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Abstract

Background: Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop
novel diagnostic and therapeutic procedures.

Methods: We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding
xenografts for the surface expression of potential stem cell markers CD133, CD24, CD44, CDCP1 and CXCR4. In five
cell lines and nine xenografts, mRNA expression of these markers was determined. Tumour growth behaviour of
CD133+, CD133- and unsorted SW620 cells was evaluated in vivo.

Results: All five putative stem cell markers showed distinct expression patterns in the tumours examined. Two
patient-derived cell lines highly expressed CD133 (> 85% of positive cells) and three other cell lines had an
expression level of about 50% whereas in long-term culture based models CD133 expression ranged only from 0
to 20%. In 8/14 cell lines, more than 80% of the cells were positive for CD24 and 11/14 were over 70% positive for
CD44. 10/14 cell lines expressed CDCP1 on ≥ 83% of cells. CXCR4 expression was determined solely on 94 L and
SW480.
Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the
investigated surface markers and showed single cell fractions expressing up to three markers simultaneously.
Statistical analysis revealed that the CXCR4 mRNA level correlates negatively with the protein expression of CD133,
CD44, CD24 and CDCP1 in cell lines and xenografts.
A lower differentiation grade of donor material correlated with a higher CDCP1 mRNA expression level in the
respective tumour model.
In vivo growth behaviour studies of SW620 revealed significantly higher take rates and shorter doubling times in
the tumour growth of CD133 positive subclones in comparison to the unsorted cell line or CD133 negative
subclones.

Conclusions: Our data revealed correlations in the expression of surface markers CD44 and CD24 as well as CD44
and CDCP1 and strongly suggest that CD133 is a stem cell marker within our colon carcinoma panel. Further
studies will elucidate its role as a potential therapeutic target.
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Background
There is increasing evidence that the principles of stem
cell biology are not only relevant for haematological
malignancies but also for solid tumours. This concept
includes the hypothesis that tumours consist of hetero-
geneous populations of cells differing in surface marker
expression and growth capacities. Only a small subset of
rare tumour stem cells is capable of initiating and pro-
pagating tumour formation. These special cells are also
thought to initiate tumour metastasis and relapse after
therapy [1,2]. A better characterization of tumour initi-
ating cells could lead to improvement of cancer
therapies.
In the past few years, subpopulations of cancer initiat-

ing cells have been isolated for haematological malig-
nancies [3] as well as for solid tumours such as breast
[4], pancreas [5], brain [6], and colon cancer [7,8]. The
fundamental problem is to identify and separate tumour
initiating cells from more differentiated tumour cells.
For this purpose, cell surface antigens are used to char-
acterize different cell populations.
CD133, CD44, CD24, CDCP1 and CXCR4 are five cell

surface antigens whose expression is thought to indicate
stem cell like properties. CD133 is a five-transmembrane
domain antigen with a molecular weight of 120 kDa [9]
and is found on stem-like cells of various tissues and
cancers like pancreatic, prostate, kidney and colorectal
cancer [10].
CD44 is the major hyaluronan receptor and is impor-

tant for the homing and settling of adult stem cells,
metastasizing tumour cells and cancer initiating cells.
Upregulated expression of CD44 increases tumour
growth and has an anti-apoptotic effect [11].
The expression or lack of CD24 is a hallmark of a

wide range of epithelial cancers like pancreatic, prostate
or breast cancer [4,11] and has also been used as an
indicator for the likelihood of metastasis [12-14]. It may
have important roles in migration and invasion by
improving interactions between integrins and fibronectin
[15].
Multiple SRC-family kinases (SFKs) are activated in

carcinoma and appear to have an important role in
metastasis and migration of tumour cells. CDCP1 [CUB
(complement C1r/C1s, Uegf, Bmp1) Domain-Containing
Protein-1] is a transmembrane protein phosphorylated
by SFKs, which enables the carcinoma cell to survive.
This could be especially beneficial for a tumour stem
cell [16,17].
One of the major chemokine receptors expressed by

cancer cells is CXCR4, the receptor for CXCL12 [stro-
mal cell derived factor-1 (SDF-1)]. Organs such as the
liver or lung produce SDF-1 and thereby increase the
risk of developing metastasis by attracting circulating
tumour cells [18] expressing CXCR4.

