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Abstract

equivocal and insufficient to draw a definitive conclusion.

One of the molecules regulated by the transcription factor, hypoxia inducible factor (HIF), is the hypoxia-responsive
hematopoietic factor, erythropoietin (EPO). This may have relevance to the development of renal cell carcinoma
(RCQO), where mutations of the von Hippel-Lindau (VHL) gene are major risk factors for the development of familial
and sporadic RCC. VHL mutations up-regulate and stabilize HIF, which in turn activates many downstream
molecules, including EPO, that are known to promote angiogenesis, drug resistance, proliferation and progression
of solid tumours. HIFs typically respond to hypoxic cellular environment. While the hypoxic microenvironment plays
a critical role in the development and progression of tumours in general, it is of special significance in the case of
RCC because of the link between VHL, HIF and EPO. EPO and its receptor, EPOR, are expressed in many cancers,
including RCC. This limits the use of recombinant human EPO (rhEPO) to treat anaemia in cancer patients, because
the rhEPO may be stimulatory to the cancer. EPO may also stimulate epithelial-mesenchymal transition (EMT) in
RCC, and pathological EMT has a key role in cancer progression. In this mini review, we summarize the current
knowledge of the role of EPO in RCC. The available data, either for or against the use of EPO in RCC patients, are

Background

Renal cell carcinoma (RCC) accounts for 3% of all adult
cancers, and 90-95% of neoplasms of the kidney. It is a
highly heterogeneous disease with many distinct histo-
logic subtypes [1,2]. Clear cell RCC, arising from the
proximal tubular epithelial cells (PTEC) is the most
common sporadic subtype constituting 70-80% of RCC,
followed by papillary (10-15%) and chromophobe (5%)
RCC [3]. RCC can be either familial or sporadic. Both
forms are often associated with distinct genetic muta-
tions, of which the most prominent are the von Hippel-
Lindau (VHL) gene mutations. The VHL syndrome,
which is the result of a germ line mutation in the VHL
gene, is the major predisposing factor for familial RCC
[4-7]. In sporadic RCC, biallelic inactivation of the VHL
gene, either through hyper-methylation or mutation, is
the predominant risk factor. The VHL gene is hyper-
methylated in about 19% and mutated in 34-56% of
sporadic clear cell RCC [5,8-13]. Clear cell RCC is the
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leading cause of death in patients with VHL mutations
[14]. Despite the recent advancements in the manage-
ment of RCC patients, death rates have remained un-
changed [15,16]

The VHL-HIF-EPO pathway

As the tumour microenvironment is often hypoxic,
tumour cells undergo adaptive changes to facilitate their
survival. One such survival mechanism under hypoxic
conditions is the up-regulation of the transcription fac-
tor hypoxia inducible factor (HIF). HIF has two subunits,
HIF-a (which has three further subunits HIF-1a, HIF-2«
and HIF-3«a) and HIF-P [17,18]. While both subunits are
constitutively expressed, the tissue levels of HIF-a, un-
like HIF-B, are determined by the intracellular oxygen
tension. Under normoxic conditions, HIF-a is rapidly
degraded, an event largely mediated by a functional
VHL [19-23]. The functional protein of VHL, pVHL,
forms complexes with elongin B, elongin C, Rbx1 and
cullin 2 to form a pVHL- E3 ubiquitin ligase complex
(pVHL-E3 complex) [24-27]. The pVHL-E3 complex
then binds to HIF-a, leading to its polyubiquitination
and proteasomal degradation [25,28-32] (Figure 1). In
the absence of a functional pVHL, secondary to VHL
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Figure 1 The putative role of VHL-HIF-EPO pathway in RCC progression. A functional VHL gene produces pVHL, which forms a pVHL-E3 ligase
complex and mediates the poly ubiquitination (Ub) and proteasomal degradation (PD) of HIF. As a result, the translocation (TR) of HIF to the nucleus
and the subsequent transactivation of HIF requlated molecules, including EPO is prevented. When the VHL gene is mutated, the production of pVHL
and the formation of the pVHL-E3 ligase complex are either impaired or prevented. Subsequently, HIF is stabilized and up-regulated, and translocated
to the nucleus, where it dimerizes with other HIF subunits and transactivates HIF responsive genes including EPO. EPO binds to its receptor EPOR and
mediates some of the biological aspects of cancer progression such as increase in angiogenesis and inflammation and decrease in intrinsic and drug-
induced apoptosis. Apart from VHL mutations, hypoxia is the single major factor that regulates the production of EPO. In normoxic conditions, the HIF

is degraded, whereas in hypoxia, HIF is stabilized and lead leads to the activation of EPO.

