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Abstract

Background: Recent studies suggest a role of the proteasome activator, REGg, in cancer progression. Since there
are limited numbers of known REGg targets, it is not known which cancers and pathways are associated with REGg.
Methods: REGg protein expressions in four different cancers were investigated by immunohistochemistry (IHC)
analysis. Following NCBI Gene Expression Omnibus (GEO) database search, microarray platform validation,
differential expressions of REGg in corresponding cancers were statistically analyzed. Genes highly correlated with
REGg were defined based on Pearson’s correlation coefficient. Functional links were estimated by Ingenuity Core
analysis. Finally, validation was performed by RT-PCR analysis in established cancer cell lines and IHC in human
colon cancer tissues

Results: Here, we demonstrate overexpression of REGg in four different cancer types by micro-tissue array analysis.
Using meta-analysis of publicly available microarray databases and biological studies, we verified elevated REGg
gene expression in the four types of cancers and identified genes significantly correlated with REGg expression,
including genes in p53, Myc pathways, and multiple other cancer-related pathways. The predicted correlations
were largely consistent with quantitative RT-PCR analysis.

Conclusions: This study provides us novel insights in REGg gene expression profiles and its link to multiple cancer-
related pathways in cancers. Our results indicate potentially important pathogenic roles of REGg in multiple cancer
types and implicate REGg as a putative cancer marker.

Background
REGg, also known as PA28gamma, 11Sgamma, or PSME3,
was first identified as Ki antigen, a nuclear protein targeted
by autoantibodies found in sera of patients with systemic
lupus erythematosus [1]. It is a member of the 11S family
of proteasomal activators that have the ability to stimulate
the proteolytic activity of the 20S core proteasome inde-
pendent of ubiquitination and ATP [1]. Accumulating evi-
dence suggests REGg is involved in cancer progression [2].
REGg has been reported to be overexpressed in colorectal
cancer [3] and thyroid cancer [2], and is involved in cancer
development [2,4-6]. It is unknown, however, whether

REGg is involved in additional cancers. REGg is known to
degrade both oncogenic and tumor suppressing proteins
such as SRC-3, HCV core protein, PTTG1, p21, p16, p19,
and p53. In this study we try to understand expression
profiles of REGg in multiple cancer types and correlations
of REGg with known cancer or cancer related pathways.
Microarray assays have been widely adopted in cancer

marker exploration and expression profiling of tumor
genes [3,4]. Microarray studies have contributed valu-
able information to our understanding of cancer by
identifying biomarkers and enabling classification of
tumor subtypes [5-8].
In this study, we focused on thyroid cancer, colon can-

cer, liver cancer and lung cancer since the first two can-
cers were reported with over-expression of REGg [3,9] and
the other two are among the list of the most malicious
cancers. We analyzed REGg expression in cancer tissue
arrays by using publicly available microarray data from
NCBI GEO database. We acquired datasets and integrated
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the analyzed results across different datasets and cancer
types to characterize a general REGg expression pattern in
four different cancer types by comparing human cancer
versus normal tissues. We set clear criteria along with
quality controls for dataset screening and normalization,
which allowed us to carry out comprehensive dataset-
based meta-analysis across differing cancers. A set of
genes highly correlated with REGg expression were identi-
fied and validated by RT-PCR to identify putative func-
tional interactions associated with REGg.

Methods
Cell types and cell culture
A549, HepG2, and HCT116 cells were purchased from
ATCC and maintained at Cell Culture Core at the
Department of Cell Biology, BCM. The human thyroid
carcinoma cell line ARO was kindly provided by Dr. Adel
El-Naggar at the University of Texas M.D. Anderson
Cancer Center. The ARO cell line was authenticated at
Genotyping Center of John’s Hopkins University. The
shN and shR stable cell lines were generated in ARO,
A549, and HCT116 by introducing retroviral shRNA vec-
tors specific for REGg or a control vector from OriGene
(Rockville, MD). ARO cells were cultured in 1640 supple-
mented with 10% fetal bovine growth serum (GIBCO).
All other cells were cultured under standard conditions
described by the ATCC.