In a panel of colon cancer cell lines growing in 2D
culture and as subcutaneous xenografts, we evaluated
the expression of these five putative stem cell markers.

Methods
Cell culture conditions
The human colon carcinoma cell lines (CCL) HCT116,
LOVO, HT29, SW620, DLD1, HCT15, SW480, COLO205,
HCC2998, KM12, KM20LZ, and LS174T were obtained
from the American Type Culture Collection (Rockville,
MD). CCL 269 L and 94 L were established at Oncotest
from colon carcinoma patients at the University Hospital/
University of Freiburg. All cells were grown in RPMI 1640
medium supplemented with 5% (vol/vol) fetal bovine
serum, 1% (vol/vol) penicillin (100 U/mL), streptomycin
(100 U/mL), and 1% (vol/vol) L-glutamine (all from
GIBCO-BRL, Grand Island, NY). Cells were maintained at
37°C and 5% CO2. Media and supplement exchange were
performed when 90% confluence was obtained.

Antibodies
Cell surface marker expression was determined using the
following monoclonal antibodies: CD133/1 PE-conjugated
mouse anti-human IgG1 (Miltenyi Biotech); CD44 FITC-
conjugated mouse anti-human IgG1 (Beckman Coulter);
CDCP1 FITC-conjugated mouse anti-human IgG2b
(MBL/Mobitec); CD24 PC5-conjugated mouse anti-
human IgG1 (Beckman Coulter); and CXCR4 PE-Cy7-
conjugated mouse anti-human IgG2a,k (eBioscience). 5 ×
106 cells were incubated with primary antibody or the cor-
responding isotype control, and the fluorescence intensity
was determined by flow cytometry.

Flow cytometry
The percentage of positive tumour cells was assessed by
measurement the fluorescence intensity of the abovemen-
tioned cell surface markers. All samples were analyzed on
a FC500 flow cytometer (Beckman Coulter) which
recorded 100,000-200,000 events per sample. The for-
ward/side-scatter plots and propidium iodide (1 mg/ml,
Roche) were used to gate out cell doublets and dead cells,
respectively. Cell lines were independently analyzed four
times and the mean value ± standard deviation calculated.
For the detection of cells expressing more than one anti-
gen, CD133 positive cells were gated on and further ana-
lyzed for the expression of CD24 and CD44 or CDCP1
and CXCR4, respectively.

Mice
For the generation of tumour xenografts, 6-8 week old
NMRI nude (NMRI nu/nu) mice were obtained from
Charles River, Germany. For tumourigenicity experiments
NOD. Cg-Prkdcscid (NOD/SCID) mice were obtained
from Taconic, Denmark. [The animals were housed in
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individually ventilated cages (IVC) set in air-conditioned
rooms. The mice had free access to food and acidified
water. According to the regulations for animal experi-
ments, individual mice were sacrificed if tumour volume
exceeded 1800 mm3 and/or body weight loss exceeded
15%.] All animal experiments were conducted according
to the rules of the German Protection of Animals Act
(Tierschutzgesetz) and guidelines for the welfare and use
of animals in cancer research [19].

Generation of tumour xenografts
To generate multiple identical xenografts, patient-
derived tumours were excised from a donor animal, cut
into 4-5 mm diameter pieces and one piece per flank
was implanted subcutaneously. Cell-line derived xeno-
grafts were induced by subcutaneous injection of 1 ×
108 cells per flank into NMRI nu/nu mice.

In vivo tumourigenecity experiments
The colon cancer cell line SW620 was sorted for expres-
sion of CD133 on a MoFlo cell sorter (DakoCytoma-
tion). To obtain positive and negative populations, only
the top 14% of brightly stained cells or the bottom 21%
of dimly stained cells were selected. The unsorted
SW620 cell line served as a control. 1 × 104 or 1 × 105

cells were injected subcutaneously into five NOD/SCID
mice and monitored for their tumourigenecity. The
resulting xenografts were analyzed for expression of the
antigens by flow cytometry as described above. Tumours
were measured either weekly or, for fast growing
tumours, twice weekly and volumes were calculated
according to the formula a*b2/2 where a is the longest
diameter and b the perpendicular axis. Group median
relative tumour volumes were used for evaluation.

