
Pils et al. BMC Cancer 2013, 13:178
http://www.biomedcentral.com/1471-2407/13/178
RESEARCH ARTICLE Open Access
A combined blood based gene expression and
plasma protein abundance signature for
diagnosis of epithelial ovarian cancer - a study of
the OVCAD consortium
Dietmar Pils1,2*, Dan Tong1, Gudrun Hager1, Eva Obermayr1, Stefanie Aust1, Georg Heinze3, Maria Kohl3,
Eva Schuster1, Andrea Wolf1, Jalid Sehouli4, Ioana Braicu4, Ignace Vergote5, Toon Van Gorp5,6, Sven Mahner7,
Nicole Concin8, Paul Speiser1 and Robert Zeillinger1,2
Abstract

Background: The immune system is a key player in fighting cancer. Thus, we sought to identify a molecular
‘immune response signature’ indicating the presence of epithelial ovarian cancer (EOC) and to combine this with a
serum protein biomarker panel to increase the specificity and sensitivity for earlier detection of EOC.

Methods: Comparing the expression of 32,000 genes in a leukocytes fraction from 44 EOC patients and 19 controls,
three uncorrelated shrunken centroid models were selected, comprised of 7, 14, and 6 genes. A second selection
step using RT-qPCR data and significance analysis of microarrays yielded 13 genes (AP2A1, B4GALT1, C1orf63, CCR2,
CFP, DIS3, NEAT1, NOXA1, OSM, PAPOLG, PRIC285, ZNF419, and BC037918) which were finally used in 343 samples
(90 healthy, six cystadenoma, eight low malignant potential tumor, 19 FIGO I/II, and 220 FIGO III/IV EOC patients).
Using new 65 controls and 224 EOC patients (thereof 14 FIGO I/II) the abundances of six plasma proteins (MIF,
prolactin, CA125, leptin, osteopondin, and IGF2) was determined and used in combination with the expression
values from the 13 genes for diagnosis of EOC.

Results: Combined diagnostic models using either each five gene expression and plasma protein abundance
values or 13 gene expression and six plasma protein abundance values can discriminate controls from patients with
EOC with Receiver Operator Characteristics Area Under the Curve values of 0.998 and bootstrap .632+ validated
classification errors of 3.1% and 2.8%, respectively. The sensitivities were 97.8% and 95.6%, respectively, at a set
specificity of 99.6%.

Conclusions: The combination of gene expression and plasma protein based blood derived biomarkers in one
diagnostic model increases the sensitivity and the specificity significantly. Such a diagnostic test may allow earlier
diagnosis of epithelial ovarian cancer.
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Background
One of the most deadly malignant diseases in women is
ovarian cancer. The high risk of dying is particularly due to
late diagnosis, i. e. 67% of patients are diagnosed with ad-
vanced disease. The five-year overall survival (OS) rate is
only 46% among all stages [1]. Patients with stage I disease
have a five-year OS rate of about 90%, whereas patients with
advanced disease less than 30% [2]. One reason for the low
five-year OS rate is the fact that ovarian cancer presents
with few, if any, specific symptoms. Therefore markers for
early detection of ovarian cancer could improve OS.
Up to now no screening markers are recommended or

routinely used for early detection of ovarian cancer. One
of the known serum marker for ovarian cancer is CA-125,
described for the first time in 1981 as a murine monoclo-
nal antibody (OC125) reacting against ovarian cancer cell
lines and cryopreserved ovarian cancer tissues but not
against benign tissues or other carcinomas [3]. CA-125 is
a coelomic epithelial antigen produced by mesothelial cells
in the peritoneum, pleural cavity and pericardium and in
several other epithelia such as the gastrointestinal tract,
respiratory tract, and genital tract. Serum CA-125 levels
are measurably increased in about 80% of patients with
ovarian cancer. An increase is measured to a lesser extent
in patients with early stages, resulting in a sensitivity of
CA-125 screening of lower than 60% in early stages [4].
Serum concentrations can be elevated by a number of
common benign gynecologic conditions, including endo-
metriosis and leiomyomas, as well as by non-gynecologic
pathologies such as congestive heart failure and liver cir-
rhosis. In general, serum concentrations of CA-125 are
higher in premenopausal women, compared to post-
menopausal women. These facts all together results in an
impaired sensitivity and specificity for CA-125 [5].
Nevertheless, there are numerous papers dealing with
CA-125 as marker for early detection, diagnosis, response
prediction and monitoring, disease recurrence, and for
distinguishing malignant from benign pelvic tumors [6].
To increase the sensitivity and specificity of CA-125,

this single marker could be expanded to a marker panel.
Including other serum markers and building a statistical
model, this might result in a more sensitive and specific
signature for detection of EOC.
In 2004 Zhang et al. published a four marker panel com-

