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Abstract

Background: The interplay between genetic susceptibility and carcinogenic exposure is important in the
development of haematopoietic malignancies. EPHX1, NQO1 and PON1 are three genes encoding proteins directly
involved in the detoxification of potential carcinogens.

Methods: We have studied the prevalence of three functional polymorphisms affecting these genes rs1051740
EPHX1, rs1800566 NQO1 and rs662 PON1 in 215 patients with lymphoma and 214 healthy controls.

Results: Genotype frequencies for EPHX and NQO1 polymorphisms did not show any correlation with disease. In
contrast, the GG genotype in the PON1 polymorphism was found to be strongly associated with the disease (15.3%
vs. 4.7%; OR = 3.7 CI (95%): 1.8-7.7; p < 0.001). According to the pathological diagnosis this association was related to
follicular (p = 0.004) and diffuse large B-cell (p = 0.016) lymphomas.

Conclusions: Despite the fact that further confirmation is needed, this study shows that the PON1 GG genotype in
rs662 polymorphism could be a risk factor for B-cell lymphomas.
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Background
The development of lymphomas including Hodgkin’s
(HL) and non-Hodgkin’s lymphoma (NHL) is, to a great
extent, the result of a combined effect of genetic suscep-
tibility and environmental factors. Xenobiotic metaboliz-
ing enzymes, such as EPHX1, NQO1 and PON1, play a
role in the detoxification of potential carcinogens from
chemical industries as well as endogenous compounds
[1,2]. Although a considerable body of evidence has
demonstrated that pesticide exposure may increase the
risk of NHL [3,4], the association for chemical industry
compounds as a risk factor for B-cell lymphoma remains
controversial [5-7]. Polymorphisms in the genes coding
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these enzymes can be responsible for different suscepti-
bilities to lymphoma development [8-10].
To our knowledge, few studies have analysed polymor-

phisms in genes coding for xenobiotic metabolism en-
zymes (such as EPHX1, NQO1 and PON1) in lymphoma
[11] or leukemia [12,13]. The aim of our work was to
study the genotype distribution of three missense single
nucleotide polymorphisms (SNPs) (rs1051740, rs1800566
and rs662, respectively) in these genes in lymphoma pa-
tients and in healthy controls.
Methods
Study subjects
Blood samples were obtained from 215 lymphoma
Caucasian patients −194 NHL and 21 HL residents
of either Murcia or Cartagena, in the Southeast of Spain.
Lymphoma classification and diagnose was based in the
2008 World Health Organization classification of lymph-
oma [14]. Our study subjects come largely from a previous
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Table 1 Demographic features of cases and controls

n Age (SD) Female
n (%)

Cases 215 53.8 (15.2) 102 (47.4)

Controls 214 53.9 (8.4) 114 (53.3)

p 0.933 0.227

total 429 53.8 (12.8) 216 (50.3)
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described series of patients diagnosed between 2004 and
2010 at the HUSMR in Cartagena (n = 116) and Morales
Meseguer University Hospital (HUMM) (n = 42) in
Murcia [15]. The rest of participants included in the study
cases (n = 57) were those diagnosed during 2011 who ac-
cepted participation in the study. All patients from the
HUMM institution were follicular lymphoma (FL) and, for
this reason, most of the patients included in this study
(135/215) belonged to this type of lymphoma on the basis
of the availability of DNA specimens from a previous
study. Data on gender, age and place of residence were
obtained from medical records. The control group com-
prised 214 unrelated Caucasian healthy blood donors
matched for age, gender and geographical location without
a previous history of malignancy, as previously described
[15]. Informed consent was obtained from all subjects.
The research was carried out in compliance with the
Helsinki Declaration and the study was approved by the
local Ethics Committee of both HUSMR and HUMM par-
ticipating hospitals.