Preparation of single-cell suspensions
Xenografted tumours were mechanically minced with scis-
sors and scalpels and subsequently incubated with an
enzyme cocktail consisting of 41 U/ml collagenase
(Sigma), 125 U/ml DNAse (Roche), and 100 U/ml hyalur-
onidase (Roche) at 37°C for approximately 45 min. The
cells were passed through stainless-steel sieves of 200 mm
and 50 mm diameter mesh size and then washed. The per-
centage of viable cells was determined by trypan blue
exclusion using a haemocytometer [20].

Immunohistochemistry
For immunohistochemical processing, sections were
dewaxed and endogenous peroxide removed by incubation
in 3% H2O2. For antigen retrieval, the slides were incu-
bated at 600 W in 10 mM Tri-Sodium Citrate (dihydrate)
+0,05%Tween in distilled water (pH 6,0) for 20 min.
Unspecific binding sites were blocked by applying 5%
NGS/1%BSA in PBS for 60 min at room temperature,

then a 1:70 dilution of the primary anti-CD133 antibody
(Abcam Rabbit polyclonal to CD133 - N-terminal,
ab71428) was added for 24 h at 4°C. The Dako-Liquid
DAB Substrate Chromogen System was used for further
processing and visualization. The sections were counter-
stained with haematoxylin, dehydrated, and mounted.

Tumour excision and RNA extraction
For mRNA preparation, tumours were grown in untreated
mice until they reached a size of 400 - 800 mm2. Following
sacrifice, tumours were immediately excised, and tumour
pieces free of necrosis were flash frozen in liquid nitrogen.
Following mechanical tissue disruption, total tumour RNA
was extracted using the RNeasy Mini kit (QIAGEN, Hil-
den, Germany). Prior to array analysis, one round of T7
promotor-based RNA amplification was performed [21].

Microarrays, microarray data processing and
normalization
Affymetrix® HG-U133 Plus 2.0 mRNA expression arrays
were used to determine the expression of 47,400 tran-
scripts, corresponding to 38,500 human genes [22-27].
These arrays have been proven highly reproducible for
mRNA expression analysis [23]. CEL result files were pre-
processed using the gc-RMA [24] algorithm, after which
each transcript was normalized using quantile normaliza-
tion [25]. Microarray analysis was performed for a distinct
colon cancer panel including 9 of the 11 xenografts evalu-
ated for stem cell marker expression and 5 of the above
mentioned cell lines. (see GEO nr. GSE35478, http://www.
ncbi.nlm.nih.gov/geo/info/linking.html)

Statistical analysis
Statistical analysis of the co-expressed antigens was per-
formed using the Spearman correlation coefficient (rS).
The same analysis was applied to the correlation between
mRNA and antigen expression. Correlation levels were
defined as follows: 0.0 < rS < 0.2: no correlation; 0.2 < rS <
0.5: weak to medium correlation; 0.5 < rS < 0.8: distinct
correlation and 0.8 < rS < 1.0: strong correlation. For
detection of statistically significant differences in the
growth behaviour of single tumours, both a t-test and a
one way analysis of variance was made (ANOVA) Using
Sigma Stat Aspire Software (Ashburn).

Results
Distinct expression profile of five different surface
markers in a colon carcinoma panel
All five surface markers showed differing expression pat-
terns in the colon carcinoma panel. 11 of the 15 examined
xenografts were cell-line derived and 4 were patient-
derived. For patient data characteristics of the colon carci-
noma panel see Table 1. Each cell line or xenograft was
evaluated in up to four independent experiments using

Schneider et al. BMC Cancer 2012, 12:96
http://www.biomedcentral.com/1471-2407/12/96

Page 3 of 11

http://www.ncbi.nlm.nih.gov/geo/info/linking.html
http://www.ncbi.nlm.nih.gov/geo/info/linking.html


flow cytometry. Results were highly reproducible, with
standard deviations of < 10% within one model for a dis-
tinct surface marker.
Mean expression of CD133 on cell lines was 23.5 ±

