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Membrane Type 1 Matrix Metalloproteinase
induces an epithelial to mesenchymal transition
and cancer stem cell-like properties in SCC9 cells
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Abstract

Background: Tissue invasion and metastasis are acquired abilities of cancer and related to the death in oral
squamous cell carcinoma (OSCC). Emerging observations indicate that the epithelial-to-mesenchymal transition
(EMT) is associated with tumor progression and the generation of cells with cancer stem cells (CSCs) properties.
Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) is a cell surface proteinase, which is involved in degrading
extracellular matrix components that can promote tumor invasion and cell migration.

Methods: In the current study, we utilized SCC9 cells stably transfected with an empty vector (SCC9-N) or a vector
encoding human MT1-MMP (SCC9-M) to study the role of MT1-MMP in EMT development.

Results: Upon up-regulation of MT1-MMP, SCC9-M cells underwent EMT, in which they presented a fibroblast-like
phenotype and had a decreased expression of epithelial markers (E-cadherin, cytokeratin18 and -catenin) and an
increased expression of mesenchymal markers (vimentin and fibronectin). We further demonstrated that MT1-MMP

surface markers.

-induced morphologic changes increased the level of Twist and ZEB, and were dependent on repressing the
transcription of E-cadherin. These activities resulted in low adhesive, high invasive abilities of the SCC9-M cells.
Furthermore, MT1-MMP-induced transformed cells exhibited cancer stem cell (CSCO)-like characteristics, such as low
proliferation, self-renewal ability, resistance to chemotherapeutic drugs and apoptosis, and expression of CSCs

Conclusions: In conclusion, our study indicates that overexpression of MT1-MMP induces EMT and results in the
acquisition of CSC-like properties in SCCI cells. Our growing understanding of the mechanism regulating EMT may
provide new targets against invasion and metastasis in OSCC.
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Background

Oral squamous cell carcinoma (OSCC) is a major oral cav-
ity health problem. Although many therapeutic strategies
have been carried out [1], the 5-year survival rate for these
patients has remained at 50-60% for the last three decades
[2]. Tissue invasion and metastasis are exceedingly com-
plex processes and are one of the hallmarks of cancer [3];
thus, it is important to clarify the biological mechanism of
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tissue invasion and metastasis for grading the course of
cancer and developing more effective therapies [3,4].

The epithelial-to-mesenchymal transition (EMT) is the
cellular and molecular process through which cell-to-cell
interactions and apico-basal polarity are lost and a mes-
enchymal phenotype is acquired, which are required for
cell motility and basement membrane invasion during
metastasis [5,6]. The EMT plays a critical role in em-
bryogenesis and is associated with tissue remolding,
wound healing, fibrosis, cancer progression and metasta-
sis [5,7-9]. In the metastatic cascade of epithelial tumors,
the EMT has been established as an important step [10].
Furthermore, researchers have shown that the EMT is
associated with the dedifferentiation program that leads
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to malignant carcinoma [5], as the EMT confers invasive
cancer cells an efficient migration ability and a selective
advantage to reach distant locations [9,10]. Transcriptional
repression of the E-cadherin gene can lead to the loss of
the epithelial phenotype and the functional loss of E-
cadherin is one of the hallmarks of EMT [5]. In particular,
transcriptional repressor has recently emerged as a funda-
mental mechanism for the silencing of CDHI1 (the gene
that encodes E-cadherin), such as the Snail (Snaill and
Slug), ZEB (ZEB1 and ZEB2) and basic helix-loop-helix
(bHLH: Twist) families [6,11].

Matrix metalloproteinases (MMPs) are zinc-dependent
endopeptidases. MMPs are involved in degrading extra-
cellular matrix (ECM) in normal physiological processes,
such as embryonic development, reproduction and tissue
remodeling, as well as in disease processes, such as arth-
ritis and metastasis [12,13]. There are over 23 MMPs
identified in humans, which are subdivided into soluble
MMPs and membrane-type MMPs (MT-MMPs) [14,15].
While MT1-MMP has a common MMP domain struc-
ture with a signal peptide, a pro-peptide, catalytic and
hemopexin-like domains, it also has unique insertions.
One of the insertions is at the C-terminus and contains a
hydrophobic amino-acid sequence that acts as a trans-
membrane domain [16,17]. As a member of the MMPs,
MTI1-MMP is closely associated with cancer invasiveness
and the promotion of cell migration [16,18-20]. Recent
researches have emerged to indicate that cell surface
MT1-MMP has been recognized as an inducer of EMT in
cancer cells [21,22]. The researches on MT1-MMP further
demonstrated that MT1-MMP via cleaving E-cadherin in-
duced an EMT in transfected breast cancer [21], which
was shown to be dependent on up-regulation of Wnt5a in
prostate cancer cells [22]. However, the molecular tran-
scriptional mechanism related to MT1-MMP as an in-
ducer of EMT remains poorly understood, and the
association of MT1-MMP and EMT has not been
reported in oral cancer cells. Thus, we examined whether
MT1-MMP-induced EMT through mediation of tran-
scriptional repression of E-cadherin in OSCC.

Recently, studies of neoplastic tissues have provided evi-
dence of self-renewing, stem-like cells within tumors,
which have been called cancer stem cells (CSCs) [23]. In-
creasing evidence suggests that EMT bestows carcinoma
cells at the tumor front with cancer stem cell (CSC)-like
properties and plays an important role in initiating CSCs
[24,25]. Furthermore, CSCs have been identified in head
and neck SCC [4,25]. However, an association specifying
the EMT and CSCs induced by MT1-MMP in SCC9 cells
has not been investigated.

Based on the above studies, we demonstrate the mo-
lecular mechanisms in OSCC that are involved in the
overexpression of MT1-MMP by the cancer cells that
induces an EMT and leads to the acquisition of CSC-like
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properties by the cancer cells. These studies may provide
new avenues of research with potential clinical implications.

