Zimonjic et al. BMIC Cancer 2013, 13:198

http://www.biomedcentral.com/1471-2407/13/198
p BMC

Cancer

RESEARCH ARTICLE Open Access

In vitro and in vivo effects of
geranylgeranyltransferase | inhibitor P61A6 on
non-small cell lung cancer cells

Drazen B Zimonjic', Lai N Chan? Veenu Tripathi', Jie Lu?, Ohyun Kwon?, Nicholas C Popescu’,
Douglas R Lowy* and Fuyuhiko Tamanoi®”

Abstract

Background: Lung cancer is the leading cause of cancer-related mortality. Therapies against non-small cell lung
cancer (NSCLC) are particularly needed, as this type of cancer is relatively insensitive to chemotherapy and radiation
therapy. We recently identified GGTI compounds that are designed to block geranylgeranylation and membrane
association of signaling proteins including the Rho family G-proteins. One of the GGTIs is P61A6 which inhibits
proliferation of human cancer cells, causes cell cycle effects with G1 accumulation and exhibits tumor-suppressing
effects with human pancreatic cancer xenografts. In this paper, we investigated effects of P61A6 on non-small cell
lung cancer (NSCLC) cells in vitro and in vivo.

Methods: Three non-small cell lung cancer cell lines were used to test the ability of P61A6 to inhibit cell
proliferation. Further characterization involved analyses of geranylgeranylation, membrane association and
activation of RhoA, and anchorage-dependent and —independent growth, as well as cell cycle effects and
examination of cell cycle regulators. We also generated stable cells expressing RhoA-F, which bypasses the
geranylgeranylation requirement of wild type RhoA, and examined whether the proliferation inhibition by P61A6 is
suppressed in these cells. Tumor xenografts of NSCLC cells growing in nude mice were also used to test P61A6's
tumor-suppressing ability.

Results: P61A6 was shown to inhibit proliferation of NSCLC lines H358, H23 and H1507. Detailed analysis of P61A6
effects on H358 cells showed that P61A6 inhibited geranylgeranylation, membrane association of RhoA and caused
G1 accumulation associated with decreased cyclin D1/2. The effects of P61A6 to inhibit proliferation could mainly
be ascribed to RhoA, as expression of the RhoA-F geranylgeranylation bypass mutant rendered the cells resistant to
inhibition by P61A6. We also found that P61A6 treatment of H358 tumor xenografts growing in nude mice reduced
their growth as well as the membrane association of RhoA in the tumors.

Conclusion: Thus, P61A6 inhibits proliferation of NSCLC cells and causes G1 accumulation associated with
decreased cyclin D1/2. The result with the RhoA-F mutant suggests that the effect of P61A6 to inhibit proliferation
is mainly through the inhibition of RhoA. P61A6 also shows efficacy to inhibit growth of xenograft tumor.
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Background

Attempts to inhibit tumor growth by blocking membrane
association of signaling proteins have been pursued over
the years [1]. One such method, inhibition of protein
geranylgeranyltransferase type I (GGTase-I), has recently
emerged as a promising anticancer approach [2,3]. Valid-
ation of GGTase-I as a target for anticancer drug develop-
ment comes from studies using conditional knockout of
the B-subunit of GGTase-1, which have indicated that gen-
etic inactivation of GGTase-I reduced the growth of a K-
ras-induced mouse lung tumor and increased survival [4].
GGTase-1 catalyzes the geranylgeranylation of proteins
containing the CAAL motif (C is cysteine, A is aliphatic
amino acid and L is leucine) at their C-termini. Many of
the proteins that are modified by GGTase-I are members
of the Ras superfamily of GTPases, including RhoA, Rac,
and Cdc42, which play important roles in human cancer
[5-8]. It has been shown that slowed growth of mouse em-
bryonic fibroblasts (MEFs) derived from cells defective in
GGTase-1 was reversed by expressing mutant forms of
both RhoA and Cdc42 that can bypass the geranyl-
geranylation requirement [4], suggesting that the effects of
GGTase-1 inhibition are largely mediated by these Rho
family proteins.