prised of CA-125 and three by mass spectroscopy (SELDI)
newly identified serum protein peaks, identified as apolipo-
protein A1 (down-regulated in malignant tumors), a trun-
cated form of transthyretin (down-regulated), and a
cleaved fragment of inter-α-trypsin inhibitor heavy chain
H4 (up-regulated) [7]. A multivariate model combining the
three biomarkers and CA-125 reached a sensitivity of 74%
by a fixed specificity of 97% for detection of early stage
EOC. This set of biomarkers was amended by four add-
itional serum protein peaks leading to a commercialized
FDA cleared blood test for assessment of the likelihood
that an ovarian mass is malignant, called OVA1™ (Quest
Diagnostics, Madison, NJ, USA). Recently, in a prospective
study, the effectiveness of the OVA1™ test was compared
to the malignancy-assessment by physicians. The multi-
variate index assay demonstrated higher sensitivity and
lower specificity compared to the physician assessment to-
gether with the CA-125 serum levels [8,9].
Mor et al. described in 2005 four new serum markers,

namely Leptin, Prolactin, OPN, and IGF-II, found by a
rolling circle amplification (RCA) immunoassay microarray
approach. In a combined predictive model including 19%
early stage patients, an overall sensitivity and specificity of
approx. 95% was reached [10]. Adding CA-125 and MIF to
this four-marker-panel, the specificity was increased to 99.4%
at a sensitivity of 95.3%. With this marker panel, 11.1% of
stage I and II samples (4 of 36) were misclassified [11].
Recently, Yurkovetsky et al. described a four serum

marker panel, namely HE4, CEA, VCAM-1, and CA-125,
for early detection of ovarian cancer. A model derived
from these four serum markers provided a diagnostic
power of 86% sensitivity for early stage, and 93% sensitivity
for late stage ovarian cancer at a specificity of 98% [12].
Another approach to find prognostic markers for early

detection of ovarian cancer is to use peripheral blood
cells instead of serum. In 2005 a set of 37 genes was iden-
tified whose expression in peripheral blood cells could
detect a malignancy in at least 82% of breast cancer pa-
tients [13]. Very recently, a set of 738 genes was identi-
fied discriminating breast cancer patients from controls
with an estimated prediction accuracy of 79.5% (80.6%
sensitivity and 78.3% specificity) [14].
The aim of this study was to investigate if combining

gene-expression patterns with a serum protein panel results
in a more sensitive and more specific signature for the de-
tection of EOC. Primarily, we isolated a leukocytes fraction
from epithelial ovarian cancer (EOC) patients, patients with
non-malignant gynecological diseases and healthy blood do-
nors (controls). A whole genome transcriptomics approach
(Applied Biosystems Human Genome Survey microarrays
V2.0) was used to identify gene expression patterns discrim-
inating between ovarian cancer patients and healthy controls
or patients with non-malignant diseases. In the second place
we determined a six-protein panel [11] from the plasma
samples. Taken together predictive models were built from a
large cohort of patients and controls using either RT-qPCR
derived expression values or protein abundance values alone
or in combination. Validation was performed by means of
the bootstrap .632+ cross-validation method.

Methods
Patients and controls
In total, blood from 239 epithelial ovarian cancer (EOC)
patients (19 FIGO I/II and 220 FIGO III/IV) and 169



Table 1 Overall statistics for EOC patients, patients with benign or low malignant potential (LMP) tumors, and healthy
persons and patients with benign diseases as controls (A), clinicopathologic characteristics of FIGO I/II and FIGO III/IV
patients (B) and diagnosis of patients with benign diseases (C)

A)

Cohort 1 Typ Number FIGO Age ± SD [years] Range [years]

Controls Healthy 90 n. a. 46.7 ± 16.8 19 - 83

Cystadenoma 6 n. a. 57.3 ± 8.5 45 - 66

LMP 8 n. a. 60.0 ± 18.6 32 - 92

Malignant disease Ovarian cancer 19 FIGO I-II 55.5 ± 16.7 15 - 85

220 FIGO III-IV 58.6 ± 11.8 18 - 83

Cohort 2

Controls Healthy 30 n. a.

Benign gynecological diseases 35 n. a. 47.3 ± 13.2 25 - 74

Malignant disease (overlapping with cohort 1) Ovarian Cancer 14 FIGO I-II

210 FIGO III-IV

B)

FIGO I-II patients 19

Histology

Serous 14

Endometrioid 2

Mucinous 1

Undifferentiated 2

FIGO

Ia 2

Ic 7

IIa 4

IIb 2

IIc 4

Grade (1 missing)

1 4

2 6

3 8

FIGO III-IV patients 220

Histology (1 missing)

Serous 194

Endometrioid 4

Mucinous 3

Undifferentiated 6

Mixed epithelial 12

FIGO (3 missing)

IIIa 4

IIIb 7

IIIc 166

IV 40
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Table 1 Overall statistics for EOC patients, patients with benign or low malignant potential (LMP) tumors, and healthy
persons and patients with benign diseases as controls (A), clinicopathologic characteristics of FIGO I/II and FIGO III/IV
patients (B) and diagnosis of patients with benign diseases (C) (Continued)