15.2% and 14.5 ± 7.2% on xenografts (Figure 1). With
respect to CD133 expression, the cell lines could be subdi-
vided into four groups: five cell lines had a very small sub-
population of CD133 expressing cells (≤ 0.02%); four cell
lines expressed 8-15% CD133; in CCL HT29, LOVO and
SW620, 50% of the cells expressed CD133; the highest
CD133 expression levels were found on Oncotest proprie-
tary cell lines 269 L and 94 L (85.5 and 85.8% respectively)
(Figure 2). Examining the colon xenografts, four models
revealed very weak CD133 expression ranging between 0
and 0.2%. A group of six tumours expressed CD133 ran-
ging from 4.0 to 14.5%. Another five had expression levels
of 20.7 to 36.6% (Figure 3).
Our analyses revealed a mean CD24 expression of 65 ±

18.4% within the cell line and 7.1 ± 7.6% within the xeno-
graft panel (Figure 1). Three groups of cell lines emerged
with respect to CD24 expression: 9/14 lines ranged
between 76.8% (DLD1) and 97.4% (COLO205). In con-
trast, three had clearly weaker expression of less than 6%.
CCL HCT15 and HCT116 were intermediate, with 35.2%
and 58.1% CD24 positive cells (Figure 2). Xenografts
CXF SW480 and CXF 1103 displayed CD24 expression ≤
0.9%. A group of 7 tumours expressed CD24 in a range
of 3.3 to 16.9%. A third group within the xenograft panel
was characterized by CD24 expression > 24% with a max-
imum of 53.4% (Figure 3).

CD44 could be detected on all colon cancer cell lines
investigated with a mean expression of 74.22 ± 15.73%.
Xenografts revealed a mean expression of 3.9 ± 4.9%
(Figure 1). The majority of the colon cancer cell lines
(11/14) expressed CD44 on almost every cell (ranging
78.3% to 97.6%). Exceptions were HCC2998, which dis-
played the lowest expression level (3.6%) and SW620
and HCT15 with 11.2% and 41.2% of CD44 positive
cells, respectively (Figure 2). Weaker CD44 expression
was found within the xenograft panel; the highest
expression was 32.8% and 35% on CXF LOVO and CXF
LS174T, respectively. 5/15 models ranged between 6.3%
and 15.8%, whereas the largest subgroup (eight tumour
models) exhibited < 5% CD44 expression (Figure 3).
CDCP1 was the most highly expressed marker detected

on our cell line panel comprising 79.1 ± 13.6% of positive
cells. Xenografts expressed CDCP1 to 7.9 ± 4.4% on the
cell surface (Figure 1). Ten cell lines expressed between
86% and 98.5% CDCP1. On four cell lines, this surface
marker was expressed on a lower percentage of cells (<
64%) (Figure 2). With respect to CDCP1 expression, the
investigated xenografts could be subdivided into three
groups: five models with 0.4% to 2.8% of positive cells; a
group of four with expression levels between 6.3% and
9.9%; and the six remaining tumours comprised 16.7% -
32.7% CDCP1 positive cells (Figure 3).
CXCR4 showed very weak expression with a mean

value of 1.14 ± 3.6% and 0 ± 1.3%, respectively (Figure 1).
The expression ranged between 0 and 0.2% despite CCL
SW480 of which 23.5% were CXCR4 positive within the

Table 1 Patient data and characteristics of the examined colon carcinoma cell lines and xenografts

cell line Patient Data CEA secreting source

differentiation gender age Dukes Stage [ng/106 cells]

HTC116 primary poorly male 50 n.k. 1 ATCC

LOVO metastasis well male 56 C 908 ATCC

HT29 primary middle female 44 n.k. yes NCI

SW620 metastasis poorly male 51 C 0,15 NCI

DLD1 primary middle male 50 C 0,5 NCI

HCT15 primary middle male 50 C 5,4 ATCC

SW480 primary middle male 50 B 0,7 NCI

269 L primary poorly male 56 C n.k. Oncotest

94 L primary middle male 70 n.k. n.k. Oncotest

COLO205 metastasis poorly male 70 D 4,1 NCI

HCC2998 primary well n.k. n.k. n.k. n.k. NCI

KM12 primary poorly n.k. n.k. B n.k. NCI

KM20 primary poorly n.k. n.k. D n.k. NCI

LS174T primary middle female 58 B 1994 ATCC

CXF 269 primary poorly male 56 C n.k. Oncotest

CXF 243 primary poorly male 45 n.k. n.k. Oncotest

CXF 280 metastasis poorly female 56 n.k. n.k. Oncotest

CXF 1103 primary poorly male 56 n.k. n.k. Oncotest

n.k. not known
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cell line panel (Figure 2). CXF LOVO was the only xeno-
graft for which more than 1% CXCR4 positive cells could
be identified (Figure 3).
Statistical analyses revealed no correlations among the