A variety of small molecule candidate inhibitors of
GGTase-I (GGTIs) have been developed over the years.
Peptidomimetic inhibitors based on the CAAL motif that
is recognized by GGTase-I were the first class of GGTIs
to be developed [9]. High throughput screening of a
chemical compound library led to the identification of
GGTI-DU40 [10]. Recently, we have described the devel-
opment and characterization of novel small molecule
GGTIs [11-14]. In our screen, we identified several GGTI
compounds with novel scaffolds from a library construc-
ted through phosphine-catalyzed annulation reactions,
using allenoate as starting materials. These GGTIs specif-
ically inhibit GGTase-I by competing with protein sub-
strates. One of the GGTIs identified, P61A6, which has a
dihydropyrrole ring as its core scaffold, showed inhib-
ition of geranylgeranylation without affecting farnesy-
lation and inhibited both proliferation and cell cycle
progression in a variety of human cancer cell lines.
P61A6, which has a remarkably long plasma half-life, also
had significant tumor-suppressing effects with human
pancreatic cancer xenografts [13].

Lung cancer is the leading cause of cancer-related mor-
tality as seen from the estimated number of new cases
and deaths from lung cancer (non-small cell and small
cell combined) for 2012 in the US according to the Na-
tional Cancer Institute; 226,160 and 160,340, respectively
[15]. There are two groups of lung cancer. Non-small cell
lung cancers (NSCLC) account for about 80% of cases,
while small-cell lung cancers account for the remaining
20% [15]. We are particularly interested in non-small cell
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lung cancer (NSCLC), which is relatively insensitive both
to chemotherapy and radiation therapy [16]. Another
reason to focus on NSCLC is that one of the major
tumor suppressor genes DLCI [17] is down-regulated or
inactivated due to genetic and epigenetic mechanisms in
a high proportion of primary NSCLC and derived cell
lines [18,19]. DLCI encodes a GTPase activating protein
(GAP) for Rho proteins [17,20,21], and loss of DLC1 ex-
pression in NSCLC cell lines is associated with increased
RhoA-GTP [22,23].

In this paper, we address two preclinical issues. First, we
show that GGTI P61A6 inhibits proliferation and trans-
formed phenotypes of NSCLC cells, including the growth
of xenograft tumors in mice. Second, we demonstrate the
specificity of P61A6 by showing that a RhoA mutant
whose biological activity is independent of GGTase-I ren-
ders the cells resistant to inhibition by P61A6.

Methods

Cell lines and cell cultures

NSCLC cell lines, H358, H23 and H1507, kindly provided
by Dr. Curtis Harris (National Cancer Institute, Bethesda,
MD), were maintained in RPMI 1640 medium (Cellgro,
Herndon, VA). The medium was supplemented with 10%
(v/v) fetal bovine serum (FBS; HyClone, Logan, UT) and
1% penicillin/1% streptomycin stock solution (Invitrogen,
Carlsbad, CA). All cells were cultured at 37°C in a humidi-
fied incubator at 5% COs,.

Compound

GGTI P61A6 was synthesized by coupling P5-H6 [14]
with an L-phenylalanamide, where the free acid L-phenyl-
alanine is converted to an amide. A 20 mM stock solution
of P61A6 in DMSO was kept at —20°C until use.

Cell proliferation and cell cycle analyses

Effects of P61A6 on cell proliferation were examined
using the CCK-8 cell counting kit (Dojindo Molecular
Technologies, Kumamoto, Japan) as described previously
[14]. Briefly, cells (2.5x 10°) were seeded onto 96-well
plates. The following day, cells were treated with the ap-
propriate inhibitor as indicated in the figure legends. The
cell proliferation assay was performed in triplicate every
other day. Data of each experimental series were tested
against the controls (DMSO) for statistical significance,
using Students paired two-tailed test. The cell cycle
profiles were analyzed by flow cytometry (UCLA Flow
Cytometry Core Facilities) as described previously [24].

