocalization in the
cytoplasm, and in some cases, the nucleus, in a number
of other cancers including melanomas, colon, and oral
squamous and colon cancer [11,16-18,35]. In these can-
cers, claudin 1 mislocalization was shown to increase
the invasiveness of the cancer cells [11,16-18,35]. This
observation leads us to speculate that it is possible that
cytoplasmic claudin 1 may have a different function
from membranous claudin 1, as mislocalization of a
number of membrane and subcellular proteins to the
cytoplasm in some studies has been shown to impart
tumorigenicity [36-40].

We showed that stable shRNA knockdown of claudin
1 in BT-20 HBC cells resulted in a subsequent decrease
in cell migration and motility. Claudin 1 knockdown also
resulted in a significant up regulation of the expression
of EMT related genes, SERPINE 1 (plasminogen
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Figure 5 Claudin 1 knockdown results in a decrease in cell migration rate in the BT-20 HBC cell line. Representative light microscopic
images of wound healing assays for claudin 1 knocked-down and control BT-20 cells used in evaluating migration rate into a cell free area are
shown. Cells were grown to confluency and a scratch made through the cell monolayer. Measurements of the wound areas at time 0 (left panels)
and 18h (right panels) were compared using the Image-J program which measured the surface area covered by migrating cells. A. BT-20 cells stably
transfected with the control sh-RNA sequence; B. BT-20 cells stably transfected with the sh-RNA-claudin 1 vector. C. BT-20 cells stably transfected
with a control shRNA sequence (control 1, n=12) migrated faster than the claudin 1 knockdown clones (clone 3, n=8; clone 4, n=12; mean + SE;
ANOVA p=0.0054).* p<0.05, **p,0.01 Bonferroni's Multiple Comparison Test.

activator inhibitor type 1, PAI1) and secreted phospho-
protein 1 (SSP1; also known as osteopontin) that have
been shown to suppress cancer cell migration. In previ-
ous reports, SERPINE 1 was shown to inhibit cell migra-
tion during wound healing by blocking integrin from
binding to vitronectin [41]. Vitronectin enhances the

migration of cells and is required for cell motility [41].
Conversely, SERPINE 1 is also thought to have a role
other than a protease inhibitor as it has been shown to
decrease the adhesive strength of cells to their substra-
tum. SERPINE 1 is also regulated by a variety of hor-
mones and cytokines [42]. This would be important if in
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Table 4 Knockdown of claudin 1 protein in human breast
cancer cells resulted in differential expression of EMT
related genes

Symbol Description Fold
regulation
Up regulated genes
BMP7 Bone morphogenetic protein 7 21.23
SERPINET Serpin peptidase inhibitor, clade E, member 1 20.75
SPP1 Secreted phosphoprotein 1 9.68
Down regulated genes
TCF4 Transcription factor 4 —-4.17
SNAI2 Snail homolog 2 (Drosophila) —3.31
CALD1 Caldesmon 1 -2.51
FOXC2 Forkhead box C2 —223

RNA from 2 control clones were pooled and compared in triplicate with RNA
from 2 claudin 1 knockdown clones. Template cDNA samples (25ng) were
applied to each real-time PCR reaction on the human epithelial to mesenchymal
transition (EMT) PCR array (SA Biosciences). Only those genes whose expression
was significantly (p<0.02) differentially expressed (>2 fold) are listed.

older women, the up regulation of claudin 1 is related to
their hormonal status, in particular, the lower estrogen
level that is associated with the post-menopausal state.
Another gene that was highly up regulated when claudin
1 was suppressed was SSP1. SSP1 is a phosphorylated
glycoprotein secreted by several cell types, including
those involved in bone turnover and is associated with
bone metastasis in cancer [43-45]. It is also secreted by
cells of the immune system and is believed to be an early
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Figure 6 Silencing of claudin 1 in HBC cells altered expression
of genes involved in EMT. Expression of genes historically linked
to EMT was assessed in BT-20 HBC cells in which claudin 1 was
knocked down using real-time PCR arrays. Five housekeeping genes
were used as controls for each gene expression calculation. Only
genes significantly (p<0.02) differentially expressed >2 fold
are shown.
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marker for breast cancer [46]. The significant up regula-
tion of these molecules in response to claudin 1 knock-
down suggests that claudin 1 may be a regulator of
genes associated with cancer progression and metastasis.