mutations, the formation of the pVHL-E3 complex and
its binding to HIF-a are inhibited and therefore, the deg-
radation of HIF-« is prevented even in normoxic condi-
tions [23]. This leads to the stabilization and
accumulation of HIF-a in cells. As a result, HIF-a is
translocated to the nucleus, where it dimerizes
with HIF-B, binds to hypoxia-responsive elements of
the DNA and transactivates many downstream hypoxia-
inducible molecules that are known to promote
angiogenesis, proliferation, drug resistance and tumour
progression [6,7,23,25,28] (Figure 1).

One such hypoxia-inducible molecule is the glycopro-
tein hormone erythropoietin (EPO). Apart from indu-
cing EPO production through HIF, VHL mutations can
directly up-regulate EPO without HIF activation [33,34].
Although clear cell RCC is thought to arise from the
PTEC, normal PTEC do not express detectable levels of
EPO even under hypoxic conditions [35-37]. Therefore,
it is believed that VHL mutations play a key role in

transforming a non-EPO expressing PTEC into an EPO-
producing RCC [35-37]. While the hypoxic trigger of
EPO is a major problem in cancer biology in general,
this is of special significance in the case of RCC, because
of the direct regulation of EPO by HIF. EPO is the only
hematopoietic growth factor whose production is regu-
lated by local hypoxia [38]. If that is the case, EPO is
more likely to be a local player in cancer progression,
rather than contributor of metastatic progression.

EPO

The liver is the major site of EPO production in the
foetus. At birth, there is a liver to kidney switch and, in
adults, the peritubular fibroblasts of the renal cortex are
the major sites of EPO production [39-45]. The hepato-
cytes and perisinusoidal Ito cells of the liver (hepatic
stellate cells known for storage of vitamin A) are the
major extrarenal sites of EPO production [43-45]. Other
than the kidneys and the liver, EPO and EPOR are
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expressed in various non-hematopoietic tissues, such as
vascular endothelial cells, the uterus, central nervous
system and solid tumours [46]. While EPO is the essen-
tial hematopoietic growth factor for erythropoiesis in
hematopoietic tissues, in non-hematopoietic tissues, and
especially tumours, it inhibits apoptosis, stimulates
angiogenesis, promotes drug resistance and increases
cell proliferation [47-50]. The biological or oncogenic
effects of EPO are mediated through interactions with
its receptor, EPOR [51]. The EPO/EPOR interaction acti-
vates the cytoplasmic tyrosine kinase, Janus kinase 2
(JAK2), which in turn phosphorylates several cytoplas-
mic tyrosine residues in the cytoplasmic tail of Epo-R
[41,52-55]. The phosphorylated cytoplasmic tail of EPOR
acts as a docking site for proteins that contain Src-
homology 2 (SH2) domains, for example STAT1, STAT3
and STAT5a/b, and initiates a cascade of signalling path-
ways that either promote erythropoiesis or tumour pro-
gression, depending on the target site [41,52-55].

Two important issues remain to be elucidated. First, it
is not clear whether or not there is a difference in the
production of EPO between RCC with a normal VHL
and a mutated VHL. Second, irrespective of any differ-
ence in production, it is not clear whether or not there
is a difference between the biological activity of EPO
produced by a VHL wild type and a VHL mutant RCC.

EPO and EPOR expression in RCC

Many studies have reported the over expression of EPO
and EPOR in human RCC (Table 1) especially clear cell
RCC [11,50,56-71]. This is because of the high rate of
VHL mutations, and the subsequent overproduction and
stabilization of HIF in clear cell RCC compared with any
other subtypes [37]. RCC cells isolated from patients
also express EPO and EPOR in culture [72-79], although
conflicting findings have also been reported [37,58]. One
unresolved issue is the correlation between EPO/EPOR
expression and prognosis. With one exception [50], all

Table 1 Expression of EPO and EPOR in RCC*
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studies to date [11,56-62] (Table 1) have failed to find an
association between EPO/EPOR expression and survival.
Despite the frequent expression of EPO and EPOR in
RCC, approximately 35% of RCC patients develop an-
aemia, whilst only 1-5% experience paraneoplastic poly-
cythaemia [37,47,62,80-83]. Possible explanations for
this seemingly paradoxical finding in the face of elevated
EPO blood levels include tumour-induced EPO inactivity
(or reduced activity), EPO hyporesponsiveness, iron defi-
ciency and inflammation.