Western blotting

Cells were treated with DMSO or P61A6 for 48
h, harvested, and lysed in lysis buffer (1% Triton X-100,
150 mM NaCl, 20 mM Tris—HCl at pH 7.5, 1 mM EDTA,
and 1x protease inhibitor mixture). Proteins were then
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resolved by 12% or 12.5% SDS-PAGE and immunoblotted
with antibodies against p21<"""WAF! (Millipore, Temec-
ula, CA), p27""* (rabbit, Santa Cruz Biotechnology, Inc.),
RhoGDI (Santa Cruz Biotechnology, Inc.), RhoA (mouse,
Santa Cruz Biotechnology), cyclin D1/2 (Millipore), the
unprenylated form of Rapl (U-Rapl; Santa cruz Biotech-
nology, Inc.), or actin (Calbiochem). Detection was
performed using peroxidase-conjugated secondary anti-
bodies (Biorad) and Amersham ECL Plus” Western Blot-
ting Detection Reagents (GE Healthcare Life Sciences).
Select bands were quantified using Image] imaging pro-
cessing program (National Institutes of Health).

Subcellular fractionation

Cells were treated with DMSO or P61A6 for 48 h. Cells
were then washed and scraped into PBS and centrifuged
at 2,500 rpm for 5 min. Pellets were resuspended (10 mM
HEPES/KOH at ph 7.3, 10 mM KCl, 5 mM MgCl,,
0.5 mM DTT, and 1x protease inhibitor mixture), incu-
bated on ice for 30 min, and homogenized. Homogenates
were centrifuged at 1000 x g for 10 min to collect the
cytosolic fractions (supernatant). The remaining pellets
were then resuspended in buffer containing 1% Triton X-
100, 150 mM NaCl, 20 mM Tris—HCI at pH 7.5, 1 mM
EDTA, and 1x protease inhibitor mixture, and centrifuged
at 15,000 rpm for 15 min to collect the membrane-
containing fractions (supernatant). Na"/K" ATPase-a and
RhoGDI or GAPDH were used as markers for the
membrane-containing fractions and the cytosolic frac-
tions, respectively.

GTP-bound RhoA pull-down assay

Cells were serum-starved in the presence of DMSO or
P61A6 for 24 h. Cells were then stimulated with 10% FBS
in the presence of DMSO or P61A6 for 30 min. Whole
cell lysates were collected using Mg>*-containing buffer,
and GTP-RhoA was pulled down using GST-tagged
Rhotekin-RBD protein beads (Cytoskeleton). Whole cell
lysates (inputs for pull-down) and pull-down were re-
solved on SDS-PAGE for immunoblotting analysis, using
RhoA antibodies (mouse, Santa Cruz Biotechnology) to
detect total RhoA and GTP-bound-RhoA.

Anchorage independent growth assay

Cells were seeded at a density of 20,000 cells/well in du-
plicate in 6-well culture dishes in 0.4% agar over a 0.8%
bottom agar layer. Various concentrations of P61A6 or
DMSO were added to the top layer of cells. Cultures
were re-fed and treated with the GGTI or DMSO once
weekly (14 days of incubation in total). Colonies were
stained with 1 mg/ml MTT (tetrazolium salt) for 1 hour
and scanned.
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Generation of stable H358 cells expressing RhoA-F

H358 cells were plated on 6-well plates and after 18
hours transfected with pcDNA3.1-3xHA-RhoA (wild-type,
geranylgeranylated) and pcDNA3.1-3xHA-RhoA-F (far-
nesylated mutant) [12] using Lipofectamine’ 2000
(Invitrogen, Carlsbad, CA) according to manufacturers in-
structions. Construction of these plasmids has been de-
scribed previously [12]. 10 ul of transfection reagent and
5.0 pg of plasmid DNA were diluted in 250 pl of OPTI-
MEM medium (Invitrogen, Carlsbad, CA) and incubated at
room temperature for 5 min. Both reagents and DNA were
mixed and allowed to form complexes for 20 min at room
temperature. The complexes were added to cells in 6-well
plates that were 80% confluent, in serum-free RPMI
medium without antibiotics, and incubated at 37°C for
6 hours. Medium was replaced with RPMI containing 10%
FBS and antibiotics. Cells were further incubated for
48 hours. To generate stable cell clones, cells were
trypsinized and plated at 1:10, 1:20, and 1:50 dilutions with
selective medium containing 1000 pg/ml of Geneticin
(Invitrogen, Carlsbad, CA). Stable clones were selected, ex-
panded, and analyzed for expression of RhoA and RhoA-F
by western blotting with anti-HA antibody.