Methods

Cell cultrue, plasmid construction and transfection
Human oral squamous cell carcinoma SCC9 cells were
obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). Cells were maintained in a
mixture of Dulbecco’s Modified Eagle’s medium and
Ham’s F12 medium (1:1) (Invitrogen, Burlington, Ontario,
Canada) supplemented with 10% fetal bovine serum (FBS,
Invitrogen), 400 ng/ml hydrocortisone (Sigma-Aldrich, St
Louis, MO, USA) and penicillin (100 U/ml)/streptomycin
(100 pg/ml) (Invitrogen). A full-length ¢cDNA for human
MT1-MMP (NM_004995.2) was amplified using RT-PCR
and then ligated into the PCR2.1-TOPO vector. The
constructed PCR gene product was cloned into the
pEGFP-N1 vector. The final gene synthesis was verified
via sequencing and amplified using DH5a competent cells.
The Endo-free Plasmid Mini Kit II (OMEGA) was used for
all plasmid preparations. For transfection experiments, cells
were maintained in six-well plates (Corning, Lowell, MA,
USA) and cultured to 80% confluence, after which the
medium was changed to serum-free medium for overnight
incubation. The cells were transfected with Lipofectamine
2000 (Invitrogen) according to the manufacturer’s instruc-
tions. G418 (400 pg/ml; Invitrogen) was added to the
media 48 h after transfection. The cells were allowed to
grow in the presence of G418 for two weeks, and clones
were picked for growth on plates to confluence. Thus,
stably expressing empty vector--SCC9-pEGFP-N cells
(SCC9-N) and a vector encoding human MT1-MMP-
SCC9-pEGFP-M cells (SCC9-M) were obtained for our
study.

For the experiment of addition of inhibitors, 2x10°/ml
SCC9-M cells were added to six-well plates (Corning).
The cells were then treated with 5 nM tissue inhibitor of
metalloproteinase (TIMP)-1 (Calbiochem, Darmstadt,
Germany), 5 nM of TIMP2 (Calbiochem) and incubated
for three days at 37°C.

Real-time RT-PCR

Total RNA was extracted from cells using the TRIzol re-
agent (Invitrogen). For cDNA synthesis, mRNA was
reverse-transcribed into cDNA using the 5xPrimeScript
RT Master Mix (TaKaRa) at 37°C for 15 min and 85°C
for 5 s according to the manufacturer’s protocol. Gene
expression was quantified by real-time quantitative PCR
using 2xSYBR Premix Ex Taq (TaKaRa) with a 7300 ABI
Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA) under the conditions of 95°C for 30 s, 95°C
for 5 s, and 60°C for 31 s for 40 cycles. The relative gene
expression was calculated using the 2(-AACT) method.
Briefly, the resultant mRNA was normalized to its own
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GAPDH [26]. The following primers were utilized for the
real-time RT-PCR. GAPDH (5-GAAGGTGAAGGTCGGA
GTC-3, 5-GAGATGGTGATGGGATTTC -3'), MT1-MM
P (5-GGAACCCTGTAGCTTTGTGTCTGTC-3, 5-TGA
GGGTCCTGCCTTCAAGTG-3'), E-cadherin (5-TACACT
GCCCAGGAGCCAGA-3, 5-TGGCACCAGTGTCCGGA
TTA-3), B-catenin (5-GCTGAAGGTGCTATCTGTCTG
CTC-3, 5-TGAACAAGACGTTGACTTGGATCTG-3),
cytokeratin18 (5-AGGAGTATGAGGCCCTGCTGAA-3/,
5 -TTGCATGGAGTTGCTGCTGTC-3), vimentin (5-T
GAGTACCGGAGACAGGTGCAG-3, 5-TAGCAGCTT
CAACGGCAAAGTTC-3), fibronectin (5 —~-TGCCTTGC
ACGATGATATGGA-3, 5-CTTGTGGGTGTGACCTG
AGTGAA-3'), snail (5-GACCACTATGCCGCGCTCTT-
3, 5-“TCGCTGTAGTTAGGCTTCCGATT-3'), slug (5-A
TGCATATTCGGACCCACACATTAC-3, 5-AGATTTG
ACCTGTCTGCAAATGCTC-3'), Twist (5-GGAGTCCG
CAGTCTTACGAG-3, 5-TCTGGAGGACCTGGTAGA
GG-3'), ZEB1 (5-GAAAGTGATCCAGCCAAATGGAA-
3, 5-TTTGGGCGGTGTAGAATCAGAG-3), ZEB2 (5-
AAATGCACAGAGTGTGGCAAGG-3, 5-CTGCTGAT
GTGCGAACTGTAGGA-3) and CDHI1 (5-AGATGGTG
TGATTACAGTCAAAAGG-3, 5-CAGGCGTAGACCA
AGAAAT-3).

Western blotting and shedding of the E-cadherin
ectodomain

Cells were lysed using a RIPA lysis buffer (Beyotime).
Total protein (30 pg) from each sample was subjected to
the SDS-PAGE and then transferred to PVDF membranes
(Millipore, Billerica, MA, USA), which were blocked for 2
h at room temperature with 5% nonfat milk in PBST. The
following antibodies were used to detect bands on the pro-
tein blots: anti-B-actin (1:1000, Santa Cruz Biotechnology,
Santa Cruz, CA, USA), anti-MT1-MMP (1:500, Abcam,
Cambridge, MA, USA), anti-E-cadherin (1:1000, Cell Sig-
naling Technology, Danvers, MA, USA), anti--catenin
(1:500, Santa Cruz Biotechnology), anti-cytokeratinl8
(1:500, Bioworld Technology, MN, USA), anti-vimentin
(1:500, Santa Cruz Biotechnology), anti-fibronectin (1:500,
Santa Cruz Biotechnology), anti-Snail (1:500, Abcam),
anti-Slug (1;1000, Cell Signaling Technology), anti-Twist
(1:500, Abcam), anti-ZEB1 (1:300, Abcam) and anti-ZEB2
(1:500, Novus Biologicals, Littleton, USA). Immunoreac-
tive material was visualized using the Immun-Star
WesternC Kit (Bio-Rad, Hercules, CA, USA) products and
bands were detected via exposure to film (Kodak, Japan).
For detecting the expression of extracellular E-cadherin,
the cells were cultured with serum-free medium for 24 h.
Next, the conditioned medium was collected via centrifu-
gation and concentrated 10-fold with a VirTis freeze dryer
(SP Scientific, NY, USA). An immunoblot was performed
as described above using an anti-E-cadherin ectodomain
antibody (1:500, Santa Cruz Biotechnology). All western
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bolt analyses were performed at least three independent
experiments.