Immunohistochemical assay
IHC analysis was performed to analyze REGg expression
of protein level in several human cancers including lung,
colon, thyroid and liver cancer. Sections were deparaffi-
nised and rehydrated. The slides were then heated in a
100°C water bath for 30 minutes in a 0.01 M citrate buffer
solution at pH 6.0, and cooled to room temperature. After
quenching the endogenous peroxidase activity with 0.3%
H2O2 (in absolute methanol) for 10 minutes, the sections
were treated for 10 minutes at room temperature with the
serum albumin (HISTOSTAIN-PLUS DAB kit) to block
non-specific staining. Duplicate sections were incubated
overnight in 4°C with the primary specific antibodies.
Slides were then incubated for 10 minutes with biotiny-
lated anti-rab-bit IgG (DAB kit) for REGg recognition.
The sections were incubated with the HRP for 10 minutes.
Finally, the sections were counterstained with Mayer’s
haematoxylin.

Preliminary datasets collection
Microarray expression profiles were obtained from Gene
Expression Ominibus of National Center of Biotechnology
Institute [10]. All datasets in this study were published
within the past 5 years (2004-2009) and following the
Minimum Information about a Microarray Experiment
(MIAME) guidelines, including 49 datasets, with 3,832

samples containing 16, 15, 11, and 7 datasets from colon,
liver, lung and thyroid cancer, respectively (Additional
file 1: Table S2). The following preliminary datasets were
retrieved: a) primary tumors, carcinoma and adenoma
along with normal controls in each tissue: primary colon
cancer samples including early onset colorectal carcinoma,
colon tumor and adenoma; primary hepatocelluar carci-
noma (HCC); lung cancer including non-small cell lung
cancer, adenocarcinoma, and squamous cell carcinoma;
thyroid cancer samples including papillary thyroid carci-
nomas (PTC), anaplastic thyroid carcinoma (ATC), folli-
cular carcinomas (FC) and follicular adenomas. b) non-
cancer diseases originated from colon, liver, lung and
thyroid tissues, including inflammatory bowel disease
(IBD), Crohn’s disease (CD), ulcerative colitis (UC), HCV
cirrhosis, HCV-induced dysplasia, pneumonia, and folli-
cular goiter. c) different stages of cancers with a stage 0
tissue or healthy or distant adjacent tissues as control.
The following datasets/samples were excluded: 1) data-
sets with no contorl tissue; 2) datasets without REGg
probe/probe set included in platform; 3) datasets without
corresponding publication; 4) datasets with samples col-
lected in time courses; 5) datasets without gene symbol
annotation for the probes by the Human Gene Nomen-
clature (HGNC) guidlines; 6) datasets without REGg data
in the microarray platform. The preliminary sample
screening yielded 23 datasets (n = 1,070) for differentially
expressed gene analysis (Additional file 2: Table S3). Of
these output, there were 15 cancer datasets (n = 614), 2
non-cancer diseases datasets of (n = 86), and 6 datasets
(n = 399) containing both cancer (n = 260) and disease
samples (n = 139).

Dataset based expression analysis
Microarray datasets (described above) were analyzed by
GEOquery and Limma packages in R http://www.r-pro-
ject.org/ as described previously [11-13]. First, all raw data
were downloaded from GEO and mono-channel data were
normalized using MAS5.0. Samples in each dataset were
grouped into three classes, namely cancer, non-cancer dis-
ease and normal samples. The log2 ratio values of disease
group versus normal group were calculated based on the
normalized data. For all two-channel datasets, log2 trans-
formed expression ratios were calculated and used in all
subsequent analyses. Two-sample paired t-test [14] were
carried out between cancer vs. non-cancer diseases and
cancer vs. normal following statistic analysis as described
[15,16]. Internal quality controls were set up for each data-
set by validating the statistical significance of specific
genes with what was reported in relevant publications.
Two-sample comparisons were statistically analyzed for all
21 cancer datasets containing 874 cancer samples and 625
paired normal samples. An additional two-sample compar-
ison was performed with the 8 non-cancer disease
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datasets, including 196 non-cancer disease samples and
174 normal control samples (Additional file 2: Table S3).