At the same time, we observed the down regulation of
expression in another group of genes thought to be im-
portant for maintaining the EMT phenotype; TCF4,
SNAIL2, FOXC2 and CALD1. SNAIL 2, a transcription
factor and an important marker of EMT, has been
shown to repress both E-cadherin, a master programmer
of EMT [47], and claudin 1 [48-52]. TCF4, which be-
longs to the B-catenin pathway, is a member of the Zeb
family of transcription factors. It has been suggested that
claudin 1 is a targeted gene of [(-catenin. Miwa et al.
[53] reported that in squamous cell carcinoma, TCF4
and B-catenin complexes bound TCF4 binding elements
at two sites in the 5 flanking region of the claudin 1
gene and that the binding promoted transcription of
claudin 1. As well, SSP1, whose expression is signifi-
cantly up regulated when claudin 1 is inhibited in this
cell line, is a downstream target for TCF4 [54]. TCF4
can act as a promoter or repressor of HBC progression
by regulating SSP1 [44,54]. FOXC2 (forkhead box C2),
another gene whose expression is significantly down reg-
ulated, is a sonic hedgehog (SHH) signaling molecule
[55]. Elevated levels of FOXC2 protein have recently
been shown to be significantly associated with the BLBC
phenotype and with poor disease free survival [55].
Interestingly, SNAIL2, TCF4 and FOXC2 have been
identified as part of the E-cadherin repressor
interactome in EMT [56] and are involved in many rela-
tionships regulating each other in a hierarchical pattern.
In this general pathway, it is believed that SNAIL 2 is
initially induced, leading to the activation of TCF4 and
FOXC2. Also, knocking-down claudin 1 strongly in-
creased the expression of the BMP7 gene, which belongs
to one of the largest sub-families of transforming growth
factor beta (TGFp) [57]. TGEP, itself another important
EMT molecule, has a dual role during tumor progres-
sion; initially as a suppressor, and then as a promoter.
BMP7 is also known to display a number of diverse be-
haviors with regards to cell proliferation, cell migration,
invasion and apoptosis in breast cancer cell lines, pri-
mary tumors as well as xenografts [30,31,58-60]. Thus,
the influence of claudin 1 on these signaling pathways
in the BT-20 HBC cells hints at the complexity of its
involvement in cellular processes and tumorigenesis
[13,14].

The effect of claudin 1 on cell migration was dose
dependent (although not statistically significant). We ob-
served that the rate of migration of clone 3, a clone in
which claudin 1 was almost completely knocked down,
was slower (p<0.01 when compared with control cells)
compared to the other clonal line, clone 4 (p<0.05).
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Our earlier studies indicated that tumors which dis-
played the basal-like phenotype more frequently expressed
claudin 1, and were also more likely to express higher
levels of claudin 1. Many of these tumors also displayed
mislocalization of claudin 1 to the cytoplasm, suggesting
that the role of claudin 1 in the breast cancer cell is in-
fluenced not only by its level but by its location as well.

Altogether, our studies show that high claudin 1 pro-
tein levels are significantly associated with a particular
group of older BLBC patients. In this regard, claudin 1
has the potential to serve as a marker for a subset of pa-
tients within the BLBC phenotype and in so doing may
facilitate more personalized management of this disease.
We also show in vitro that in basal-like HBC cells,
claudin 1 inhibition results in decreased cell migration.
Therefore, the expression of high claudin 1 levels in the
BLBC subtype, particularly in women over 55 years of
age suggests that these patients may warrant more ag-
gressive treatment as their breast cancer may be more
migratory resulting in a tendency to move away from
the primary location.

Conclusion

Although there is a growing appreciation for the hetero-
geneous nature of breast cancer [1], currently, many of
the breast cancer subtypes identified remain poorly cha-
racterized. A consequence of this lack of biological in-
sight is that the more aggressive subtypes such as the
BLBC lead to poorer prognosis, as current therapeutic
strategies are mostly ineffective. It is therefore critical to
fully delineate the role of structural proteins such as
claudin 1 in breast cancer as such knowledge could facili-
tate more effective patient management. These observa-
tions will contribute further to the characterization of this
poorly characterized breast cancer subtype, and will en-
hance our understanding of the paradoxical disease out-
come which is often associated with patients with BLBC.
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