In vivo tumorigenicity; H358 xenografts in BALB/C

nude mice

H358 cells were grown to 75% confluency, washed twice
in PBS, and resuspended in DMEM/F12 media prior to in-
jections. Twenty six week old female BALB/cAnNCr-nu/
nu mice were obtained from NCI-Frederick Animal Pro-
duction Program (Frederick, MD) and housed in an NCI
animal facility. One mouse died one day after arrival, and
the other nineteen were injected with 4x10° H358 cells in
200 puL. DMEM/F12 media. Ten animals received a single
subcutaneous injection of the cells in the left sub scapular
region, whereas the other nine on both sides. Three weeks
after injection, all of the animals had palpable tumors that
were 3—-5 mm along their longer axis, and at that point
both the unilaterally- and bilaterally-injected animals were
randomly divided into experimental and control groups,
with ten (5+5) and nine (4+5) animals, respectively.
P61A6 (MW =579.20) was dissolved in DMSO to make a
20 mM stock solution (24 mg of P61A6 in 2.071 mL
DMSO, fin. conc. 11.589 mg/mL), which was aliquoted
and stored at —-20°C. Immediately before each treatment,
the stock was diluted with 0.9% saline to make 160 pM in-
jection solution of GGTIL. Animals from the experimental
group (individual weight ~20 g) were injected five times
per week with up to 260 uM of this solution to provide a
final dose of 1.2 mg/kg/treatment. Corresponding controls
were injected with the appropriate volumes of 0.9% NaClL
Tumors were measured twice per week using a digital
caliper, and tumor volumes were calculated using the
following formula Tumor Volume =4/3x3.14x(L/2xW/
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2xW/2), where L and W were the tumor length and
width, respectively. Animals were sacrificed by cervical
dislocation 48 days after being injected with H358 cells,
and tumors were extirpated and compared for size. Ran-
domly chosen samples from both control and treated
group were used for histopathologic analysis and for
assessing RhoA-GTP. The care and use of laboratory ani-
mals was in accordance with the principles and standards
set forth in the Principles for Use of Animals (NIH Guide
for Grants and Contracts), the Guide for the Care and Use
of Laboratory Animals, the provisions of the Animal Wel-
fare Acts, and all procedures were approved by National
Cancer Institute Animal Care and Use Committees.

Results

P61A6 inhibits proliferation of non-small lung cancer cells
Effects of P61A6 on the proliferation of non-small cell
lung cancer (NSCLC) cells as monolayer cultures were
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examined using three different cell lines, H358, H23 and
H1507. As shown in Figure 1A, proliferation of each line
was inhibited by P61A6 in a dose-dependent manner, with
an IC50 ranging from 5 to 15 puM. The sensitivity of H358
cells to P61A6 was further increased when the cells were
grown under nutrient-starved conditions (in 0.5% serum)
(Figure 1B). When inhibition of anchorage-independent
growth of H358 was examined by soft agar assay, which is
more stringent than monolayer growth, P61A6 induced
substantial growth inhibition at concentrations as low as
5 uM (Figure 1C). In the subsequent experiments, we fo-
cused on H358, whose sensitivity to P61A6 was between
that of H23 and H1703.