investigated surface markers within the cell line panel.
However, within the xenograft panel CD24 and CD44
expression correlated distinctly (spearman correlation, rs =
0.59, p < 0.001) as did CD44 and CDCP1 protein expres-
sion (spearman correlation, rs = 0.673, p < 0.001).
Surface marker expression was downregulated in the

majority of corresponding xenografts. For CD24, CD44,
CDCP1 and CXCR4, the difference in expression level was
statistically significant (t-test, p < 0.001, p < 0.019; Figure 1).
Despite these significant reduction, CD133 expression was
up-regulated when KM20 and KM12 tumour cells grew
subcutaneously in nude mice. (KM20: 6.6-10.6%; KM12:
9.1-14.9%).

CD133 positive subpopulation of the xenograft panel
included small fractions of double and triple positive cells
The CD133 positive subpopulations within the xenograft
panel were further analysed for parallel expression of
CD44 and CD24 or CDCP1. Most cells (83.4%) expressed
CD133 exclusively on their cell surface. A mean percen-
tage of 3.03 was triple positive (CD133/CD24/CD44).

1.71% (CD133/CD44) and 3.09% (CD133/CD24) were
double positive, respectively. 4.2% expressed CD133 and
CDCP1 simultaneously (Figure 4).

CXCR4 mRNA level correlates negatively with protein
expression of the other four surface markers
Additional statistical analyses were performed to study
the correlation of protein expression (measured by flow
cytometry), mRNA expression (measured by gene
expression profiling) and patient data within the colon
carcinoma panel.
On the mRNA level, CXCR4 expression correlated nega-

tively with protein levels of CD133 and CD24 in cell lines
as well as CDCP1 in cell lines and xenografts (Table 2).
Another statistically significant correlation could be

found between tumour differentiation in the donor patient
and the mRNA expression of CDCP1 (spearman correla-
tion, rs = 0.722, p = 0.007) in the respective cell line: lower
differentiation grade of donor material correlated with
higher CDCP1 expression at the mRNA level (Table 2).

CD133-positive and negative SW620 cells exhibit differing
growth capacities in vivo
In vivo tumourigeneicity experiments revealed that
CD133 expressing SW620 cells were more tumourigenic
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than cells that did not express this cell surface marker.
CD133 positive subclones showed significantly higher
take rates, as well as shorter doubling and induction
times than the unsorted cell line or CD133 negative
cells, respectively. At least 1 × 105 tumour cells were
needed for tumour formation as injection of 1 × 104

SW620 cells induced no xenograft formation within 89
observation days, independent of CD133 surface expres-
sion. 1 × 105 CD133 positive cells induced tumours in
all five injected mice within 39 days of tumour cell
inoculation. In contrast, in groups receiving either
unsorted or CD133 negative cells, tumours occurred
later (42 days post-injection) and only in 60% of mice.
Calliper measurements revealed a median tumour

volume of 572 mm3 46 days after tumour cell injection
in the CD133 positive group. This was significantly
higher than median tumour volumes of xenografts
derived from CD133 negative or unsorted SW620 cells
(98.7 and 93.2 mm3, respectively, p < 0.001). Thus, the
higher tumourigenic potential of CD133 expressing cells
was confirmed by these data. No difference in growth
behaviour could be determined comparing CD133 nega-
tive subclones and the unsorted cell line (Figure 5).

Xenografts from this tumourigenicity experiment were
analyzed for expression of CD133 by immunohisto-
chemical staining. No significant difference in the
expression profile of this antigen could be shown for
different SW620 cell populations (derived from initially
CD133+/-/unsorted cells, Figure 6).