Grade (4 missing)

1 8

2 51

3 157

C)

Benign diseases 35

Cystadenoma (mucinous) 9

Endometriosis 5

Ovarian fibroma 2

Uterine myoma 9

Miscellaneous (two with inflammatory conditions) 10
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controls (120 healthy blood donors and 49 patients with
benign ovarian tumors (cystadenomas) or low malignant
potential (LMP) tumors) were enrolled in this retrospect-
ive study (Table 1). Controls, including healthy blood
donors and patients with benign gynecologic diseases,
were collected chronologically at the Medical University
of Vienna, Austria, during one year, thus representing a
cross-section of the population at risk. All blood samples
from epithelial ovarian cancer patients were collected in
the course of the EU-project OVCAD (Ovarian Cancer -
Diagnosing a Silent Killer) within two days prior to sur-
gery (Charité, Berlin Medical University, Germany n = 86,
University Medical Center Hamburg-Eppendorf, Germany
n = 43, Medical University of Innsbruck, Austria n = 11,
Katholieke Universiteit Leuven, Belgium n = 52, Medical
University of Vienna, Austria n = 47). Informed consent for
the scientific use of biological material was obtained from
all patients and blood donors in accordance with the re-
quirements of the local ethics committees of the involved
institutions. Clinicopathologic parameters were assessed by
the specialized pathologists at each participating university
hospital according to reviewed OVCAD criteria.

Isolation of the leukocytes fraction and total RNA preparation
A leukocytes fraction depleted from epithelial cells was
isolated from EDTA-blood by a density gradient centrifu-
gation protocol, largely according to Brandt and Griwatz
[15]. Total RNA was isolated using the RNeasy Mini kit
(QIAGEN, Venlo, Netherlands) and quality-checked with
the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, Ca, USA). The RNA-quantity was measured
spectrophotometrically.

Microarray analysis and pre-selection
Whole genome expression analysis was performed on sin-
gle channel Applied Biosystems Human Genome Survey
microarrays V2.0 (Applied Biosystems, Foster City, Ca,
USA) containing 32,878 probes representing 29,098 genes.
Two μg total RNA from 44 ovarian cancer patients and 19
age-matched controls (13 completely healthy controls and
6 patients with benign ovarian cysts (mean 60.8 ± 13.7 years
and 61.7 ± 12.9 years, respectively) were labeled with the
NanoAmp RT-IVT Labeling Kit and hybridized to the
microarrays for 16 hours at 55°C. After washing and
visualization of bound digoxigenin-labeled cRNAs with the
Chemiluminescence Detection Kit according to the manu-
facturer’s instructions (Applied Biosystems), images were
read with the 1700 Chemiluminescent Microarray Analyzer
(Applied Biosystems). Raw expression data, signal-to-noise
ratios and quality-flags delivered from the Applied
Biosystems Expression System software were further
processed using Bioconductor's ABarray package (www.
bioconductor.org). In brief, raw expression values were
log2 transformed and measurements with quality indicator
flag values greater than 5000 were set missing. For inter-
array comparability, data were quantile-normalized and
missing values imputed with 10-nearest neighbors imput-
ation. Several pre-filtering steps of probes were performed.
Firstly, 13,520 probeIDs which exhibited a signal-to-noise
ratio less than 2 in at least 50% of the two pooled groups
(patients with malignant disease and non-malignant con-
trols) were excluded (19,358 probeIDs were remaining).
Secondly, 10,125 probeIDs assumed to be potentially
affected by batch-effects were excluded, resulting in re-
maining 9,233 probeIDs. Finally, 205 probeIDs with fold-
changes > 3 between both groups were selected. Three
further genes were eliminated due to non-available TaqManW

Assay-on-Demand probes and primer sets (Applied
Biosystems). From the remaining 202 probeIDs three
consecutive predictive models were built using the un-
correlated shrunken centroids (USC) [16] approach with
default parameters, implemented in the MultiExperiment

http://www.bioconductor.org/
http://www.bioconductor.org/
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Figure 1 Area under the receiver operating characteristic (ROC)
curves (AUCs) for all six models built from blood based
expression values and/or plasma based protein abundances as
derived from cohort 2 (for key metrics see Figure 2 and Table 6).
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Viewer (MeV) [17]. This methods selects uncorrelated
genes which best discriminate the two groups in internal
cross-validation. Since the method picks only one gene from
a group of several highly correlated genes, and this selection
may be arbitrarily affected by small-sample variation, we re-
peated the method twice each time excluding the genes
found in the previous step. This iterative approach leads to
a richer set of candidate genes for further analyses. Micro-
array data are accessible on the Gene Expression Omnibus
(GEO) under GEO accession: GSE31682.