To examine possible cell cycle effects of P61A6, H358
cells were treated with varying concentrations of P61A6,
and then cell cycle was analyzed by flow cytometry. The
results after 48 hours of treatment are shown in
Figure 2A. The percentage of GO0/G1 phase cells
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Figure 1 Effects of P61A6 on growth of lung cancer cells. A. H23, H1703 and H358 cells were treated with DMSO or the indicated
concentrations of P61A6 for 72 hours and surviving cell numbers were counted with cell counting kit, normalized to the control cells without
treatment. B. H358 cells under normal growth conditions (medium with 10% FBS) or nutrient-starved conditions (medium with 0.5% FBS) were
treated with GGTI P61A6 for 72 hours and cell proliferation relative to the DMSO control (100%) is plotted. C. H358 cells were seeded at a cell
density of 20,000 cells/well in 6-well culture dishes in 0.4% agar over a 0.8% bottom agar layer. Various concentrations of P61A6 or DMSO were
included in the top layer of cells. Cultures were re-fed and treated with P61A6 or DMSO once weekly (14 days of incubation in total). Colonies
were stained with 1T mg/ml MTT for 1 hour and scanned. This experiment was carried out twice with similar results.
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increased. This increase was associated with a concomi-
tant decrease in the percentage of S phase cells, while the
percentage of G2/M phase cells did not change. To inves-
tigate the effect of P61A6 further, we examined effects on
cell cycle regulators involved in the G1/S transition,
namely cyclin D1/2, p21“""YYAFL and p27°%P!, As shown
in Figure 2B, P61A6 caused a significant decrease in
cyclinD1/2. On the other hand, the levels of Cdk inhibi-
tors p21<PVWARL and p27%P! were less affected by
P61A6.

P61A6 inhibits protein geranylgeranylation and activation
of RhoA, and its anti-proliferative effects are mainly
attributable to RhoA

To investigate the mechanism of P61A6 effects, we focused
on the GTPase RhoA, which has emerged as a major ef-
fector of GGTase-I deficiency in previous studies [4,12].
Also, H358 cells do not express detectable levels of the
RhoGAP DLC1 and have high RhoGTP levels [23]. Fig-
ure 3A shows that P61A6 inhibited geranylgeranylation of
RhoA, as detected by the upper mobility shift of the RhoA
band due to the inhibition of prenylation. In addition, treat-
ment of cells with P61A6 led to the appearance of the
unprenylated form of Rapl (Figure 3B), implying that pro-
tein geranylgeranylation in general is inhibited in these
cells. To examine whether P61A6 inhibits membrane asso-
ciation of RhoA, we separated whole cell extracts into
membrane and cytosolic fractions, and examined the
amount of RhoA in each fraction. As shown in Figure 3C,
most RhoA was detected in the membrane fraction in the
control DMSO treated cells. However, after treatment with
P61A6, the amount of RhoA in the membrane fraction de-
creased dramatically, and RhoA became predominantly
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cytosolic. Finally, we examined whether P61A6 inhibits
serum-dependent activation of RhoA (Figure 3D). Serum-
starved H358 cells were stimulated by the addition of
serum, and the amount of GTP-loaded RhoA was assessed
by GST-tagged Rhotekin-RBD beads. Treatment with
P61A6 significantly decreased the amount of Rho-GTP
pulled down, whereas the total amount of RhoA was un-
affected by the treatment. Taken together, these results
show that P61A6 has significant effects on RhoA.