Geographical study area
The geographical area under study included a specific
zone (Escombreras’ Valley) with many chemical plants
comprising one of the highest densities of heavy chem-
ical industries in Spain [16-18] including an oil refinery,
an electricity generating station using oil combustion, a
combined cycle gas turbine, and a manufacturing plant
for production of nitrogen and phosphoric fertilizers, as
well as a biodiesel factory and a zinc and sulphuric acid
extraction plant. The valley and its surrounding areas
were therefore declared a “polluted atmospheric zone”
by the Spanish government in 1979 and are therefore
subjected to rigorous control and monitoring of atmos-
pheric contaminants [18]. In fact, nitrogen oxides (NOx)
as NO2, sulfurdioxide (SO2), chlorine (ClH) volatile or-
ganic compounds (VOCs) as benzene and mercaptans
and particulate matter smaller than 10 microns (PM10)
were amongst the most common pollutants in that area.
Previous studies have confirmed a higher cancer inci-
dence in this area compared with both the national aver-
age and the neighbouring municipalities [19,20].

DNA extraction and genotyping
Total genomic DNA was obtained from blood samples
using the automatic DNA extraction system Maxwell 16
and DNA extraction kit for blood samples (cat: AS1010)
(Promega, Madison, USA) according to the manufac-
turer’s instructions. DNA was quantified by UV absorb-
ance using the Biophotometer by Eppendorf (Hilden,
Germany).
NQO1 and PON1 polymorphisms were determined by

allelic discrimination using TaqMan probes and a 7500 F
real-time PCR thermocycler both provided by Applied
Biosystems (Foster City, CA). For the EPHX polymorph-
ism we used the amplifluor SNPs genotyping system
(Millipore, Darmstadt, Germany).

Statistical analysis
Sample size reached in our series was optimum according
to the sample size estimation for a gene-only study ob-
tained with Quanto v.1.2 program (University of Southern
California) [21]. Statistical analysis was performed using
the SPSS computer program Version 15.0 (Chicago,
Illinois, USA). Student’s t-test was used to compare mean
age of cases and controls and Yeats-corrected Pearson χ2

test was used to evaluate statistical significance of geno-
type distribution in cases and controls. Given that xeno-
biotic metabolizing enzymes would behave as possible
tumor suppressor by eliminating potential carcinogens, a
recessive model for the p-value calculation was preferred,
however the main results were also studied following dom-
inant and co-dominant models. Hardy-Weinberg, linkage
disequilibrium (LD) and joint effect analyses of the studied
polymorphisms were performed using the online program
Shesis Page (http://analysis2.bio-x.cn/myAnalysis.php) [22].

Results
The main demographical features of patients and con-
trols are shown in Table 1. No significant differences
were observed between patients and controls in terms of
age and gender.
Genotyping was successfully performed on all study sub-

jects except for nine cases which could not be genotyped
for EPHX and two for NQO1. The genotype frequencies in
the study population were EPHX1: TT 54.8%, TC 36.7%,
CC 8.5%; NQO1: CC 59.5%, CT 35.0%, TT 5.4% and
PON1: AA 42.7%, AG 47.3%, GG 10.0%, consistent with
the Hardy-Weinberg equilibrium (p = 0.187, 0.892 and
0.228, respectively) and similar to the HapMap-CEU
(European) frequencies (EPHX1: TT 46.4%, TC 41.1%, CC
12.5%; NQO1: CC 60.0%, CT 36.7%, TT 5.8% and PON1:
AA 43.4%, AG 46.9%, GG 9.7%; [http://hapmap.ncbi.nlm.
nih.gov].
No significant differences were observed for the

rs1800566 and rs1051740 polymorphisms in the NQO1
and EPHX, respectively. In contrast, the GG genotype in
the rs662 PON1 polymorphism was associated with
lymphoma development (15.3% vs. 4.7%; OR = 3.7 CI
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(95%): 1.8-7.7; p < 0.001) (Table 2). The differences be-
tween cases and controls were also significant when
considering allelic distributions (G: 165 (38.4%) vs. 124
(29.0%), respectively).
The association of rs662 with lymphoma was also

obtained when applying the co-dominant model in the
whole study population (p = 0.0009). When restricting
for males and females p values were 0.016 and 0.054, re-
spectively. However, no significant differences were
obtained when the dominant model was used for any of
the polymorphisms (data not shown).
As shown in Table 3, FL and diffuse large B-cell