Evaluation of microarray results by RT-qPCR
The microarray gene expression measurements of the se-
lected genes were validated by real time RT-qPCR. cDNA
was synthesized from 1 μg total RNA using the M-MLV re-
verse transcriptase (Promega, Madison, WI, USA) and a
random nonamer primer. For normalization three stably
expressed genes were selected from all 63 microarrays and
all genes with signal-to-noise ratios greater than 3 in all
samples (8,318 probeIDs): RPL21 (Ribosomal protein L21,
Assay-on-Demand TaqManW probe: Hs03003806_g1), RPL9
(Ribosomal protein L9, Hs01552541_g1), and SH3BGRL3
(SH3 domain-binding glutamic acid-rich-like protein 3,
Hs00606773_g1), with coefficients of variation (CV) of
0.014, 0.012, and 0.014, respectively. The geometric mean
of the RT-qPCR values of these three normalizers was
y 

y  

  

  

 

sion 

224 EOC             6       Luminex  
  65 controls 

Samples   Proteins        Platform 

6 Proteins 

 (L1 and L2 Penalized Regression) 

s + 5 Proteins 4 Proteins 

(0.994-1.000)* 0.973 (0.956-0.990)* 

es + 6 Proteins 6 Proteins 

(0.995-1.000)* 0.973 (0.956-0.989)* 

Blood 
Lymphocytes 

fraction 

Plasma 

*p < 0.001 

g, and the validation procedure. (EOC, epithelial ovarian cancer;
rays; LASSO, L1 penalized logistic regression model; AUC, area under
ntial; n. s., not significant).
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calculated for each sample and this normalizing sample-
specific constant was subtracted from each measurement
of sample to obtain normalized (delta-CT) values. Delta-
CT values were finally multiplied by −1 to be interpret-
able as log2-expression values.

Determination of the six-protein panel
The abundances of the six proteins (MIF, prolactin,
CA125, leptin, osteopondin, and IGF2) from the cancer
biomarker panel [11] were determined from the plasma
samples according to the MILLIPLEX MAP Kit – Cancer
Biomarker Panel (Millipore, Billerica, MA, USA) using the
Table 2 Gene list of the 27 genes from the three USC-models
SAM-results from the second selection step, and coefficients

Genes Evaluation

ProbeID Gene symbol TaqMan
W probe

USC model 1

119290 CFP Hs00175252_m1

182018 NOXA1 Hs01017917_m1

184360 RETNLB Hs00395669_m1

212552 ZNF546 Hs00418908_m1

228089 NEAT1 Hs01008264_s1

713562 N/A (BC037918) Hs00860048_g1

10546171 N/A Hs01036865_m1

USC model 2

105700 AMZ1 Hs00401010_m1

105743 DIS3 Hs00209014_m1

109227 ZNF419 Hs00226724_m1

110071 CCR2 Hs00356601_m1

110496 DYSF Hs00243339_m1

118384 HGS Hs00610371_m1

136788 ALX4 Hs00222494_m1

142487 B4GALT1 Hs00155245_m1

160314 DBNL Hs00429482_m1

161219 MPP1 Hs00609971_m1

161567 PAPOLG Hs00224661_m1

162222 PRIC285 Hs00375688_m1

223870 CCL3L1 Hs00824185_s1

224628 ANKHD1 Hs00226589_m1

USC model 3

115368 AP2A1 Hs00367123_m1

157342 C1orf63 Hs00220428_m1

177183 RMI1 Hs00227878_m1

204670 GRM1 Hs00168250_m1

205406 OSM Hs00171165_m1

220229 ASGR1 Hs00155881_m1
Luminex technology on the Bio-Plex 200 System (Bio-Rad
Laboratories, Hercules, Ca, USA).

Statistical analysis and model building
Differences in mean age between the five clinically de-
fined groups (Table 1) were assessed by analysis of vari-
ance (ANOVA), followed by Tukey’s post hoc tests.
Significant up- or down-regulation of the expression of
the 13 genes (AP2A1, B4GALT1, C1orf63, CCR2, CFP,
DIS3, NEAT1, NOXA1, OSM, PAPOLG, PRIC285,
ZNF419, and BC037918) and the 6 proteins between
healthy controls and patients with malignant disease
, corresponding Assay-on-Demand TaqManW probes,
of the final L1 penalized logistic regression model

SAM L1 model (13 genes)