Correlation analysis
The Pearson’s Correlation Coefficient (PCC) was used as a
measure of correlation between REGg and its potentially
related genes based on 13 datasets, 4 from liver (n = 299)
and 3 from each of lung (n = 164), colon (n = 77), and
thyroid (n = 126) respectively. Pearson Correlation analysis
was conducted using R [15,17] on datasets with significant
overexpression of REGg. PCC of REGg with each gene in
each dataset was calculated. Genes whose expression cor-
related with REGg in each dataset were ranked based on
their p-value. In order to produce at least 600 candidates
in each datasets for subsequently selection, we used a cut-
off of 0.001. The top 20%, 15%, 10%, and 5% genes were
selected from thyroid, colon, liver, and, lung cancer data-
sets respectively. All subsequent selections and analyses
were based on these genes referred to as REGg correlated
genes.
Genes were selected from all REGg correlated genes

based on cancer type except for the initial pilot testing (a
PCC cutoff as ± 0.6 [18]). Our criteria were that each gene
was present in at least 2 datasets, according to binomial
distribution (p < 0.05), in one cancer type and the cutoff
of PCC in one cancer type was set to ± 0.6. Genes that ful-
fill these criteria were considered as highly-correlated with
REGg and used for downstream pathway analysis.

Pathway and network analysis
Genes highly correlated with REGg were analyzed with
the IPA (Ingenuity Pathway Analysis) system: http://
www.ingenuity.com. With core analysis, all qRT-PCR
validated REGg-correlated genes were mapped and then
analyzed using Ingenuity Knowledge Base (genes only) to
yield bio-function pathway annotation and networks
showing direct and indirect relationships between genes
and molecules.
To calculate the composition of REGg-correlated

genes/pathways in cancers, results from Ingenuity path-
way analysis were grouped into three clusters: cancer
pathways, cancer related pathways, and other pathways.
These pathway clusters were grouped based on the fol-
lowing characterization: 1) cancer pathways included
bio-function of cancer, tumor or tumorigenesis, neopla-
sia, carcinoma or adenocarcinoma, lymphoma and sar-
coma; 2) cancer related pathways included a) pathways
related to cell cycle with following bio-function category:
mitosis or mitotic, G2/M/S phase, cell division, check
point, and arresting; b) cell growth pathways involved
in: survival, growth and proliferation; c) cell death path-
ways with bio-function of apoptosis and death. 3) Other
pathways: all the rest of the pathways not included in
cancer or cancer-related pathway clusters.

Genes highly correlated with REGg were also searched
against the KEGG pathways database http://www.gen-
ome.jp/kegg/tool/colorpathway.html to highlight and
augment the published graphical pathways analyzed by
Ingenuity. Protein-protein interaction network analysis
was performed by checking REGg highly-correlated
genes in the STRING database http://string-db.org) [19].
To make the network concise, genes with connections
equal or greater than 3 were selected.

PCR validation
Confirmatory qRT-PCR was performed on randomly
selected REGg correlated genes. Fifteen genes were
selected from the REGg-correlated genes and an addi-
tional fifteen genes highly correlated with REGg expres-
sion were selected for qRT-PCR. RT-PCR experiments
were carried out in cells originated from colon, liver,
lung and thyroid cancer.

RNA preparation, qRT-PCR and RNAi
Cells were grown to 75% confluence in a 6 cm dish and
lysed with buffer provided in RNA extraction kit
(TAKARA) and RNA was extracted following the manu-
facturer’s instruction. RNA quality and integrity were veri-
fied by gel electrophoresis. Two-microgram of total RNA
was reverse transcribed with M-MLV reverse transcriptase
(Invitrogen). Gene-specific primers were designed as fol-
low: REGg forward primer, 5’-TCCTCACCAATAGC-
CACG-3’; REGg reverse primer, 5’-CTCGATCAGCAG
CCGAAT-3’; 18S rRNA forward primer, GGACACGGA-
CAGGATTGACA; 18S rRNA reverse primer, GACATC-
TAAGGGCATCACAG. qRT-PCR was conducted using
the SYBR® PrimeScriptTM RT-PCR Kit (TAKARA). The
results were analyzed using the MxPro qRT-PCR software.
RNA interference was performed in HepG2 cells to