As described above, P61A6 induces decreased levels of
cyclin D1 together with increased G1 and decreased pro-
liferation. A number of studies in lung cancer cells suggest
that RhoA plays important roles in cyclin D1 and cell
cycle progression [25,26]. To rigorously test the hypoth-
esis that RhoA is a key target of the growth inhibitory ef-
fects of P61A6, we transfected H358 cells with the wild
type RhoA (3xHA-RhoA) or a mutant form of RhoA,
RhoA-F (3xHA-RhoA-F), which can be farnesylated in-
stead of geranylgeranylated, because the C-terminal leu-
cine has been changed to serine. Clones stably expressing
either wild type RhoA or the RhoA-F mutant were
established. When these clones were tested with anti-HA
antibody, a similar level of expression was observed for
both proteins (Figure 4A). Geranylgeranylation of RhoA
and farnesylation of RhoA-F expressed from these con-
structs have been confirmed previously [12]. To compare
the sensitivity of these clones to P61A6-induced inhibition
of RhoA membrane association, we treated the clones
with DMSO or 10 uM P61A6 for 48 hours, and mem-
brane and cytosolic fractions were prepared and im-
munoblotted with anti-HA antibody for transfected RhoA
and RhoA-F localization. Treatment with P61A6 inhibited
membrane association of wild type RhoA, as shown by its
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Figure 3 P61A6 inhibits protein geranylgeranylation and activation of RhoA. A. Effects of P61A6 on geranylgeranylation of RhoA. H358 cells
were treated with DMSO or increasing concentrations of P61A6 for 48 h. Whole cell lysates were prepared and analyzed for RhoA (upper panel)
and actin (lower panel). B. Appearance of unprenylated form of Rap1 by treating the cells with P61A6. Rap1 is normally geranylgeranylated but
the P61A6 treatment produces unprenylated Rap1 and this is detected by using an antibody specific for unprenylated Rap1. C. P61A6 causes an
increase in cytosolic RhoA. H358 cells were treated with DMSO or P61A6 for 48 h. Cytosolic (C) and membrane (M) fractions were prepared and
processed for SDS-PAGE, followed by Western blotting. Upper panel: RhoA; lower panel: cytosol marker RhoGDI. D. P61A6 inhibits RhoA activation
in H358 cells. Cells were serum-starved in the presence of DMSO or P61A6 for 24 h. Then, cells were stimulated with 10% FBS in DMEM in the
presence of DMSO or P61A6 for 30 min. Whole cell lysates were collected using Mg?*-containing lysis buffer, and GTP-RhoA was pulled down
using GST-tagged Rhotekin-RBD protein beads (Cytoskeleton) following the manufacturer’s instructions. Whole cell lysates (inputs) and pull-down
were resolved on SDS-PAGE for immunoblotting analysis using RhoA antibodies to detect total RhoA (bottom panel) and GTP-bound-RhoA (top
panel), respectively.
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Figure 4 Expression of RhoA-F suppresses the ability of P61A6 to inhibit proliferation. A. Western blotting with anti-HA antibody showing
expression of stably transfected 3xHA-RhoA and 3xHA-RhoA-F constructs in H358 cells. B. Stably transfected H358 cells were treated with DMSO
or 10 uM P61A6 for 48 hours. Membrane and cytosolic fractions were prepared and examined for RhoA (Left Panel) and RhoA-F (Right Panel)
localization on membrane and cytosolic fractions by Western blotting. Na+/K + ATPase and GAPDH were used as control for membrane and
cytosolic fractions, respectively. C. H358 RhoA and E. H358 RhoA-F cells were treated with DMSO or P61A6 at different concentrations (2.5 uM,
5.0 uM and 10 pM) under low serum conditions (medium with 0.5% FBS) for 10 days. Cell proliferation assay was performed in triplicate every
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disappearance from the membrane fraction (Figure 4B,
Left Panel), but there was no change in the level of RhoA-
F in the membrane fraction (Figure 4B, Right Panel),
showing for this parameter that RhoA-F was resistant to
P61A6 treatment. To assess the effects of P61A6 on cell
proliferation, H358 RhoA (Figure 4C) and H358 RhoA-F
(Figure 4E) cells were treated with DMSO or P61A6 at
various concentrations under low serum (0.5% FBS) con-
ditions for 10 days. Proliferation of P61A6-treated RhoA-F
cells was not significantly different from the controls,
whereas the treatment of RhoA cells with P61A6 signifi-
cantly inhibited cell proliferation compared to DMSO-
treated controls (Figure 4D,E). These results confirm that
P61A6 inhibits geranylgeranylation but not farnesylation
and, importantly, indicate that the vast majority of the
growth inhibitory effects of P61A6 on the cells depend
upon the inhibition of RhoA by P61A6.