RT-qPCR q-value (≤ 0.15) Coefficient

yes 0.13 1.241

yes 0.09 −0.888

no

no

yes 0.01 2.075

yes 0.01 0.035

no

no

yes 0.10 1.177

yes 0.08 0.145

yes 0.01 0.376

yes 0.49 not used

yes 0.39 not used

no

yes 0.11 −0.642

yes 0.50 not used

yes 0.41 not used

yes 0.01 −0.454

yes 0.09 −1.794

yes 0.32 not used

yes 0.24 not used

no

yes 0.15 −0.199

yes <0.01 −0.230

yes 0.37 not used

no

yes 0.01 −1.105

no

Intercept: 6.320
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(extra for FIGO I/II and FIGO III/IV patients) was
assessed by t tests followed by correction for multiple
testing by the Holm–Bonferroni method.
For selection the log2 expression values from 20 genes

were compared between samples from healthy patients and
patients with malignant tumors by the significance analysis
of microarrays (SAM) procedure, employing the t statistic
and using R's samr package [18]. 13 Genes with q-values less
than 0.15 were finally selected for model building with data
from cohort 1. To this end the expression of these genes
were determined by RT-qPCR in all 239 malignant (includ-
ing the 44 ovarian cancer patients from the microarray ex-
periment), 90 healthy (including 13 of the 19 controls from
Table 3 Gene names and functions of the 13 genes with mea
mean log2 abundance values in controls, FIGO I/II patients, a

A)

ProbeID Gene
symbol

Gene name Function

115368 AP2A1 adaptor-related protein
complex 2, alpha 1 subunit

Clathrin coat asse

142487 B4GALT1 UDP-Gal:betaGlcNAc beta
1,4- galactosyltransferase,
polypept. 1

Galactosyltransfera

157342 C1orf63 chromosome 1 ORF 63 Unknown

110071 CCR2 chemokine (C-C motif)
receptor 2

Chemokine recep

119290 CFP complement factor properdin Alternative pathw
complement activ

105743 DIS3 DIS3 mitotic control homolog
(S. cerevisiae)

RNase, part of the
complex

228089 NEAT1 non-protein coding RNA 84 Non-coding RNA

182018 NOXA1 NADPH oxidase activator 1 Activates NADPH

205406 OSM oncostatin M IL-6 family cytokin

161567 PAPOLG poly(A) polymerase gamma Poly(A) polymeras

162222 PRIC285 peroxisomal proliferator-
activated receptor A
interacting complex 285

Nuclear transcript
coactivator for sev
nuclear receptors

109227 ZNF419 zinc finger protein 419 Zinc finger protein

713562 BC037918 (no ORF in transcript
BC037918)

Non-coding RNA

B)

Protein Control FIGO I/II corr. p

log2 MIF 8.86 9.67 0.028

log2
prolactin

4.70 6.26 <0.001

log2 CA125 3.83 7.24 <0.001

log2 leptin 3.92 2.78 0.033

log2
osteopontin

3.84 4.59 0.067

log2 IGF2 10.94 9.10 <0.001

aSignificant down- or up-regulation in blood cells of EOC patients compared to hea
bFC are actually log2-FC values.
cCompared to control values.
the microarray experiment), and 14 low-malignant potential
or benign samples. Gene expression values were normalized
as described above, and an L1 penalized logistic regression
model, also known as LASSO, which retained all 13 genes
was estimated to obtain a model discriminating between the
healthy and diseased groups [19].
Unfortunately, the plasma samples from the original 90

healthy controls were not available and therefore a further
cohort of 65 controls (30 healthy blood donors and 35 pa-
tients with benign gynecological diseases) was enrolled in
the study (cohort 2). The expressions of the 13 genes and
the abundances of the six proteins were determined as de-
scribed above. Using these two groups, one comprised of
n log2 expression fold changes (A) and six proteins with
nd FIGO III/IV patients (B)

FIGO I/IIa FIGO III/IV JAK
STAT

Inflammatory
response

mbly Down. FCb: -0.75 Down FC: -0.82

se Down (FC: -0.81) Down (FC: -0.59) +

n.s. FC: +0.003 n.s. FC: +0.19

tor n.s. FC: +0.72 Up FC: +0.96 + +

ay for
ation

Down FC: -1.06 Down FC: -1.03 +

exosome n.s. (FC: +0.01) Up (FC: +0.27)

n.s. FC: -0.01 n.s. FC: +0.26

oxidases n.s. FC: -0.52 Down FC: -0.60

e Down FC: -2.62 Down FC: -2.65 +

e n.s. FC: -0.28 n.s. FC: -0.34

ional
eral

Down FC: -2.24 Down FC: -2.33

n.s. (FC: -.19) n.s. (FC: +0.21)

n.s. FC: +0.06 n.s. FC: +0.52

c FIGO III/IV corr. pc

9.25 0.040

6.79 <0.001

8.52 <0.001

2.15 <0.001

5.08 <0.001

9.16 <0.001

lthy blood donors (t-test, corrected for multiple testing; n.s., not significant).
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224 EOC patients (for the remaining 15 EOC samples, no
plasma samples were available) and one comprised of 65
controls (cohort 2), models using either gene expression
values or protein abundance values alone or both in com-
bination were built by means of L1 and L2 penalized logis-
tic regressions, also known as LASSO and ridge regression,
respectively (cf. Figure 1 for ROCs). Both models impose a
penalty on the regression coefficients such that the sum of
their absolute values (L1) or the sum of their squared
values (L2) does not exceed a threshold value λ. The opti-
mal value of the tuning parameter λ is found by maximiz-
ing the leave-one-out cross-validated likelihood. While L1
penalized models may set some regression coefficients
exactly to zero, thus selecting a subset of the variables as
predictors, L2 models always include all variables. The
glmpath R package was used for computing the L1 and L2
models. To assess the differences of the obtained discrim-
inatory models, likelihood ratio tests were performed.
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from the 13 blood based expression values used (C) for differentiation of h
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patients with malignant tumors, and (F) for differentiation of patients with
Bootstrap validation
The misclassification error rate and the cross-validated re-
ceiver operating characteristic curve were estimated using
the bootstrap .632+ cross-validation procedure [20].