Immunofluorescence

Cells were cultured on glass coverslips, fixed in 4% para-
formaldehyde (PFA) for 20 min at room temperature,
permeabilized with 1% Triton X-100 for 15 min and
blocked with goat serum albumin for 30 min 37°C,
followed by an overnight incubation at 4°C with antibodies
specific for E-cadherin (1:100, Cell Signaling Technology)
and vimentin (1:100, Santa Cruz Biotechnology), or
cytokeratin 18 (1:100, Bioworld technology) and fibronec-
tin (1:100, Santa Cruz Biotechnology). The appropriate
secondary antibodies (diluted 1:50) were then used, and
then nuclei were stained by 4, 6-diamidino-2-phenylindole
(DAPI; 1:1000, Invitrogen) for 2 min. Immunofluorescence
was visualized using a Zeiss LSM-710 laser-scanning con-
focal microscopy.

Adhesion, invasion and wound healing assays

The cells were plated in six-well plates (Corning) at a
density of 4x10° per well and then trypsinized after 1
and 2 h, respectively. The attached cells were counted
under an inverted microscope (Olympus), and the adher-
ent rate of the three different cell populations was calcu-
lated. The cell invasion was assessed using Transwell
filters with 6.5-mm diameters and 8-uM pore sizes
(Costar, Lowell, MA, USA). The filters were precoated
for 30 min at 37°C with 50 pL per square centimeter of
growth surface with Matrigel Basement Membrane
Matrix (BD Biosciences, MA, USA) diluted with serum-
free medium (1:3) according to the manufacturer’s pro-
cedures. The cells (3x10°) were resuspended with 100 pl
serum-free medium inoculated in the upper chamber
while 500 pl medium containing 10% FBS was placed in
the lower chamber. The plates were placed at 37°C in
5% CQO, for 24 h. The chambers were fixed with 4% PFA
and stained with 0.1% crystal violet (Beyotime) for 30
min. The non-migratory cells were removed, and the mi-
gratory cells were counted as those presenting on the
lower surface of the upper chamber. Images of at least
ten random fields per chamber were captured (x100
magnification). For the wound healing assay, the cells
were allowed to grow to 90% confluence and then
wounded by scratching with a pipette tip in the central
area. Floating cells and debris were removed, and the
medium was changed to serum-free. The cells were in-
cubated for 48 h to allow cells to grow and close the
wound. Photographs were taken at the same position of
the wound at the indicated time points.

Flow cytometry
For flow cytometric cell-cycle analysis, the cells were
synchronized with serum-free medium for 24 h, released
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and then cultured for three days. The cells were detached
from the culture plate with trypsin, washed with PBS, and
then resuspended in 75% alcohol. The prepared cells were
stained with 100 mg/ml of propidium iodide (BD
Pharmingen, San Jose, CA, USA) prior to analysis using
flow cytometry with a BD FACS Calibur (BD Biosciences)
and CellQuest Pro software (BD Biosciences). For surface
marker analysis, the cells were collected and then labeled
with human-fluorochrome-conjugated anti-CD24-PE (10
ul per test, Beckman Coulter, Los Angeles, CA, USA),
anti-CD44-APC (20 pl per test, BD Pharmingen), anti-
CD133-PE (10 pl per test, Miltenyi Biotech, Auburn, CA,
USA). The corresponding mouse immunoglobulins conju-
gated to PE or APC (BD Pharmingen) were used as
isotype controls in each experiment. For apoptosis ana-
lysis, the cells were dealed with mitomycin at concentra-
tion gradients of 16 and 128 mg/ml for 24 h. Then the
prepared cells were collected and stained with PE Annexin
V Apoptosis Detection Kit I (BD Pharmingen) for 15 min
according to the manufacturer’s protocol. The rate of
apoptosis cells was relative to each untreated group.

Colony-forming assays

The cells were plated in 100-mm dishes (Corning) at a
density of 1000 cells per dish and cultured at 37°C for two
weeks. The dishes were fixed in 4% PFA, stained with crys-
tal violet, and photographed. The colonies were visualized
under an inverted microscope (Olympus). Aggregations of
more than 50 cells were defined as a colony.

MTT assay

The survival rate of cells was analyzed using an MTT
(Sigma) assay, which is a colorimetric assay for measuring
the activity of enzymes that reduce MTT to formazan dyes,
producing a purple color. The MTT assay is the preferred
method used to assess the viability and proliferation of cells
[27]. The SCC9-N and SCC9-M cells were plated in 96-
well plates (Corning) at an initial density of 2x10° cells per
well, and then synchronized with serum-free medium for
24 h. For consecutive culturing at 0, 1, 3, 5,7, 9 d, the cells
were treated with 5 mg/ml MTT and incubated at 37°C for
4 h, and then treated by dimethylsulfoxide (Sigma). The
absorbance of samples in triplicate wells was measured
with an automatic enzyme-linked immunosorbent assay
reader (ELx800, BioTek Instruments, Inc., USA) at a wave-
length of 490 nm. Population doubling time (PDT) was
calculated according to Patterson formulation. For drug re-
sistant experiment, the SCC9-N and SCC9-M cells were
plated in 96-well plates (Corning) at the same density of
5x10* cells. After serum-starvation, mitomycin at concen-
tration gradients of 16 and 128 mg/ml was added separ-
ately to the culture medium and maintained for 24 h. The
absorbance of samples in triplicate wells was measured as
introduced above. The survival rate of the cells relative to
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each untreated group was calculated. The data were ana-
lyzed using three independent experiments.

Statistical analysis

The data were representative of three or more independent
experiments as the mean + s.d. Statistical significance was
assessed using one-way analysis of variance and Student’s
unpaired t test. P-value <0.05 was considered significant.

Results

Human oral squamous cell carcinoma SCC9 cells are
less aggressive, which may correlate with the low MT1-
MMP expression level observed in these cells. Thus, we
utilized the up-regulation of MT1-MMP in SCC9 cells, via
the transfection of either an empty vector (SCC9-N) or a
vector encoding human MT1-MMP (SCC9-M), to study
the role of MT1-MMP in cancer invasion and metastasis.
After screening via G418 selection, we performed a series
of experiments using SCC9 cell lines stably expressing
empty vector or MT1-MMP.