knock down REG. HepG2 was seeded in 6-well plate at
60% confluence overnight and was transfected with 10
nM siRNA along with lipofection 2000. Cells were har-
vested 72 hours later for RNA extraction and qRT-PCR
analysis.

Statistic analysis
Weighted student t-test for two-sample with unequal var-
iance was used to calculate statistics and p values for IHC
tissue array [16]. Two-tailed student’s t-test was used in
microarray expression analysis and Fisher’s Z transforma-
tion was used to adjust p value. A p-value of less than 0.05
was defined as “significant” for all statistic analysis
involved in expression analysis. Datasets in which REGg is
highly significant (p < 0.001) [18] were selected for subse-
quent correlation analysis. In correlation analysis, Pear-
son’s correlation coefficient was set with a cutoff PCC ±
0.6 [18] and binomial coefficient was used based on data-
sets number in each cancer type to selection REGg highly
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related genes. Pathways with a p-value less than 0.01 were
chosen to be studied in Ingenuity core analysis.

Results
REGg protein is highly expressed in multiple cancers
To understand whether REGg is a tumor-associated pro-
tein, we examined REGg expression levels in multiple
human carcinomas. IHC experiment was performed
using tissue arrays containing 92 cases of primary lung
cancer, 48 colon cancers, 49 thyroid cancers, and 206
liver cancer samples along with corresponding normal
tissues, all arranged in duplicates (Table 1, Additional file
3: Table S1). The expression of REGg in cancer samples
was scored double-blindly by comparing with normal tis-
sues or adjacent non-cancer tissues which have no posi-
tive staining or low levels of REGg staining (Figure 1 and
Table 1). The scored REGg expression is consistent for
most of the duplicate samples and a representative scored
result was shown in Additional file 3: Table S1. The over-
all rate of REGg overexpression (a combination of ++ and
+++ staining) in different carcinoma is higher than 50%.
We observed a statistically significant increase in the
number of late-stage cancers with the highest REGg
expression (+++), such as in stage III of adenocarcinoma
and squamous cell carcinoma (Additional file 3: Table
S1). Our results provide the first evidence for an associa-
tion of REGg with primary human lung carcinoma and
liver cancer, substantiating previous observations that
REGg is increased in colon and thyroid cancers.

Integrated analysis of microarray datasets revealed
overexpression of REGg in selective cancers
Overexpression of REGg protein in four different human
cancers prompted us to investigate whether elevation of
REGg is regulated at the mRNA level. We searched GEO
database by keywords and identified 49 datasets (Addi-
tional file 1: Table S2), of which 23 were qualified for
expression analysis in this study (Figure 2A). Significantly

higher REGg expression (p < 0.05) was observed in 67%
of cancer datasets (14 of 21, n = 597) when compared
with normal tissues (Figure 2B). Consistently, our com-
parative analysis of control vs. non-cancer diseases
[20-22], revealed that most of the non-cancer datasets
had no significant differences in REGg expression (66%, n
= 117). On the contrary, only small percent of cancer
datasets (7 of 21, n = 228) had no significant elevation in
REGg levels (Figure 2B), indicating potential association
of REGg in the development of these cancers. Cancer
type based analysis indicated an increase of REGg in 60-
83% of cancer datasets (Figure 2C), concordant with our
IHC studies (Figure 1).
A detailed analyses of pathologically classified, stage-