Discussion
A basic problem in cancer research is identifying the cells
responsible for tumour formation. Within the cancer
stem cell model, there is a small subset of cells capable of
initiating and sustaining growth of a neoplastic clone.
Tumour stem cells are probably long-lived cells that
accumulate cancer-inducing mutations. Furthermore,
they have the unique ability to self-renew and, through
differentiation, to generate mature non-tumourigenic
cancer cells of all lineages. These mature cells appear to
constitute the bulk of cancer cells within a tumour.
If the cancer stem cell hypothesis is correct, we have to

reconsider treatment regimens that eradicate the bulk of
cancer cells, but may not target the cell of origin. These
cells are thought to be refractory to classical chemother-
apy and responsible for metastasis and relapse. Further
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characterization of the stem cell population is required to
identify potential targets for prospective therapies [26,27].
With this study, we are the first to characterize a large

panel of colon carcinoma cell lines and their corre-
sponding xenografts for simultaneous expression of sev-
eral stem cell markers and thereby identify different cell
fractions.
The cell surface antigens examined showed a distinct

expression pattern within both colon carcinoma cell line

and xenograft panels such that different cell fractions
could be distinguished. In general, the cell lines
expressed CD133, CD44, CD24, CDCP1 and CXCR4 at
higher levels than the xenografts. The cancer stem cell
hypothesis suggests that the heterogeneity in a tumour
results from ongoing differentiation and the majority of
tumour cells lose their proliferative potential during this
process of maturation [1,28]. This could be a reason
why the antigens are expressed at a lower level in vivo.
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During xenograft development, tumour cells lose their
stem cell characteristics and also distinct cell surface
antigens. It is already well known for haematological
malignancies like multiple myeloma, acute myeloid leu-
kaemia or acute lymphocytic leukaemia that differentia-
tion is driven by cell surface antigens [29]. Aside from
differentiation, lower expression of these surface

markers might be explained by the influence of the
tumour microenvironment. Tumour cells growing sub-
cutaneously in nude mice are exposed to a completely
different environment than tumour cells in vitro. It is
possible that expression of these antigens would have
been different if transplanted orthotopically, as it is
unclear whether xenotransplantation accurately reflects

Table 2 Correlations between different antigens and clinical data

CCL CD133
protein

CCL CD24
protein

CCL CD44
protein

CCL CDCP1
protein

CXF CDCP1
protein

Patient tumour
differentiation

Patient
age

CCL CD24 gene
expression

-0,671 spearman correl.
Coefficient

0,00575 p-value

CCL CDCP1 gene
expression

0,722 spearman correl.
Coefficient

0,00707 p-value

CLL CXCR4 gene
expression

-0,671 -0,615 0,692 -0,622 -0,627 spearman correl.
Coefficient

0,0154 0,0308 0,0113 0,0285 0,0263 p-value

Correlation of protein expression (measured by flow-cytometry), mRNA expression (measured by gene expression profiling) and patient data within the colon
carcinoma panel
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Figure 5 In vivo growth behaviour study of SW620 cells. Growth behaviour of 1 × 105 CD133+, CD133- and unsorted SW620 colon
carcinoma cells injected subcutaneously in NOD/SCID mice.
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human stem cell biology or whether the transplanted
cells are human cancer cells that have adapted to the
mouse environment [30]. The appropriate microenviron-
ment is essential for maintenance of “stemness” as has
been shown for hematopoietic stem cells [31], brain
tumour stem cells [32] and, more recently, colon cancer
stem cells. Vermeulen et al. showed that factors secreted
by myofibroblasts also restore the cancer stem cell phe-
notype in more differentiated colon carcinoma cells.
Thus, it appears that “stemness” of colon carcinoma
cells is a dynamic quality that can be influenced by the
microenvironment [33]. On the other hand, one could
also argue that in vitro culture conditions select for the
maintenance of stem cell properties. In our experiments,
we could show that colon cancer cells show very differ-
ent phenotypes in vitro versus in vivo, thus suggesting a
close relationship between the microenvironment and
the existence of different cell types. This knowledge is
also crucial for testing new drugs under in vitro versus
in vivo conditions. [Of note, the procedure for preparing
single cell suspensions from the xenografts had no sta-
tistically relevant influence on antigen expression (see
Additional file 1: Figure S7).]
It is not yet known to what extent single antigens are

responsible for stem cell maintenance, thus we do not
know the functional relevance of these cell surface markers.
CD133-expressing colon cancer cells produce interleukin 4
(IL-4) as an autocrine growth factor. IL-4 promotes the
induction of anti-apoptotic genes, thus promoting cell sur-
vival. Administration of a neutralizing IL-4 antibody
improved the efficacy of conventional chemotherapy [34].
These data suggest that elimination of CD133-expressing
cells could prove beneficial in the treatment of colorectal
carcinoma. Others have described the more tumourigenic
capacity of CD133-expressing cells compared to cells that