MT1-MMP induces SCCI cells to undergo an EMT and
alters cell phenotype

Overexpression of MT1-MMP in SCC9 cells results in
morphologic changes of cells that are undergoing an
obvious EMT. The observed morphological changes ob-
served include cells switching from a cuboid epithelial
shape to a fibroblastic appearance, which was not ob-
served in cells expressing a control empty vector. The
same changes can be viewed under a fluorescence micro-
scope (Figure 1A and B). The quantitative determination
of the mRNA expression in SCC9-M cells using real-time
RT-PCR revealed that a loss of the epithelial markers E-
cadherin, cytokeratin 18 and P-catenin occurred when
compared with that of GAPDH. Simultaneously, an
up-regulation of the mensenchymal markers vimentin
and fibronectin was observed (Figure 1C). To verify
these findings on the protein level, a Western blot ana-
lysis was utilized to determine the expression of the
epithelial and mesenchymal markers. Notably, the
Western blot analysis confirmed the changes in gene
expression, as the increased expression of MT1-MMP
in SCC9 cells resulted in a decrease of E-cadherin,
cytokeratin 18, and P-catenin, and a concurrent in-
crease of vimentin and fibronectin (Figure 1D). To
confirm the effect of MT1-MMP on the EMT of the
cells, we used laser scanning confocal fluorescence mi-
croscopy to identify the expression of these epithelial and
mesenchymal markers. As shown with the immunofluor-
escence analysis, the SCC9-M cells presented a fibroblast-
like appearance, with decreased E-cadherin (red) and
cytokeratin 18 (red) and increased vimentin (orange) and
fibronectin (orange) protein expression. By contrast, the
SCCI9-N cells retained an epithelial-like morphology with
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Figure 1 MT1-MMP induces SCC9 cells to undergo an EMT and morphologic changes. (A) Stable expression of an empty vector or MT1-
MMP in SCCY cells was established. Pictures were captured under fluorescence microscope. Bar, 100 um. (B) Stable SCC9 cells expressing empty
control vector (SCC9-N) possessed a typical epithelial phenotype, similar to parental SCC9 cells. Stable SCC9 cells expressing MT1-MMP (SCC9-M)
possessed an elongated, fibroblastic appearance. Photographs were taken under inverted microscope (Olympus). Bar, 100 pm. (C) Quantitative
determination of mRNA expression of epithelial markers (E-cadherin, cytokeratin 18 and B-catenin) and mesenchymal markers (vimentin and
fibronectin) in SCCY, SCC9-N, SCC9-M cells using real-time RT-PCR. GAPDH was used as a control. Each bar represents the mean + s.d. *P<0.05,

**P<0.01. (D) The EMT-related protein levels were characterized by Western blot analysis. 3-actin was employed as a loading control.

normal E-cadherin and cytokeratin 18 expression and
weak vimentin and fibronectin expression, similar to par-
ental SCC9 cells (Figure 2A and B). These results demon-
strated that increased MT1-MMP expression was capable
of inducing an EMT in SCC9 cells.

MT1-MMP induces EMT is associated with an increase of
Twist and ZEB and through repressing the transcription
of E-cadherin

The loss of functional E-cadherin is a hallmark of EMT ([5]
and is considered a prerequisite. To investigate the mech-
anism by which MT1-MMP induces SCC9 cells to undergo
EMT, we detected the gene expression of CDH1 that en-
codes E-cadherin in SCC9, SCC9-N and SCC9-M cells,
and also detected the expression of key transcriptional re-
pressors of CDH1 as inducers of EMT. The result of real-
time RT-PCR showed that the level of CDHI1 was

decreased to 0.0018-fold in SCC9-M cells relative to the
SCC9 and SCCY-N cells (Figure 3A). Elevated levels of the
mRNA for three key EMT-inducing transcription factors,
Twist (9.55-fold), ZEB family-ZEB1 (602.03-fold) and ZEB2
(49.79-fold), were observed in SCC9-M cells relative to the
SCC9 and SCCI-N cells. However, there was no significant
difference in mRNA expression in Snail family members
(Snail and Slug), as determined by real-time RT-PCR in the
three cell lines (Figure 3B). Next, we proceeded to analyze
the expression of these transcriptional repressors at the
protein level. The Western blot trends corresponded to the
real-time RT-PCR results (Figure 3C). A reduction of Twist
(28.61%), ZEB1 (47.18%) and ZEB2 (45.92%) could be ob-
served with SCC9-M cells in the presence of recombinant
TIMP2 (5 nM, an inhibitor of MT1-MMP) but not TIMP1
(5 nM, an MMP inhibitor that does not specific affect
MT1-MMP). The expression of CDH1 in SCC9-M cells
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SCC9

magnification. Bar, 100 um.

SCC9-N

Figure 2 Immunofluorescence analysis of SCC9 cells, stable SCC9 cells expressing an empty vector (SCC9-N) and MT1-MMP (SCC9-M).
(A) Double immunofluorescence staining of E-cadherin (E-cad: red) and vimentin (Vim: orange). (B) Double immunofluorescence staining of
cytokeratin 18 (KRT 18: red) and fibronectin (FN: orange). The nuclei in both image sets were stained with DAPI (blue). Images were taken at x400

was increased 52.33% by the addition of TIMP2 but not
TIMP1 (Figure 3D and E). These results suggested that an
MT1-MMP directed the process that regulating the ex-
pression of Twsit, ZEB and CDHI. Furthermore, the
examination of the shedding of E-cadherin extracellular
domains in conditioned medium was nearly undetected in
SCC9-M cells (Figure 3F). These data indicated that the
MT1-MMP-induced EMT was associated with an in-
creased level of Twist and ZEB family and was dependent
on repressing the transcription of E-cadherin.