specific cancers and non-cancer diseases were executed
using dataset GSE6764 [23], GSE4183 [22], GSE6339 [21]
and GSE7670 [20], which originate from liver, colon,
thyroid, and lung respectively and disclosed detailed can-
cer stage information (Additional file 2: Table S3). The
representative REGg expression patterns in the four can-
cers, non-cancer diseases, normal controls, and some
staged cancer samples are illustrated in Figure 3. Statisti-
cally significant elevation of REGg gene expression in
cancers ranged from 1.25 to 2.43 fold-change (overex-
pression cut-off: fold change > 1), consistent with
our IHC result in corresponding cancer tissue arrays
(Figure 1). In liver cancer samples, REGg appeared con-
siderable up-regulation, consistent with the original publi-
cation where potential cancer biomarkers were linked
with stepwise carcinogenic process [23]. The results of
stage-associated increases of REGg in advanced liver can-
cers in Figure 3A is consistent with our observation of
higher REGg staining in advanced cancer types. For most
of the non-cancer datasets, the p-values of disease classes,
such as IBD & CD, showed no significant changes in
REGg expression. In conclusion, expression of REGg is
significantly increased in multiple human cancer types
and likely involved in late-stage cancers.

Table 1 Summary of IHC analysis of REGg expression in multiple human cancer tissue

REGg Level p value

Cancer type Sample
Amount

- + ++/+++ -v.s + -v.s
++/+++

lung cancer 92 8 (8.7%) 34 (37.0%) 50 (54.3%) 3.70E-04 i.61E-13

colon cancer 48 2 (4.2%) 16 (33.3%) 30 (62.5%) 1.74E-04 8.63E-06

thyroid cancer 49 2 (4.1%) 16 (32.7%) 31(63.3%) 1.44E-01 7.09E-02

liver cancer 206 5 (2.4%) 36 (17.5%) 165 (80.1%) 5.68E-03 8.44E-07

total 395 17 (4.3%) 102
(25.8%)

276 (69.9%)

REGg expression status was scored according to description in Method & Materials. Overexpression rate of REGg in each cancer was calculated based on the
number of cases scored ++ and above. - v.s + represents two sample weighted student t-test for unequal variance between - group and + group. For - v.s ++/++
+, it’s between - group and ++/+++ group
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Figure 1 REGg protein is highly expressed in multiple human cancers. A representative result of REGg overexpression in Human lung (A),
colon (B), thyroid (C), and liver (D) carcinoma were demonstrated following IHC experiments. Note that REGg is only modestly expressed in
corresponding normal tissues.
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Correlation analysis links REGg to large numbers of
cancer related genes/pathways
To explore potential mechanisms of REGg in cancer
development, we further investigated genes whose
expression is highly related to REGg expression in the
four cancer types profiled. A statistical meta-analysis
based on Pearson correlation coefficient (PCC) was con-
ducted on the defined (REGg differential expressed) data-
sets (Additional file 4: Table S4). The correlation
between REGg and every other gene in these datasets
were calculated and evaluated statistically. With the
assumption that a high absolute PCC value would reflect
a potentially close relation to REGg functionally, only
genes bearing high PCC scores were selected for subse-
quent studies.
To estimate that the approach we used in our analysis

could indeed generate meaningful results, we first set up
a PCC cutoff value +/- 0.6 in at least one dataset for a
pilot test. Since previous study [24,25] has demonstrated
REGg mediated regulation of p53, we examined if p53

targets can be identified among REGg highly correlated
genes. A total of 29 published genes in p53 signaling
pathway were identified as significantly correlated with
REGg (Additional file 5: Table S5), indicating that our
normalized datasets contain valuable information
required for further analysis.
By more stringent PCC-value based criteria, we screened

genes highly-correlated with REGg and identified a total of
588 genes, with 521 positively correlated, 99 negatively
correlated, and 31 being both negatively and positively
correlated (Additional file 6: Table S6). Among these
genes strongly correlated with REGg, 467 were identified
from colon cancer, while 75, 53, and 25 genes were from
lung, thyroid and liver cancer respectively. Interestingly,
multiple cancers shared significant amount of these genes.
Based on all calculated results, there were 32% genes in
two cancers, 43% genes in three cancers and 21% genes in
four cancers simultaneously (Additional file 7: Figure
S1A). The PCC between REGg and all other genes in each
dataset are shown in Figure 4A. The range of the PCC