Results
Gene expression based biomarkers
Figure 2 outlines the gene selection and model building
procedure for the mRNA-expression based genes. Starting
from 202 genes preselected as described above, three con-
secutive uncorrelated shrunken centroid (USC) models
were built, comprised of 7, 14, and 6 genes, respectively.
Expressions of these 27 genes were validated in 63 samples
using RT-qPCR with corresponding Assay-on-Demand
TaqManW probes (Table 2) and a set of three stably
expressed genes as normalizers, selected also from the
microarray data. Seven of these 27 failed the validation
step, because these genes showed no expressions in the 63
1.00.80.60.40.20.0
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0.8

0.6

0.4

0.2

0.0
Reference Line
inv205406
inv182018
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1 - Specificity
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90 Healthy controls
vs.

19 EOC FIGO I/II

14 Benign/LMP
vs.

19 EOC FIGO I/II

B

D

F

Area under the receiver operating characteristic (ROC) curves (AUCs)
rted – predictive genes, (C-F) the LASSO estimated risk score built
ealthy controls and patients with malignant disease, (D) for
tion of patients with benign or low malignant potential tumors and
benign or low malignant potential tumors and FIGO I + II patients.
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samples, indicating microarray artifacts or problems with
the Assay-on-Demand TaqManW probes (Table 2). A fur-
ther selection step by Significance Analysis of Microarrays
(SAM) selected 13 of the remaining 20 genes with q-
values ≤ 0.15 (Table 2).
Normalized RT-qPCR expression values of these 13 genes

were determined from all 343 samples of cohort 1. Regula-
tion levels for each FIGO group, FIGO I/II and FIGO III/
IV, are shown in Table 3A. Five genes were significantly
down-regulated in the leukocytes fraction of FIGO I/II and
FIGO III/IV EOC patients compared to 90 healthy blood
donors, AP2A1, B4GALT1, CFP, OSM, and PRIC285. One
further gene was significantly down-regulated only in FIGO
III/IV EOC patients, NOXA1. In addition, two genes were
significantly up-regulated in FIGO III/IV EOC patients but
not in FIGO I/II EOC patients, namely CCR2 and DIS3.
The expression of five genes was associated with higher

probability of EOC (Figure 3A), two of them non-
significantly (DIS3 and ZNF419), and eight genes were
negatively correlated with the probability of EOC. Using L1
penalized logistic regression, a predictive model was built
to discriminate between healthy blood donors as controls
and the 239 EOC patients. The model selected all 13 genes
including the genes which were not significantly different
in the univariate analyses (Table 2). CFP was the only gene
whose predictive value changed from its negative direction
Table 4 Area under the receiver operating characteristic curv
these genes

ProbeID
(90 Healthy vs. 239 EOC)

AUC Asymptoti
[p-valu

105743 0.525 0.484

109227 0.541 0.249

110071 0.618 0.001

228089 0.822 <0.001

713562 0.721 <0.001

inv115368 0.684 <0.001

inv119290 0.610 0.002

inv142487 0.589 0.013

inv157342 0.638 <0.001

inv161567 0.639 <0.001

inv162222 0.804 <0.001

inv182018 0.600 0.005

inv205406 0.731 <0.001

L1 model (LASSO penalty)

Healthy vs. EOC 0.971 <0.001

Healthy vs. FIGO I + II 0.905 <0.001

Benign/LMP vs. EOC 0.939 <0.001

Benign/LMP vs. FIGO I + II 0.853 0.001
in the univariate analysis to a positive contribution in the
L1 penalized multivariable logistic model.
Since the healthy donors were significantly younger than

the EOC patients (Table 1), we investigated whether the
risk score from the L1 penalized logistic regression model
(i. e., the sum of each subject's gene expressions weighted
by the L1 model coefficients) was correlated to age. This
was not the case, as confirmed by irrelevant correlation
coefficients of the risk score with age of 0.083 (p = 0.449)
in healthy donors and 0.104 (p = 0.111) in EOC patients,
which indicates clearly the independence of our models
from the impact of age on diagnosis of EOC.
The same model discriminated FIGO I + II patients

from controls with a sensitivity of 74% at a specificity set
at 99% (Figure 3D, AUC = 0.905, CI95% 0.781–1.000,
Table 4). However, our model could not discriminate
well between healthy controls and patients with benign
or LMP tumors (AUC = 0.658, p = 0.058). Nevertheless,
malignant tumors were distinguished from benign or
LMP tumors with a sensitivity of 87% at a specificity
fixed at 95% (AUC= 0.939, CI95% 0.902–0.976) (Figure 3E,
Table 4) and even FIGO I + II EOC tumors were differ-
ent from benign or LMP tumors with an AUC of 0.853
(CI95% 0.719–0.987) (Figure 3F, Table 4). Substantial
differences for histological types or grades for all tu-
mors and FIGO I + II stage tumors were not obvious,
es (AUC) of the 13 single genes and the L1 model of

c Sig.
e]