Overexpression of MT1-MMP in SCC9 cells results in a
change in the biological properties of the cells

In previous studies, the mesenchymal cells were highly in-
vasive and metastatic, with a loss of cell-to-cell adhesion
[28]. To identify whether MT1-MMP induces this ability
of SCC9 cells to gain the mesenchymal-like appearances
with these characteristics, we performed a series of experi-
ments. First an adhesion test demonstrated that the
SCC9-M cells had a lower adhesive ability than the SCC9

and SCC9-N cells (Figure 4A). The adherent rate of the
cells at one hour was 18.95%, 15.63% and 12.71% for the
SCCY, SCCI-N and SCC9-M cells, respectively. At two
hours, the percentage of attached cells for the three cell
lines was 48.46%, 49.79%, and 31.04%, respectively. Next, a
Transwell assay was performed to evaluate the invasive
ability of SCC9-M cells. After 24 h, the ability of the cells
to penetrate Matrigel basement membrane matrix was
quantified and captured with x100 magnification in ten
random fields. The photographs demonstrated that the
SCCY-M cells were more invasive than SCC9 and SCC9-
N cells. The quantitative analysis revealed an increase of
2.84-fold or 3.38-fold over that observed for SCC9 or
SCCY-N cells (Figure 4B and C). These results demon-
strated that increased expression of MT1-MMP promoted
the invasive ability of SCC9 cells. The result of scratch test
showed that the SCC9 and SCC9-N cells migrated to con-
fluence after 48 h; however, the SCC9-M cells exhibited
no ability to close the wound (Figure 5). Previous study
suggested that wound-healing assays had been carried out
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Figure 3 MT1-MMP induces SCC9 cells to undergo EMT is associated with an increased level of Twist and ZEB and through repressing
the transcription of E-cadherin. (A) Real-time RT-PCR was performed to detect the expression of CDH1 that encoding E-cadherin in SCC9 cells,
stable SCC9 cells expressing an empty vector (SCC9-N) and MT1-MMP (SCC9-M). GAPDH was used as a control. Each bar represents the mean =+ s.
d. **P<0.001. (B) Real-time RT-PCR was performed to detect the key transcription factors that repressed CDH1 as inducers of EMT, including Snail,
Slug, Twist, ZEB1 and ZEB2. GAPDH was used as a control. Each bar represents the mean + s.d. **P<0.01. (C) Western blot was performed to
analyze the expression of transcriptional repression factors on the protein level. $-actin was employed as a loading control. (D and E) Quantitative
determination of mMRNA expression of transcription factors on the SCC9-M cells treated with TIMPT and TIMP2. Each bar represents the mean + s.
d. *P<0.05. The western blot analysis was performed to assess the expression of transcription factors on the SCC9-M cells treated with TIMP1 and
TIMP2 on the protein level. 3-actin was employed as a loading control. (F) The examination of the shedding of E-cadherin extracellular domain in

conditioned medium and cell surface of SCC9, SCC9-N and SCC9-M.

in tissue culture for many years to estimate the prolifera-
tion rates and migratory behavior associated with different
cells and culture conditions [29]. This result illuminated
that the more invasive SCC9-M cells presented to a low
growth ability, which was correlated with the phenomenon
observed during cell culture. Previous study showed that
there existed a subpopulation of tumor cells with stem
cell-like characteristics such as very slow replication and
resistance to chemotherapy [30]. Thus, we speculated that
overexpression of MT1-MMP in SCC9 cells resulted in the
cells undergoing an EMT and presented lower proliferation
ability that may confer CSC-like properties.

Overexpression of MT1-MMP in oral cancer cells results in
the expression of CSC-like characteristics

Head and neck squamous cell carcinoma (HNSCC) con-
tain a subpopulation of cancer cells that are capable of
self-renewal, are able to proliferate and form new tumors,
and possess the features of CSCs [4]. Previous studies on

CSCs revealed that CSCs retain the properties of relative
quiescence as well as resistance to therapeutic drugs and
apoptosis [31,32]. To verify that SCC9-M cells had low
proliferation abilities as shown in the scratch test, a cell-
cycle analysis was performed. The SCC9-M cells had a
higher percentage of cells in the GO/G1 phase (29.51%)
than that observed for the SCC9-N cells (19.05%). In con-
trast, the total percentage of cells in S-phase was 18.36%
for the SCC9-M cells, which is lower than the 22.78% ob-
served for the SCC9-N cells, confirming that the SCC9-M
displayed decreased proliferation ability (Figure 6A). An
MTT assay was performed to further determine that the
SCC9-M cells displayed a lower cell proliferation. As shown
in cell growth curve, the PDT in SCC9-M cells (46.38 +
1.14 h) was significantly longer than in SCC9-N cells
(29.36 + 1.35 h) (Figure 6B). Next we examined the ex-
pression levels of several CSCs surface markers by flow cy-
tometry. The SCC9-M cells presented as CD44+ (93.45%)
CD24-low (49.21%) CD133- (0.89%), while SCC9-N cells
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presented as CD44+ (97.58%) CD24-high (97.91%) CD133-
(0.29%) (Figure 6C and D). A colony-forming assay was
performed and confirmed that the SCC9-M cells had the
ability to self-renew but formed fewer colonies than SCC9-
N cells (Figure 6E-G). This result provided additional evi-
dence that the SCC9-M cells had a lower proliferation ability
than SCCO-N cells. To further investigate whether SCC9-M
cells developed resistance to therapeutic drugs, mitomycin
was administered to the cells for 24 h. As shown in
Figure 6H, the SCC9-M cells had a higher survival rate
than SCC9-N cells by treating with different drug concen-
trations (16 and 128 mg/ml). This result revealed that the
up-regulation of MT1-MMP in SCC9 cells contributed to
drug resistance of the cells. To determine the ability of

resistance to apoptosis in SCC9-M cells, a flow cytometric
apoptosis analysis was performed. For SCC9-M cells, the rate
of apoptosis cells was lower than SCC9-N cells treated with
mitomycin at the drug concentrations of both 16 and 128
mg/ml for 24 h (Figure 7A and B). Our results suggested
that there existed significantly higher population of SCC9-
M cells resistance to apoptosis, as shown in the statistical
analysis in Figure 7C.