Figure 2 Microarray meta-analysis of REGg expression in human cancers. (A) The flow chart of datasets selection. (B) REGg expression
profiles in Cancer (vs. non-cancer disease datasets. The black boxes refer to the percentage of datasets (14 out of 21 in cancer vs. 3 of 8 in non-
cancer datasets) with significant change (p < 0.05) of REGg expression. White boxes represent the percentage of datasets with insignificant
changes (7 of 21 in cancer vs. 5 of 8 in non-cancer). (C) REGg expression profiles in each cancer types.
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plot reflects more positive-correlation points than negative
ones, suggesting that more genes are positively correlated
with REGg expression.
To understand functional diversities of the genes compu-
tationally correlated with REGg, we performed Ingenuity
pathway analysis of the 588 genes. Our analysis displayed
that all mapped genes were functionally annotated into
500 pathways in which 207 were statistically significant
(P <0.01). Among the 207 pathways analyzed, 20 cancer
pathways (10%), 102 cancer related pathways (49%), and
85 other pathways (41%) were classified (Figure 4B). The
top 15 pathways based on statistic significance (p-values)
are shown in Additional file 7: S1B. Cancer related path-
ways were composed of 86 pathways related to cell cycle
regulation, 9 pathways in apoptosis, and 7 pathways in
cell growth (Additional file 6: Table S6). Due to the pre-
sence of subset of genes in multiple pathways, such as

Myc (in 37 function annotation pathways), HSP90AB1
(in 11 pathways), ILF2 and ODC1 (in 6 pathways respec-
tively), the number of genes in cancer, cancer-related and
other pathways were 163, 168, and 218 respectively with
overlaps indicated in Figure 4C. Detailed information of
pathway analysis is included in Additional file 6: Table
S6. Based on Ingenuity analysis of cancers with REGg
overexpression, our results indicate that over 50% of
REGg highly-correlated genes/pathways are cancer or
cancer-related.
We also validated our pathway analysis of REGg-corre-

lated genes by applying all 588 REGg highly correlated
genes to KEGG pathway annotation. The results were con-
sistent with Ingenuity analysis whereby cell cycle and can-
cer pathways were ranked among the top (Additional file
8: Table S7). Based on these annotation analyses, we dis-
covered that REGg is linked to large numbers of cancer
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Figure 3 REGg expression values and variability in classified human cancers. Representative REGg expression fold-change values in
pathologically classified, stage-specific cancers, non-cancer diseases and normal control datasets originated from liver (A), colon (B), thyroid (C)
and lung (D) tissues were shown in box plot which signifies the upper and lower quartiles. The median is represented by a thin line and mean
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related genes, including Myc & RAN in oncogenic path-
way, BUB3 in spindle check-point function, BTG2 in cell
cycle transition, DDB1 in DNA damage repair, DAPK2 in
programmed cell death, in addition to genes in the p53
pathway like PTEN. We also observed that proteasome,
ubiquitin-mediated proteolysis, and metabolic pathways
were listed among the top of the 110 pathways covering
125 genes. Gene signaling pathways identified in KEGG
analysis also include MAPK, Wnt, Jak-STAT, Neurotro-
phin, TGF-b, mTOR, and VEGF pathways. A battery of

interesting genes were observed in the “other pathways”
cluster, encompassing genes in spliceosome like HNRNPC
& SFRS3, genes in aminoacyl-tRNA biosynthesis such as
DARS & KARS, genes in immune response containing
TNFSF10 & MET, as well as genes involved in epigenetic
regulation, including SUV39H1, H2, PRMT5, etc.
To illustrate potential links between the gene products

among the REGg correlated genes, we conducted further
analysis of protein-protein interaction (PPI) network using
STRING [19], which is an online database of known and