Does the EPO/EPOR pathway have functional significance
in RCC?

Because EPO and EPOR are expressed in RCC (and in
other cancers [46]), the use of recombinant human EPO
(rhEPO) to treat anaemia in cancer patients has been sub-
ject to considerable debate. It is argued that the binding of
exogenous rhEPO with EPOR might attenuate tumour
growth by decreasing hypoxia (through erythrocyotosis),
and thereby HIF, and the subsequent expression of down-
stream molecules that facilitate angiogenesis and other
features of cancer progression [46]. The alternative argu-
ment is that binding of exogenous rhEPO with EPOR
might, theoretically, initiate autocrine/paracrine effects
that will promote tumour progression through inhibiting
apoptosis, accelerating proliferation, promoting angiogen-
esis and enhancing drug resistance [46]. There are data
available to support both views.

Beneficial effects of EPO in RCC

Immunotherapy with interleukin-2 (IL-2), which offers a
short term response in 10-15% of RCC patients, is rou-
tinely used in the management of metastatic RCC. A
high circulating level of vascular endothelial growth fac-
tor (VEGF) has been shown to predict IL-2 resistance in
patients with metastatic RCC [84]. As hypoxia is one of
the stimulators of VEGF, the correction of anaemia (or
anaemia-induced hypoxia) with EPO would counteract

Samples Parameters Method Number of samples % expression References
Serum EPO ELISA 165 33 [57]

Serum EPO ELISA 49 8 [58]

Tissues EPO IHC* 19 52 (591

Tissues EPO & EPOR IHC 11 100 [60]

Tissues EPO IHC 20 100 [61]

Tissues EPO IHC 113 33 [50]

Tissues EPO IHC 82 88 [11,56]
Serum EPO & EPOR IHC 195 83 (tissue EPO) [62]

Tissues ELISA 33 (serum EPO)?

56 (tissue EPOR)

*Apart from the publications that are listed in the table, there are many case reports involving one or two patients [63-71].

*IHC, immunohistochemistry.
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the pro-angiogenic actions of VEGF and reverse IL-2 re-
sistance [85]. Based on these assumptions, in a Phase II
trial, Lissoni and colleagues [85] treated metastatic RCC
patients, who had already been on IL-2, with a combin-
ation of IL-2 and EPO (10,000 units, 3 times a week).
Apart from counteracting VEGF-related IL-2 resistance,
EPO controlled cancer growth and reduced the toxicity
of IL-2. A case report by Rubins [69] shows that treat-
ment with EPO of a large volume metastatic RCC, which
was refractory to immunotherapy, resulted in complete
remission of all metastatic lesions. A French study that
treated 20 patients with subcutaneous EPO for meta-
static RCC demonstrated a complete response in one,
partial response in three and disease stabilization in ten
patients [86]. Janik and colleagues [87] reported that
two polycythemic patients with EPO-producing RCC
obtained partial or complete response to a combination
of IL-2 and interferon-a treatment, suggesting that EPO-
producing RCC may be an indicator of immunotherapy
response. Carvalho and colleagues [88] reported that
concomitant treatment with EPO enhanced the cytotox-
icity of vinblastine and daunorubicin in RCC cell lines.
Furthermore primary cultures of RCC transfected with
erythropoietin-cDNA were more susceptible to lysis by
lymphokine-activated killer cells [89].