(DLBCL) lymphoma cases were more frequently GG
carriers than controls. In contrast, HL cases did not
show this association.
In order to ascertain the possible combined effect of the

genotypes a joint effect analysis was performed and
showed that the only significant combination was T-C-G
for EPHX1, NQO1 and PON1 polymorphism, respectively
rendering an OR of 1.73 (95% CI: 1.22-2.45; p = 0.002)
(Table 4). As expected, D’ (<0.21) and r2 (<0.008) demon-
strated that the polymorphisms studied were not in link-
age disequilibrium.

Discussion
Xenobiotic metabolising enzymes, such as EPHX1, NQO1
and PON1 play important roles in the detoxification of
potential carcinogenic compounds. In fact, a plethora of
studies have reported associations between polymor-
phisms in genes coding these enzymes and the risk of can-
cer development [8-10].
Epoxide hydrolase 1, encoded byEPHX1 a gene located

in 1q42.1, plays an important role in both the activation
and detoxification of exogenous chemicals such as poly-
cyclic aromatic hydrocarbons. Using in vitro expression
studies Hassett et al. described that the substitution of
His113 for the more commonly occurring Tyr113 resi-
due in exon 3 decreased EPHX activity approximately
Table 2 EPHX1 (rs1051740), NQO1 (rs1800566) and PON1 (rs6

EPHX1 (rs1051740)

TT CT CC

Total Cases 118 (57.3) 71 (34.5) 17 (8.2) 131

Controls 113 (52.8) 83 (38.8) 18 (8.4) 123

p (OR; 95% CI) 0.953 (1.0;0.5-2.0)

Female Cases 57 (58.2) 36 (36.7) 5 (5.1) 63

Controls 61 (53.5) 44 (38.6) 9 (7.9) 64

p (OR; 95% CI) 0.590 (0.6;0.2-1.9)

Male Cases 61 (56.5) 34 (31.5) 13 (12.0) 68

Controls 52 (52.0) 39 (39.0) 9 (9.0) 59

p (OR; 95% CI) 0.627 (1.4;0.6-3.4)

NA: not applicable.
The p-value calculated using the recessive model.
40% [23]. This single nucleotide polymorphism (SNP)
(rs1051740) may play a role for genetic susceptibility to to
childhood leukemia [24,25] and to lymphoma in males
[10] whilst other studies have not found an association
with susceptibility [26] and outcome [27] in leukemia. A
recent study carried out the genotyping of 1,115 women
(518 NHL and 597 controls) for six polymorphisms in
genes involved in solvent metabolism (including EPHX1
rs1051740 and NQO1 rs1800566, but not PON1 rs662).
In those women, different solvent exposures were mea-
sured, and some association was found between EPHX1
rs2234922 and DLBCL with a pattern of interaction with
benzene exposure [11].
NAD(P)H dehydrogenase, quinone 1, a 2-electron re-

ductase encoded by NQO1 located in 16q22.1, detoxifies
quinones derived from the oxidation of phenolic metabo-
lites of benzene. The rs1800566 polymorphism consists of
a C-to-T substitution at position 609, which codes for a
Pro-to-Ser change at residue 187 (P187S). Exposition of
wild type human bone marrow cells to hydroquinone
(HQ) trigger an increase of NQO1 protein and activity,
not induced in TT carriers [28]. Moreover, individuals
homozygous for the TT genotype have an increased risk of
benzene hematotoxicity and secondary cancers including
leukaemia [29]. Some authors did find an association be-
tween this polymorphism and leukemia susceptibility
[25,30,31] and outcome [27,32] whereas other studies, that
included a meta-analysis, did not observed such an associ-
ation [33-35].
Paraoxonase 1, encoded by PON1 a gene located in