Asymptotic 95% confidence interval

Lower bound Upper bound

0.460 0.590

0.475 0.608

0.556 0.680

0.778 0.866

0.665 0.778

0.625 0.744

0.546 0.674

0.525 0.653

0.568 0.707

0.576 0.702

0.758 0.851

0.537 0.664

0.675 0.786

0.956 0.987

0.781 1.000

0.902 0.976

0.719 0.987
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taking into account the small number of observations
in some groups.

Combination with plasma protein abundance-based
biomarkers
To combine the information of the 13 expression based bio-
markers with plasma protein biomarkers, the abundances of
six proteins from a known cancer biomarker panel were
determined from 224 EOC-plasma samples and from 65
controls (cohort 2) using a commercially available Luminex-
based multiplex assay (Figures 2 and 4). In Table 5 the coef-
ficients of the L1 and L2 penalized models, in Figure 2 the
corresponding AUC-values, and in Figure 1 the ROC-curves
are shown. In Table 6 the characteristics of the two regres-
sion models (L1 and the L2 penalized)–are tabularized using
the combination of both types of biomarkers. The discrim-
inatory models built from the 13 expression based bio-
markers combined with the plasma protein biomarkers
proved to be significantly better than the models built from
the plasma protein biomarkers alone (p < 0.0001, likelihood
ratio test).
1

1

CA12515

13

11

9

7

5

3

1

-1

1

1

1

FIGO III/IVFIGO I/IIControl

MIF

12

10

8

6

Osteopondin11

9

7

5

3

1

-1

62

Figure 4 Boxplots of log2 plasma abundance values for proteins, MIF
controls, and FIGO I/II and FIGO III/IV patients.
Bootstrap validation
The ability of the two combined models to discriminate can-
cer patients from healthy controls (ROC analysis), and their
classification errors were estimated using bootstrap .632+
validation, simulating external validation by resampling. This
corrects for the over optimism that would result from an in-
ternal validation of our results (Table 6).
The L1 model, comprised of five gene expression and five

protein abundance based values (excluding osteopontin),
proved to be slightly more sensitive (97.8% compared to
95.6% at a given specificity of 99.6%). The L2 model, using
all 13 gene expression and all six protein abundance values,
resulted in less misclassification (bootstrap .632+ cross-
validated classification error of 2.8% vs. 3.1%).
Discussion
In this study, the combination of gene expression values
with a serum protein biomarker panel significantly
increased the capacity to distinguish between EOC pa-
tients and controls.
Prolactin2
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IGF24

2

0
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Leptin8
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Table 5 Coefficients of all diagnostic models using either only expression values, protein abundance values, or both
types of values in combination (65 controls vs. 224 EOC samples)

Genes/Proteins Coefficients (L1 and L2 penalized regression)

L1 7 Genes L2 13 Genes L1 4 Proteins L2 6 Proteins L1 5 Genes 5 Proteins L2 13 Genes 6 Proteins

105743 0.02 0.63 0.26

109227 0.05 −0.01

110071 0.17 0.26 0.16

228089 0.91 0.99 0.63 0.70

713562 0.34 0.34 0.22 0.29

115368 −0.18 0.36

119290 0.28 0.34

142487 0.15 0.12

157342 0.36 0.64 0.35 0.55

161567 −0.56 −0.27

162222 −1.34 −1.34 −1.58 −1.30

182018 −0.38 −0.09

205406 −0.83 −1.05 −0.54 −0.87

log2 MIF 0.09 −0.05 −0.24

log2 prolactin 0.67 0.62 0.47 0.53

log2 CA125 0.71 0.67 0.33 0.39

log2 leptin −0.32 −0.35 −0.55 −0.59

log2 osteopondin 0.05 −0.02

log2 IGF2 −0.31 −0.35 −0.47 −0.51

Intercept 3.93 4.90 −2.71 −2.77 4.91 7.31
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Serum proteins used for serum based tests are thought
to be derived from the tumor-microenvironment and are
therefore directly correlated with the amount of tumor
mass. We speculate that among others, differences in
leukocytes expressions, representing the systemic status
of the immune system, are also driven by the malignant
processes. Therefore, discrimination between benign and
malignant tumors could probably be easier using
leukocyte expression patterns than with only serum pro-
tein patterns, especially to detect patients with early
EOC stages.
Table 6 Characteristics of both combined models for
diagnosis of EOC