do not express this antigen [7,8]. Also, different Wnt fac-
tors affect proliferation and differentiation in CD133-
expressing cells [35]. The Wnt signalling cascade has
emerged as an important regulator of normal and malig-
nant stem cells in intestinal, hematopoietic and epidermal
systems [36]. Since CD133 has thus been characterized as a
putative stem cell marker, we aimed to further clarify its
exact role via additional functional analysis.
Our data show that CD133 is not expressed by every col-

orectal tumour cell. In our experiments, tumours that grew
out of a CD133-expressing cell population showed
enhanced growth behaviour compared to the control
group. We could not, however, clearly identify the role of
CD133 in this process. Maybe this marker is crucial for the
development of the tumour. Alternatively, perhaps it is a
marker that does not initiate but rather enhances tumour
growth, for example, by means of better tumour vasculari-
zation. CD133-expressing progenitor cells in the kidney
contributed to better tumour vascularization by differen-
tiating into endothelial cells [37]. Beier et al. demonstrated
that glioblastoma cancer stem cells can be either CD133+
or CD133-, suggesting that this marker is not limiting for
“stemness” [38]. This fits with our results indicating that
tumours also grew out of CD133-negative cells. CD133
knock down experiments would be useful to further
explore the functional relevance of this cell surface marker.
CXCR4 is said to play a key role in tumour progres-

sion and metastasis in colon cancer [39]. In our study,
the mean CXCR4 expression within the xenograft panel
was 0.85% with notable expression of > 1% in one of fif-
teen models. Expression may have been upregulated had
cells been injected in a more appropriate microenviron-
ment, e.g., via orthotopic implantation [40,41].
Our study is limited in that the relationship between

cell surface antigens and cell properties, like growth

A CB

Figure 6 Immunohistochemistry (IHC) of different SW620 cell fractions. CD133 expression in xenografts that grew out of unsorted, CD133+
and CD133- subclones of SW620 colon carcinoma cells. A: IHC a-hu CD133: SW620 unsorted cells injected subcutaneously (sc) in NOD/SCID
mice. B: IHC a-hu CD133: SW620 CD133+ cells injected sc in NOD/SCID mice. C: IHC a-hu CD133: SW620 CD133- cells injected sc in NOD/SCID
mice.
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behaviour, remains to be further elucidated. In haemato-
logical malignancies, identification of cells with different
growth capacities is based on cell surface antigens and
these exhibit functional heterogeneity [42]. Flow cytome-
try is a widespread and reliable method to detect antigens
on single cells [43]. We analyzed cell surface antigens on
single cell suspensions derived from xenografted tumours
from our colon carcinoma cell line panel. Our studies
revealed that some xenograft cells express more than one
of the five surface markers we studied and significant
correlations between different markers emerged. CDCP1
is highly expressed in lung and colon cancers, where it is
phosphorylated by Src family kinases and involved in
anchorage independence of cancer cells [16,44]. These
properties are important for tumour progression and
metastasis. The correlation we observed between CDCP1
expression and disease stage of donor patients is in line
with the results of Uekita et al. who described a correla-
tion between expression and phosphorylation levels of
CDCP1 with the invasive potential of scirrhous gastric
cancers [45]. These data point to the relevance of this
marker as a potential therapeutic target for modulating
cancer metastasis.
In addition to correlations between markers and clini-

cal parameters, we found small subsets of double- and
triple-positive cells in our colon cancer panel which
could comprise a stem cell population and should be
analyzed in more detail.

Conclusions
Our study characterized a large panel of colon carcinoma
cell lines and their corresponding xenografts, showing
significantly reduced expression of the cell surface mar-
kers CD133, CD44, CD24, CDCP1 and CXCR4 in vivo. A
small subset of CD133-positive colon carcinoma cells
additionally expressed CD24, CD44 or CDCP1, so that a
correlation in antigen expression can be assumed. In vivo
growth kinetics provide strong evidence that CD133
plays an important role [within the mentioned surface
marker profile]. Further studies will show the functional
relevance of these markers in colon carcinomas and
assess their potential as therapeutic targets in oncology.
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