7q21.3, hydrolyzes the toxic oxon metabolites of several
organophosphorous insecticides, as well as nerve agents,
aromatic esters and a variety of aromatic and aliphatic lac-
tones [36]. The PON1 rs662 polymorphism consists of an
A-to-G substitution that causes a Gln-to-Arg change at
residue 192 (Q192R). Humbert et al. found that the allele
encoding arginine has high-activity plasma paraoxonase,
whereas glutamine at this position specifies a low-activity
62) genotype distributions according to gender

NQO1 (rs1800566) PON1 (rs662)

CC CT TT AA AG GG

(61.5) 72 (33.8) 10 (4.7) 83 (38.6) 99 (46.0) 33 (15.3)

(57.5) 78 (36.4) 13 (6.0) 100 (46.7) 104 (48.6) 10 (4.7)

0.677 (0.8;0.3-1.8) 0.0004 (3.7;1.8-7.7)

(61.2) 34 (33.0) 6 (5.8) 42 (41.2) 47 (46.1) 13 (12.7)

(56.1) 42 (36.8) 8 (7.0) 59 (51.8) 50 (43.9) 5 (4.4)

0.936 (0.8;0.3-2.4) 0.05 (3.2;1.1-9.3)

(61.8) 38 (35.4) 4 (3.6) 41 (36.6) 52 (46.0) 20 (17.7)

(59.0) 36 (36.0) 5 (5.0) 41 (41.0) 54 (54.0) 5 (5.0)

0.884 (0.7;0.2-2.7) 0.008 (4.1;1.5-11.3)



Table 3 EPHX1 (rs1051740), NQO1 (rs1800566) and PON1 (rs662) genotype distributions according to the lymphoma
diagnose

EPHX1 (rs1051740) NQO1 (rs1800566) PON1 (rs662)

CC CT TT CC CT TT AA AG GG

Controls 113 (52.8) 83 (38.8) 18 (8.4) 123 (57.5) 78 (36.4) 13 (6.0) 100 (46.7) 104 (48.6) 10 (4.7)

NHL 109 (58.6) 65 (34.9) 12 (6.5) 122 (63.2) 63 (32.6) 8 (4.1) 76 (39.2) 88 (45.4) 30 (15.5)

p (OR; 95% CI) 0.458 (0.8;0.4-1.6) 0.513 (0.7;0.3-1.6) 0.0005 (3.7;1.8-7.9)

FL 78 (59.5) 46 (35.1) 7 (5.3) 85 (63.0) 45 (33.3) 5 (3.7) 55 (40.7) 61 (45.2) 19 (14.1)

p (OR; 95% CI) 0.394 (0.6;0.2-1.5) 0.467 (0.6;0.2-1.7) 0.004 (3.3;1.5-7.4)

DLBCL 21 (61.8) 10 (29.4) 3 (8.8) 19 (55.9) 12 (35.3) 3 (8.8) 11 (31.4) 18 (51.4) 6 (17.1)

p (OR; 95% CI) 0.8 (1.1;0.3-3.8) 0.818 (1.5;0.4-5.6) 0.016 (4.2;1.4-12.5)

HL 9 (45.0) 9 (45.0) 2 (10.0) 9 (45.0) 9 (45.0) 2 (10.0) 7 (33.3) 11 (52.4) 3 (14.3)

p (OR; 95% CI) 0.861 (1.2;0.3-5.6) 0.835 (1.7;0.4-8.2) 0.181 (3.4; 0.9-13.5)