Adverse effects of EPO in RCC

To the best of our knowledge, there are two reports that
show adverse effects of EPO in RCC patients. In a case
report, Sungur [70] describes of a patient who developed
local recurrence of RCC while on EPO treatment. The
patient had a left radical nephrectomy for RCC and the
disease recurred 2 years later in the right kidney, for
which a partial nephrectomy was performed. Subse-
quently, the patient received hemodialysis three times
per week along with EPO, 12000U/week, for the first
6 weeks and then a maintenance dose of 4000U/week
for 1 year [70]. Fourteen months later, ultrasonography
showed a recurrent tumour in the adrenal gland, which
was cured by right adrenalectomy. Interestingly through,
the patient continued on EPO (4000 uw/WK) and
remained tumour-free for more than 9 months. Given
the case history, it is difficult to conclude whether EPO
was the cause of the recurrent tumour. Apart from this
report, in the French study mentioned above [86], the
remaining six of the 20 patients displayed progressive
disease in response to EPO. In vitro studies from our la-
boratory showed that RCC cells treated with EPO devel-
oped resistance to cisplatin treatment [49].

Although not in RCC, it is worth mentioning the ad-
verse effects of EPO administration in other cancers, espe-
cially breast cancer and head and neck cancer. In breast
cancer, a phase III study on the use of EPO was stopped
because of increased mortality, tumour progression and
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increased incidence of thrombotic and vascular events
[90]. In a double-blind, placebo-controlled study, Henke
and colleagues reported a poorer outcome for head and
neck cancer patients who were treated with EPO [91].
These studies prompted the FDA to issue a black box
warning on the use of EPO or erythroid-stimulating agents
in cancer patients [92]. A review by Hadland and Long-
more details the potential dangers of erythroid-stimulating
agents in cancer therapy [93].

None of the clinical trials has explored the molecular
mechanism of the EPO-mediated adverse events. While
such mechanisms will undoubtedly be multifactorial,
one common pathway by which HIF and EPO could po-
tentially enhance cancer progression is by phosphatidyli-
nositol3-kinase/Protein kinase B/mammalian target of
rapamycin (PI3K/Akt/mTOR)-mediated EMT. This is
best known in head and neck cancer but may well apply
to RCC as well. HIF plays a crucial role in EMT of can-
cer cells and the PI3K/Akt/mTOR pathway plays a cen-
tral role in this process. Both HIF and EPO activate this
pathway. Phosphorylation of PI3K leads to the activation
of Akt, which in turn activates mTOR [94,95]. This can
be executed directly by HIF per se or through one of the
many pro-inflammatory cytokines that are up-regulated
in cancer patients, for example tumour necrosis factor-a
[94-97]. To support this view, two recent studies have
shown that hypoxia induced-EPO [98] and exogenous
rhEPO [99] activate the PI3K/Akt/mTOR in retinal, and
head and neck cancer cells respectively.

Neutral effects of EPO in RCC

There is at least one study that shows a neutral effect of
EPO in cultured RCC cell lines. Treatment of 22 differ-
ent cell lines, including 2 RCC cell lines, with rhEPO
(dose range 0.01-100 U/ml) did not induce any signifi-
cant changes in clonal growth or proliferation. Further-
more, a neutralizing anti-human EPO antibody had no
effect on the clonal growth of these RCC cell lines
thereby ruling out any autocrine effects of EPO [100].

Conclusions and future directions

EPO is of special interest in RCC because of its direct
regulation by the VHL-HIF pathway. As rhEPO is widely
used in clinical practice for the treatment of anaemia
associated with various disorders including cancer, the
expression of EPO and EPOR in the kidney and espe-
cially in RCC has been a cause for concern. There are
two schools of thought. One argues that exogenous
rhEPO would correct hypoxia by increasing oxygenation,
and therefore, would prevent or stabilize cancer progres-
sion. The other school argues that the binding of thEPO
with EPOR would enhance the progression of cancer.
While each view has its own merit, a review of the avail-
able information on RCC is inconclusive. There are
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many reasons for this. First, and perhaps the most im-
portant, is the lack of an adequate number of studies.
This is surprising given the direct link between RCC and
VHL mutations, the direct or indirect regulation of EPO
expression by VHL and the involvement of HIF. Second,
the sample size of the available studies is inadequate to
evaluate the prognostic significance of EPO and EPOR
expression in RCC. Third, the effects of EPO administra-
tion in RCC patients (or in other cancers), either benefi-
cial or adverse, cannot be correlated to the expression
status of EPO or EPOR, because the criteria for patient
selection were not based on the expression status of ei-
ther of these molecules, and to date no studies have
explored this aspect. More comprehensive studies using
human samples are warranted. In particular, further in-
formation on the baseline level of EPO and EPOR in
RCC would be of value in monitoring the effect of ex-
ogenous rhEPO on the progression of RCC.
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