Discussion

Most patients with OSCC die because of metastasis or re-
currence of the tumor [2]. However, key events mediating
invasion and metastasis of this carcinoma are still un-
defined, although the linkage between an EMT and cancer
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invasion and metastasis has been understood for years
[5,8-10]. Studies have suggested that EMT endows cells
with stem cell-like traits [26,32,33] and allows to become
more invasive and migratory. Thus, our research was fo-
cused on the association of MT1-MMP, EMT and invasion
and metastasis of oral carcinoma SCC9 cells; and, we
made four novel observations. First, overexpression of
MT1-MMP can induce oral cancer SCC9 cells to undergo
EMT. Second, MT1-MMP-induced phenotypic changes in
the SCC9 cells increased the level of Twist and ZEB and
were dependent on repressing the transcription of E-
cadherin. Third, this phenotype transformation resulted in
a change in the biological properties of the cells, with the
cells having decreased adhesion, high invasion but low
proliferation ability. Fourth, these mesenchymal-like cells
gained CSCs features.

MT1-MMP was recognized as a key mediator in both
ECM remolding and cell migration during tumor progres-
sion [17,19]. Previous studies on MT1-MMP were focused
on the relationship of its domain structures and cancer in-
vasion and metastasis. Our study related to the connection
of MT1-MMP and the EMT revealed that up-regulation
of MT1-MMP can induce oral carcinoma SCC9 cells to
undergo EMT via transcriptional repression of E-cadherin.
Upon the overexpression of MT1-MMP, SCC9-M cells
presented a fibroblast-like phenotype compared with the
cubic epithelial phenotype of SCC9-N cells. In addition,
analysis of the mRNA and protein levels verified that the
SCCY9-M cells underwent an EMT, in which decreased ex-
pression of epithelial markers (E-cadherin, [-catenin,
cytokeratin 18) and increased expression of mesenchymal
markers (vimentin, fibronectin) were observed. Further-
more, overexpression of MT1-MMP in SCC9 cells resulted

in a change in the biological properties of the cells. The
SCCI9-M cells lost the need for cell-to-cell adhesion which
contributed to cells becoming motile. As shown in invasion
assay, the SCC9-M cells acquired a highly invasive ability.
This in turn may allow cancer cells to cross the basement
membrane and invade surrounding tissues. Importantly,
recent studies demonstrated that MT1-MMP was essential
for the invasive ability of cells, due to its broad-spectrum
activity of degrading ECM components [16,17,34,35]. Our
results verified that MT1-MMP promoted cancer cell inva-
sion in OSCC through inducing the EMT.

The EMT is an important step in the metastatic
process of epithelial tumors [10], for which recent studies
have provided a more in-depth understanding of the mo-
lecular mechanisms involved. Loss of E-cadherin is cen-
tral to EMT in cancer cells [5]. Thus, in the present
study, we focused our attention on the transcriptional re-
pression of E-cadherin to explain how MT1-MMP
caused EMT in SCC9 cells. We also done the research to
identify whether MT1-MMP overexpression resulted in
the shedding of E-cadherin to induce an EMT, similar to
that reported in prior studies [21,22]. However, an exam-
ination of extracellular E-cadherin in the conditioned
medium on SCC9-M cells was nearly undetectable, not
similarly as previously reported in prostate cancer. Our
results demonstrated that MT1-MMP played a role in
dynamic silencing of CDHI1 so that transcriptional re-
pression of E-cadherin, leading to the loss of the epithe-
lial phenotype of SCC9 cells to undergo EMT. Indeed,
several transcription factors that strongly repress CDH1
(such as members of Snail, ZEB and bHLH families) have
recently emerged, which are now thought to be involved
in tumor progression [36]. The Snail family (Snail and
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Slug) was first identified as inducers of EMT [37,38], and
our previous work demonstrated that Snail had played an
important role in inducing an EMT in SCC9 cells [39].
However, in this study, no significant difference in the
expression of Snail and Slug were observed in the three
experimental cells. Furthermore, the level of mRNA and
protein expression observed on SCC9-M cells and SCC9-
M cells treated with TIMP1 and TIMP2 may demonstrate
that the MT1-MMP-induced EMT change was associated
with an increase of Twist and ZEB. Twist and ZEB genes
are key inducers of EMT and are closely associated with
tumor progression [40-42]. However, further investigation
is required, exploring the linkage between increased ex-
pression of both Twist and ZEB via MT1-MMP.
Furthermore, the more invasive SCC9-M cells did not
have the ability to close the wounds in the wound healing
assay. This result was consistent with our previous work
[39] and revealed that the SCC9-M cells exhibited a low
growth ability, which was further validated by cell-cycle
analysis and cell proliferation assay. The cell mitosis of
SCC9-M was blocked at the GO/G1 phase leading to a low
percentage of the cells residing in S-phase, suggesting a
decreased ability of cell growth. The cell growth curve
showed that the PDT in SCC9-M cells was significantly
longer than in SCC9-N cells, which further demonstrated
this point that the SCC9-M cells displayed lower prolifera-
tion ability. Although the SCC9-M cells had lower growth
ability, they possessed the ability of self-renewal, as dem-
onstrated in the colony-forming assay. The less visible and
smaller colonies formed by SCC9-M cells further eluci-
dated that the SCC9-M cells had lower proliferation abil-
ity. It has been proposed that most of the CSCs exist in
the quiescent GO cell phase, which allows an escape from
anti-cancer drug targeting and resistance to apoptosis
[31]. In our study, the mesenchymal-like SCC9-M cells
shared the ability of chemotherapeutic resistance to mito-
mycin. The flow cytometric apoptosis analysis confirmed
that the SCC9-M cells are more resistant to apoptosis.
These results demonstrated that there existed more
SCC9-M cells in a relative quiescent state, and these non-
dividing SCC9-M cells shared the ability to resistance to
cell death which presented CSC-like properties. Recently,
many CSC signatures have been reported, such as CD24,
CD44, CD133 and so forth [4,25,43,44]. In the current
study, the SCC9-M cells possessed CD24'°" expression in
contrast to the CD24™&" expression of the SCC9-N cells,
while both cell populations were CD44™€", The expression
of CD133 was either 0.89% or 0.29% in SCC9-M and
SCCI-N cells, respectively. This result was not the same
as that of prior reports; however, the CSC surface markers
are not consistent across various tumors. The marker may
or may not be useful for identifying stem cells from the
other organ or tumor type [45]. Our results demonstrated
that the cell surface marker CD44, while certified as a
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CSC marker in HNSCC, was not specific to oral SCC9
cells. Thus, it is not sufficient to define a stem cell solely
based on surface markers, and multiple assays are required
to isolate putative CSCs efficiently. Overall, our study
demonstrated that the SCC9-M cells possessed CSC-like
properties, including the ability to self-renew, resistance to
chemotherapeutic agents and apoptosis, and expression of
CSC markers.