NHL: Non-Hodgkin’s lymphoma. HL: Hodgkin’s lymphoma. FL: Follicular lymphoma. DLBCL: Diffuse large B-cell lymphoma. The p-value was calculated using the
recessive model.
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variant [37]. The role of this SNP in haematological ma-
lignancies has only been studied in two independent
studies which found an association of rs662 with
lymphohaematopoietic cancers [38] and lymphoma [9].
In our work, we studied the functional germline poly-

morphisms rs1051740, rs1800566 and rs662 in lymph-
oma patients and controls. Although the study subjects
come from the same geographical area, important as-
pects concerning the source of cases and controls have
to be taken into account. First, the controls do not rep-
resent exactly the general population since they are
blood donors and second there is a degree of heterogen-
eity in the cases since they comprise several types of
lymphoma that may be caused by different etiological
factors. We found that rs1051740 or rs1800566 in
EPHX1 and NQO1 were not related with lymphoma
susceptibility as previously reported by others [8]. In
contrast, we observed that rs662 in PON1 was associated
with lymphoma risk, being the GG genotype related with
increased susceptibility to lymphoma in general, and to
FL and DLBCL in particular. This finding is concordant
with that reported by Kerridge et al. analysing DNA
extracted from archival tumour specimens from a popu-
lation of 169 NHL cases and 205 controls [9]. The
Table 4 Joint effect analysis of polymorphic loci for EPHX1 (rs
respectively

Joint alleles Case (freq) Control (freq)

C C A 63.1 (0.16) 70.3 (0.16)

C C G 22.3 (0.06) 21.8 (0.05)

C T A 11.1 (0.03) 16.4 (0.04)

T C A 136.2 (0.34) 166.3 (0.39)

T C G 98.0 (0.24) 65.6 (0.15)

T T A 43.2 (0.11) 51.0 (0.12)

T T G 27.6 (0.07) 26.1 (0.06)

All those frequency < 0.03 will be ignored in analysis.
rationale for performing the joint effect analysis of the
studied SNPs is that, under a mixture of different pollut-
ants, the contribution of polymorphisms in different me-
tabolizing enzymes could exert an additive effect in
disease susceptibility than can only be identified consid-
ering the SNPs as in combination. This analysis revealed
that the combination of the PON1, EPHX1 and NQO1
polymorphisms did not increase the lymphoma risk as-
sociated with the PON1 polymorphism alone (OR = 1.7
vs. 1.5). The elegant study carried out by De Roos et al.
in 1,172 cases and 982 controls found that another
PON1 SNP (rs854560), but not rs662, was associated
with a slightly increase of NHL [8]. Possible reason for
this difference could be that the geographical character-
istics pertaining to proximity to chemical industries were
not the same or not considered. Taken together, our re-
sults could serve as a starting point for future studies in
which both pollutant activity and the genotype influence
could be studied. The identification of the type of com-
pound or industry possibly implicated in this effect
could be very interesting, but it is beyond the scope of
this study. Recent genome-wide association studies
(GWAS) have identified polymorphisms associated with
lymphoma risk such as rs10484561 [39], rs2647012 [40]
1051740), NQO1 (rs1800566) and PON1 (rs662),

Fisher’s p Pearson’s p OR; 95% CI

0.689 0.689 0.9; 0.6-1.3

0.836 0.836 0.9; 0.6-2.0

0.352 0.352 0.7; 0.3-1.5

0.078 0.078 0.8; 0.6-1.0

0.002 0.002 1.7; 1.2-2.5

0.511 0.511 0.9; 0.6-1.3

0.722 0.722 1.1; 0.6-1.9
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and rs6457327 [41] in the human leukocyte antigen
(HLA) region on 6p21.32 and 6p21.33. Very recently, a
novel region on 11q12.1 showed also association with
lymphoma susceptibility [42]. Interestingly, none of these
polymorphisms seems to lie on xenobiotic metabolizing
genes. At this point, it is important to take into account
that lymphomagenesis is a multifactorial process, and
genetic-determined suboptimal xenobiotic metabolizing
machinery could partly explain not all lymphoma cases
but some of them, which have developed under certain ex-
posure conditions. Geographical restriction of cases and
controls is not a common feature of GWAS and, despite
their undoubted utility in assessing the genetic determi-
nants of the diseases, this approach could hamper the un-
derstanding of the contribution of xenobiotic exposure to
lymphomagenesis.
Conclusions
This is the first study demonstrating a relationship be-
tween the germline rs662 PON1 polymorphism and
lymphoma risk although this finding should be confirmed
in larger and independent series.
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