P61A6 inhibits growth of H358 xenograft tumor in mice

H358 tumor xenografts were established in nude mice as
described in the Method section. The maximum tolerated
dose and toxicity of GGTI P61A6 were determined in pre-
vious experiment [13]. In that study, P61A6 ranging from
0 to 4.64 mg/kg was used. While we did not observe any
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significant toxicity, a slight hepatoxicity was detected in
mice treated with the two highest doses. Therefore,
1.12 mg/kg P61A6 was chosen for the present experiment.
The treatment with P61A6 was started 3 weeks after sub-
cutaneous inoculation of the cells, when the tumors
reached 3-5 mm in diameter and were palpable. 5 times/
week i.p. injections were performed until the end of ex-
periment. Mice inoculated with H358 cells and treated
with P61A6 exhibited visibly smaller tumors in situ
(Figure 5A), and comparison of the largest extirpated tu-
mors from both P61A6-treated and control animals con-
firmed that difference (Figure 5B). In both the control and
the treated groups, we observed a few satellite tumors,
which developed near the main ones and appeared to have
resulted from local invasion. Comparison of average
tumor volumes between control and P61A6-treated
groups (Figure 5C) indicated the degree to which tumor
growth was inhibited by P61A6 treatment. In eight out of
nine successive measurements, the difference in average
tumor volume between two groups was statistically signifi-
cant (Student’s t-test), with the p value < 0.01 on 25" day
of the experiment and p < 0.008 on the last, 48", day. In
tumors from the controls and P61A6-treated animals, we
checked for the intracellular distribution of RhoA protein
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Figure 5 Effect of P61A6 on tumorigenicity of H358 cells in vivo and intracellular distribution of RhoA in H358 xenografts. The
treatment was started 3 weeks after subcutaneous inoculation of the cells when palpable tumors reached 3-5 mm in diameter. 5 times/week i.p.
injections were performed until the end of experiment. A. Animals injected with P61A6 (right) exhibited smaller tumor compared to controls in
situ (left). B. Comparison of the eight largest extirpated tumors from control animals (top) and the eight largest from animals treated with P61A6
(bottom) demonstrates the effects of treatment on xenograft tumor growth. C. The average tumor volumes of P61A6-treated and untreated
groups is shown. D. Protein extracted from cytosolic and membrane fractions of tumors from P61A6-treated and untreated animals was western
blotted for RhoA to evaluate the RhoA association with membrane. (M, membrane fraction; C, cytosolic fraction).
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as an indicator of geranylgeranylation inhibition. Analysis
of cell membrane and cytosolic fractions of tumors probed
for RhoA showed (Figure 5D) that the RhoA protein is
mostly confined to cytoplasm in the P61A6-treated group,
in sharp contrast to control animals, where the protein is
almost exclusively associated with membranes, demon-
strating that GGTI treatment has effectively inhibited the
prenylation required for effective membrane association

of RhoA.

Discussion

In this paper, we have shown that P61A6 (GGTI) has sig-
nificant anti-tumor effects on NSCLC cells in vitro and
in vivo. Detailed analyses of the effects of P61A6 on one of
the NSCLC cell lines, H358, showed that P61A6 inhibited
anchorage-dependent and -independent growth of the
cells, caused cell cycle effects, and inhibited the growth of
mouse xenograft tumors whose treatment was initiated
after the tumors became palpable. In GGTI-treated tu-
mors, membrane association of RhoA was dramatically re-
duced, consistent with the presumed mechanism of action
of P61A6. Since our previous P61A6 studies have focused
on pancreatic cancer, this paper provides the first evidence
to suggest that P61A6 may suppress tumorigenecity
of NSCLC.

Another important contribution of this paper concerns
the mechanism of action of P61-A6 on NSCLC cells, by
providing evidence that RhoA plays critical roles in the ef-
fects of P61A6 on H358 cells. First, we have demonstrated
that P61A6 inhibits geranylgeranylation as well as mem-
brane association of RhoA, which is known to be
geranylgeranylation-dependent. Consistent with this re-
sult, activation of RhoA - examined by determining the
serum response to serum-starved cells - was blocked by
the treatment with P61A6. In addition, we have shown
that expression of a mutant form of RhoA (Rho-F) that
can bypass the geranylgeranylation requirement abrogates
the inhibition of RhoA membrane assocation and the in-
hibition of proliferation by P61A6. While other proteins
such as Rac, Ral and RhoB have previously been suggested
to play a role in GGTI effects in other cell lines [27-29],
our study suggests that the effects of P61A6 on H358 lung
cancer cells are largely mediated by RhoA.