Conclusions

In conclusion, our study demonstrated that MT1-MMP,
through repressing the transcription of E-cadherin, in-
duced less aggressive oral SCC9 cells to undergo an EMT,
which converted the SCC9-M cells into exhibiting a
mesenchymal-like phenotype, and to possess more inva-
sive ability. Furthermore, this transformation revealed a
connection with CSCs. Collectively, further detailed infor-
mation related to the molecular requirements for EMT
will contribute to a better understand of tumor progres-
sion and may suggest more efficient targets for future
therapeutic development.

Abbreviations

ATCC: American Type Culture Collection; CSCs: Cancer stem cells;
ECM: Extracellular matrix; EMT: Epithelial-to-mesenchymal transition;
MMP: Matrix metalloproteinase; MT1-MMP: Membrane type 1-MMP;
OSCC: Oral squamous cell carcinoma; TIMP: Tissue inhibitor of
metalloproteinase.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

CCY and LFZ carried out the experiment and performed the data analysis.
XHX, TYN and JHY participated in the experiment. CCY, LKL, and LFZ
designed the study, wrote and edited the manuscript. All authors read and
approved the manuscript.

Acknowledgements

This work was supported by grants from the National Natural Science
Foundation of China (grant numbers 81272968 and 30872903) and from a
project funded by the Priority Academic Program Development of Jiangsu
Higher Education Institutions. We also thank the American Journal Experts
for revising the English used in this article.

Author details

'Department of Basic Science of Stomatology, Institute of Stomatology,
Nanjing Medical University, Nanjing, People’s Republic of China. “Department
of Basic Science of Stomatology, College of Stomatology, Nanjing Medical
University, Postal# 210029 136# Hanzhong Road, Nanjing, Jiangsu, People’s
Republic of China. *Department of Stomatology, the First Affiliated Hospital
of Soochow University, Suzhou, People’s Republic of China. “Department of
the First Outpatient, College of Stomatology, Nanjing Medical University,
Nanjing, People’s Republic of China. “Department of Oral and Maxillofacial
Surgery, College of Stomatology, Nanjing Medical University, Nanjing,
People’s Republic of China.

Received: 19 August 2012 Accepted: 30 January 2013
Published: 1 April 2013

References

1. Forastiere A, Koch W, Trotti A, Sidransky D: Head and neck cancer. N £ngl J
Med 2001, 345(26):1890-1900.

2. Carvalho AL, Nishimoto IN, Califano JA, Kowalski LP: Trends in incidence
and prognosis for head and neck cancer in the United States: a site-



Yang et al. BMIC Cancer 2013, 13:171
http://www.biomedcentral.com/1471-2407/13/171

20.

21.

22.

23.

24,

25.

26.

27.

specific analysis of the SEER database. International journal of cancer
Journal international du cancer 2005, 114(5):306-816.

Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100(1):57-70.
Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P,
Weissman IL, Clarke MF, Ailles LE: Identification of a subpopulation of cells
with cancer stem cell properties in head and neck squamous cell
carcinoma. Proc Natl Acad Sci USA 2007, 104(3):973-978.

Thiery JP: Epithelial-mesenchymal transitions in tumour progression.
Nat Rev Cancer 2002, 2(6):442-454.

Huber MA, Kraut N, Beug H: Molecular requirements for epithelial-
mesenchymal transition during tumor progression. Curr Opin Cell Biol
2005, 17(5):548-558.

Kalluri R, Neilson EG: Epithelial-mesenchymal transition and its
implications for fibrosis. J Clin Invest 2003, 112(12):1776-1784.

Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition.
J Clin Invest 2009, 119(6):1420-1428.

Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal
transitions in development and disease. Cell 2009, 139(5):871-890.
Nieto MA: The ins and outs of the epithelial to mesenchymal transition
in health and disease. Annu Rev Cell Dev Biol 2011, 27:347-376.

Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour
progression: an alliance against the epithelial phenotype? Nat Rev Cancer
2007, 7(6):415-428.

Brinckerhoff CE, Matrisian LM: Matrix metalloproteinases: a tail of a frog
that became a prince. Nat Rev Mol Cell Biol 2002, 3(3):207-214.
Page-McCaw A, Ewald AJ, Werb Z: Matrix metalloproteinases and the
regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007, 8(3):221-233.
Seiki M: Membrane-type matrix metalloproteinases. APMIS: acta
pathologica, microbiologica, et immunologica Scandinavica 1999,
107(1):137-143.

[toh Y, Nagase H: Matrix metalloproteinases in cancer. £ssays Biochem
2002, 38:21-36.

Sato H, Takino T, Miyamori H: Roles of membrane-type matrix
metalloproteinase-1 in tumor invasion and metastasis. Cancer Sci 2005,
96(4):212-217.

[toh Y: MT1-MMP: a key regulator of cell migration in tissue. /UBMB Life
2006, 58(10):589-596.

Seiki M: The cell surface: the stage for matrix metalloproteinase
regulation of migration. Curr Opin Cell Biol 2002, 14(5):624-632.

Zarrabi K, Dufour A, Li J, Kuscu C, Pulkoski-Gross A, Zhi J, Hu Y, Sampson NS,
Zucker S, Cao J: Inhibition of matrix metalloproteinase 14 (MMP-14)-
mediated cancer cell migration. J Biol Chem 2011, 286(38):33167-33177.
Perentes JY, Kirkpatrick ND, Nagano S, Smith EY, Shaver CM, Sgroi D,
Garkavtsev |, Munn LL, Jain RK, Boucher Y: Cancer cell-associated
MT1-MMP promotes blood vessel invasion and distant metastasis in
triple-negative mammary tumors. Cancer Res 2011, 71(13):4527-4538.
Rozanov DV, Deryugina El, Monosov EZ, Marchenko ND, Strongin AY:
Aberrant, persistent inclusion into lipid rafts limits the tumorigenic
function of membrane type-1 matrix metalloproteinase in malignant
cells. Exp Cell Res 2004, 293(1):81-95.