Model L1 lasso penalty L2 ridge penalty

Blood expression values 5 genes 13 genes

Plasma protein values 5 proteins 6 proteins

AUCa (FIGO I-IV) 0.998 0.998

AUC (FIGO I-II) 0.976 0.979

Specificity (set) 99.6% 99.6%

Sensitivity 97.8% 95.6%

Classification error (bootstrap .632+) 3.1% 2.8%
aBootstrap .632+ validated area under the ROC curve.
Applying a whole genome transcriptomics approach, we
identified gene expression patterns of 7 or 13 genes in a
leukocytes fraction from peripheral blood, discriminating
healthy controls and patients with benign diseases from
EOC patients. We are the first to show that this discrimin-
ation can be performed with an AUC of 0.984 (CI95%
0.972–0.996) and 0.987 (CI95% 0.976–0.997), respectively.
We reached a sensitivity of 88% at a specificity set at 99%.
A limitation of this study is that our models were not
tested with other cancer entities and thus not enough evi-
dence for cancer-type specificity can be provided. Further-
more, patients with other diseases, i.e. diseases which are
inflammatory active like arthritis, should be included in a
further – larger – control cohort. Therefore, the term 'spe-
cificity' is only related to the statistical differentiation be-
tween the controls and the ovarian cancer patients of this
study. The diagnostic power of this gene expression pat-
terns is similar or even stronger to marker panels derived
from serum proteins [7,10-12]. Furthermore, our gene ex-
pression model can distinguish benign or LMP tumors
from malignant tumors with a rather high sensitivity and
specificity (87% and 95%, respectively). Only Zhang at al.
[7] had tested their multi-marker serum panel for the dis-
criminatory potential between benign or low malignant
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potential tumors and malignant tumors, with sensitivities
and specificities in the range of 33% to 50% and 33% to
45%, respectively.
Combining the expressions of the 13 genes that we

have identified with the protein abundance values from
a commercially available serum protein biomarker panel
significantly increases our predictive model. A model
comprised of five gene expression values and five protein
abundance values showed a sensitivity of 97.8 at a speci-
ficity of 99.6%. The high sensitivity and specificity
reached by our models highlight a possible applicability
of our combined model as a diagnostic test in high-risk
individuals or as second test in combination with a CA-
125/transvaginal sonography-based screening approach.
The bootstrap .632+ validated classification error for this
model was 3.1%. Our models were not tested with other
cancer entities and thus our study does not provide
enough evidence for cancer-type specificity. Hence, our
use of the term 'specificity' relates to the statistical differ-
entiation between the controls and the ovarian cancer pa-
tients of this study only. Nevertheless, we think that the
combination of a sensitive blood gene expression test
(even if it is not cancer type – or even – cancer specific)
with a cancer type specific protein test provides in com-
bination both, a high sensitivity and a high specificity.
The functional specifications of the 13 genes that we

identified are widespread among the pool of functional
clusters and pathways, which is not a big surprise given
the model building approaches used for generating the
discriminative models, i.e. methods which exclude corre-
lated genes from the final model explicitly (Table 3).
Nevertheless, four genes are involved directly in inflam-
matory response and the immune system (B4GALT1,
CCR2, CFP, and OSM), and two of them in the JAK/STAT
pathway (CCR2 and OSM), known to be a common sig-
naling pathway used by many cytokines [21]. Two genes
seem to be non-coding RNAs (NEAT1 and transcript
BC037918), presumably involved in regulation of transcrip-
tion. The other protein functions are completely incoher-
ent: one is a zinc-finger protein (ZNF419) of unknown
function, one a poly(A) polymerase (PAPOLG), one a co-
activator for several nuclear receptors like PPARA, PPARG,
TR-beta-1, ER-alpha, and RXR-alpha (PRIC285), one a ac-
tivator of catabolic NADPH oxidases (NOXA1), one is an
RNase enzyme and can be part of the exosome complex
(DIS3), and one is involved in the assembly of clathrin
coated vesicles (AP2A1). From one transcript, C1orf63, no
homologue protein is known.
The next step will be to validate the combined gene

expression- and protein abundance- based predictive model
using an independent large cohort of various controls and
patients including patients with a systematic inflammatory
status and including a larger sample of patients with FIGO
I/II stages, which is an apparent shortcoming of this study.
Conclusion
The combination of two different types of biomarker sig-
natures, one derived from blood plasma and one derived
from the peripheral immune system, improved the dis-
criminative power between control persons and ovarian
cancer patients significantly, compared to the two single
signatures alone. The concept of combining different types
of biomarker (signatures) for one diagnostic or prognostic
test opens new avenues, particularly by expanding this
concept to further types of blood based biomarker, e.g.
derived from circulating tumor cells or cell-free nucleic
acids and involving genetic, epigenetic, or microRNA as-
sociated biomarker (signatures).
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