Further characterization provided an overall view of the
action of P61A6. We found that P61A6 induces accumula-
tion of G1 phase cells, one of the hallmarks of GGTI ef-
fects [30], and that the level of cyclin D1/2 was decreased
by P61A6 treatment. The significance of cyclin D1 in
tumor growth and metastasis of NSCLC cells has been
shown by the use of cyclin D1-targeted siRNA [31]. In
addition, RhoA has been shown to play critical roles in
cyclin D1 expression, cell cycle, and proliferation of lung
cells [25,26]. Together with our demonstration that RhoA
plays a major role in the effects of P61A6, the general

Page 8 of 10

scheme for the action of P61A6 on H358 may be summa-
rized in the following way: P61A6 inhibits RhoA, leading
to a decrease in cyclin D1/2, which results in G1 cell cycle
arrest and inhibition of proliferation. There could, how-
ever, be variations to this general idea. In H358 cells, we
have shown that P61A6 affects cyclin D1/2, while the
levels of Cdk inhibitors p21<""/YAF and p27"P! are not
significantly affected. In other cell lines, such Panc-1, how-
ever, we have observed increased p21“"*YYAF! Jevels after
GGTT treatment [12,14]. The differences might be attrib-
utable to divergence in the levels of these cell cycle regula-
tors in different cell lines. In fact, we noted that, in
contrast to cyclin D1/2, the levels of p21<""*YAF! and
p275"! are quite high in H358 even before treatment,
which may have contributed to P61A6 having a more pro-
nounced effect on cyclin D1/2 than on p21<""YYAFL of
p27KiPL,

One issue that requires further investigation concerns
effects of GGTI on RhoA activation. In our experiment,
we showed that the activation of RhoA in response to
serum stimulation is blocked by GGTI in lung cancer
cells. This is consistent with other studies in endothelial
and breast cancer cells. In endothelial cells, GGTI-286
blocked increase of RhoA-GTP induced by monocyte ad-
hesion [32]. GGTI-286 also blocked GTP-loading of RhoA
induced by thrombin in endothelial cells [33]. In breast
cancer cells, RhoA activity as detected by RhoA-GTP was
inhibited by GGTI-298 [34]. However, Khan et al. [35,36]
reported that GGTase-I deficiency in macrophage resulted
in the accumulation of RhoA-GTP. Further studies are
needed to examine how GGTase-I deficiency influences
RhoA activation in different cellular contexts.

Down-regulation and inactivation of DLC1 expression
through genetic and epigenetic alterations in multiple ma-
lignancies may represent the most frequent mechanism
for aberrant activation of Rho GTPases in human onco-
genesis [37]. Activity of Rho GTPases is elevated in many
human cancers and their metastases, and the onco-
suppressive effect of DLC1 requires RhoGAP activity,
which negatively regulates Rho GTPases, most commonly
RhoA [5,38]. The observation that down-regulation of
DLC1 in NSCLC is associated with a poor clinical out-
come [39] implies that targeting pro-oncogenic pathways
activated by this down-regulation could be especially use-
ful therapeutically, and inhibition of the RhoA pathway
and Rho kinase, a downstream effector of Rho, are prom-
ising options for therapeutic interventions.

Conclusions

Taken together, the present study clearly demonstrates
that our novel GGTI P61A6 inhibits proliferation of
NSCLC cells and causes G1 accumulation associated with
decreased cyclin D1/2. The result with the RhoA-F mu-
tant suggests that the effect of P61A6 to inhibit
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proliferation is mainly through the inhibition of RhoA.
P61A6 also shows efficacy to inhibit growth of xenograft
tumor. These results provide evidence that our GGTI
P61A6 is a promising drug candidate for NSCLC therapy.
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