Cao J, Chiarelli C, Richman O, Zarrabi K, Kozarekar P, Zucker S: Membrane
type 1 matrix metalloproteinase induces epithelial-to-mesenchymal
transition in prostate cancer. J Biol Chem 2008, 283(10):6232-6240.

Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer
stem cells. Nature 2001, 414(6859):105-111.

Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, Jung A,
Kirchner T, Brabletz T: A transient, EMT-linked loss of basement
membranes indicates metastasis and poor survival in colorectal cancer.
Gastroenterology 2006, 131(3):830-840.

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M,
Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal
transition generates cells with properties of stem cells. Cell 2008,
133(4):704-715.

Waldmann J, Slater EP, Langer P, Buchholz M, Ramaswamy A, Walz MK,
Schmid KW, Feldmann G, Bartsch DK, Fendrich V: Expression of the
transcription factor snail and its target gene twist are associated with
malignancy in pheochromocytomas. Ann Surg Oncol 2009,
16(7):1997-2005.

Mosmann T: Rapid colorimetric assay for cellular growth and survival:
application to proliferation and cytotoxicity assays. J Immunol Methods
1983, 65(1-2):55-63.

Page 12 of 12

28, Foroni C, Broggini M, Generali D, Damia G: Epithelial-mesenchymal
transition and breast cancer: Role, molecular mechanisms and clinical
impact. Cancer Treat Rev 2012, 38(6):689-697.

29. Kam 'Y, Guess C, Estrada L, Weidow B, Quaranta V: A novel circular invasion

assay mimics in vivo invasive behavior of cancer cell lines and
distinguishes single-cell motility in vitro. BVC Cancer 2008, 8:198.

30. LiJ, Zhou BP: Activation of beta-catenin and Akt pathways by Twist are
critical for the maintenance of EMT associated cancer stem cell-like
characters. BMC Cancer 2011, 11:49.

31. Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev
Cancer 2005, 5(4):275-284.

32. Chen C, Wei'Y, Hummel M, Hoffmann TK, Gross M, Kaufmann AM, Albers
AE: Evidence for epithelial-mesenchymal transition in cancer stem cells
of head and neck squamous cell carcinoma. PLoS One 2011, 6(1):216466.

33, Krantz SB, Shields MA, Dangi-Garimella S, Munshi HG, Bentrem DJ:
Contribution of epithelial-to-mesenchymal transition and cancer stem
cells to pancreatic cancer progression. J Surg Res 2012, 173(1):105-112.

34. Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ: A cancer cell metalloprotease

triad regulates the basement membrane transmigration program. Genes
Dev 2006, 20(19):2673-2686.

35. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P: MMP-2, MT1-MMP,
and TIMP-2 are essential for the invasive capacity of human
mesenchymal stem cells: differential regulation by inflammatory
cytokines. Blood 2007, 109(9):4055-4063.

36. Peinado H, Cano A: New potential therapeutic targets to combat
epithelial tumor invasion. Clinical & translational oncology: official
publication of the Federation of Spanish Oncology Societies and of the
National Cancer Institute of Mexico 2006, 8(12):851-857.

37. Cano A, Perez-Moreno MA, Rodrigo |, Locascio A, Blanco MJ, del Barrio MG,
Portillo F, Nieto MA: The transcription factor snail controls epithelial-
mesenchymal transitions by repressing E-cadherin expression. Nat Cell
Biol 2000, 2(2):76-83.

38, Higashikawa K, Yoneda S, Taki M, Shigeishi H, Ono S, Tobiume K, Kamata N:
Gene expression profiling to identify genes associated with high-
invasiveness in human squamous cell carcinoma with epithelial-
to-mesenchymal transition. Cancer Lett 2008, 264(2):256-264.

39. Zhu LF, HuY, Yang CC, Xu XH, Ning TY, Wang ZL, Ye JH, Liu LK: Snail
overexpression induces an epithelial to mesenchymal transition and
cancer stem cell-like properties in SCC9 cells. Laboratory investigation;
a journal of technical methods and pathology 2012, 92(5):744-752.

40. Yang J, Mani SA, Donaher JL, Ramaswamy S, ltzykson RA, Come C, Savagner

P, Gitelman |, Richardson A, Weinberg RA: Twist, a master regulator of
morphogenesis, plays an essential role in tumor metastasis. Cell 2004,
117(7):927-939.

41, Yang J, Mani SA, Weinberg RA: Exploring a new twist on tumor
metastasis. Cancer Res 2006, 66(9):4549-4552.

42. Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A:
beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal
transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Nat/
Acad Sci USA 2011, 108(48):19204-19209.

43, Zhang Z, Filho MS, Nor JE: The biology of head and neck cancer stem
cells. Oral Oncol 2012, 48(1):1-9.

44, Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T,
Thomas SB, Farrar WL: Invasive prostate cancer cells are tumor initiating
cells that have a stem cell-like genomic signature. Clin Exp Metastasis
2009, 26(5):433-446.

45, Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J,
Weissman IL, Wahl GM: Cancer stem cells-perspectives on current status
and future directions: AACR Workshop on cancer stem cells. Cancer Res
2006, 66(19):9339-9344.

doi:10.1186/1471-2407-13-171

Cite this article as: Yang et al.: Membrane Type 1 Matrix
Metalloproteinase induces an epithelial to mesenchymal transition and
cancer stem cell-like properties in SCC9 cells. BMC Cancer 2013 13:171.




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cell cultrue, plasmid construction and transfection
	Real-time RT-PCR
	Western blotting and shedding of the E-cadherin ectodomain
	Immunofluorescence
	Adhesion, invasion and wound healing assays
	Flow cytometry
	Colony-forming assays
	MTT assay
	Statistical analysis

	Results
	MT1-MMP induces SCC9 cells to undergo an EMT and alters cell phenotype
	MT1-MMP induces EMT is associated with an increase of Twist and ZEB and through repressing the transcription of E-cadherin
	Overexpression of MT1-MMP in SCC9 cells results in a change in the biological properties of the cells
	Overexpression of MT1-MMP in oral cancer cells results in the expression of CSC-like characteristics

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