Figure 4 Statistical analysis and functional annotation of genes correlated to REGg. (A) Distribution of PCC (Pearson correlation coefficient)
in datasets from different cancers. Upper panel box-plot shows positive PCC and lower panel displays negative PCC values (Y axis) that are
greater than +0.6 or less than -0.6. Analyzed datasets are from colon (n = 3), liver (n = 4), lung (n = 3) and thyroid (n = 3). (B) Most of the
annotated REGg-correlated gene pathways are involved in cancers. Ingenuity analysis of REGg-correlated gene pathways were grouped into
cancer (black, 10%), cancer related (grey, 49%) and other pathway clusters (white, 41%) to reveal the proportion of REGg-correlated gene
pathways in cancers. (C) Most of the annotated REGg-correlated genes are cancer-related. The genes representing cancer, cancer related and
other-pathway clusters were plotted to show the overlaps among different pathway clusters. Note that the total number of cancer and cancer-
related genes constitute majority of the REGg-correlated genes.
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predicted protein interactions. This generated network
(Additional file 9: Figure S2) integrated information from
experimental repositories, computational prediction and
published collections, and showed their interaction with
default parameters. PPI network revealed potential interac-
tions among five clusters of REGg correlated gene pro-
ducts, including those in metabolic pathways, proteasome
pathways, cell cycle related pathways, DNA repair path-
ways, and tRNA biosynthesis pathways. These results pro-
vide additional information for future study of cellular
function of REGg as well as its regulation.

Confirmatory analysis of REGg correlated genes from
bioinformatic analysis
Our computational analysis indicated strong correlation of
REGg to genes regulated by p53 and in cancer related

pathways. To validate our bioinformatics-based predic-
tions, we selected 30 genes for expression analysis using
specific cancer cell lines. In addition to genes associated
with p53 pathways, we selected two representative genes
from each of the top cancer/cancer related pathways,
metabolic pathways as well as those appeared in KEGG
and Ingenuity network analysis (Table 2). We made use of
stable cell lines constitutively expressing a control shRNA
(shN) or a REGg specific shRNA (shR). Three pairs of
shRNA expressing cell lines were originated from lung,
colon, and thyroid (A549, HCT116, and ARO, Additional
file 10: Figure S3). The REGg knockdown in HepG2 liver
cancer cell lines was generated by introducing synthetic
siRNA against REGg [26]. The significant differences of
REGg expression between control (shN) and REGg knock-
down in each pair of the cell lines allowed us to examine

Table 2 A summary of confirmatory qRT-PCR analysis of selective genes

Tissue Gene Symbol PCR value p-value Status Gene Annotation

Colon BTG2 1.25 1.5E-02 Consistent A member of the BTG/Tob family

Lung DAPK2 1.35 6.0E-12 Consistent Death-associated protein kinase 1 (DAPK1)

Lung GADD45B 1.63 2.6E-02 Consistent Growth arrest and DNA-damage-inducible

Lung SATB1 2.82 4.3E-04 Consistent SATB homeobox 1

Thyroid ABCA1 1.68 2.8E-02 Consistent ATP-binding cassette, sub-family A

Thyroid B3GALT4 1.32 2.0E-03 Consistent UDP-Gal:betaGlcNAc beta 1,3-
galactosyltransferase

Thyroid PTEN 1.29 4.3E-02 Consistent Phosphatase and tensin homolog, tumor
suppressor

Colon CCT3 0.62 2.9E-03 Consistent Member of the chaperonin

Colon DKC1 0.60 8.3E-04 Consistent Dyskeratosis congenita 1, dyskerin

Colon HSP90AB1 0.82 2.4E-02 Consistent A member of heat shock

Colon MYC 0.57 6.7E-03 Consistent myelocytomatosis viral oncogene homolog

Colon ODC1 0.80 1.3E-02 Consistent A p53 target negatively regulated.

Colon RRM2 0.66 4.0E-02 Consistent ribonucleotide reductase M2

Liver DDB1 0.63 3.6E-02 Consistent Damage-specific DNA binding protein 1

Liver HN1 0.65 1.3E-03 Consistent Hematological and neurological expressed1

Liver ILF2 0.79 5.7E-04 Consistent Interleukin enhancer binding factor 2

Liver RAN 0.75 1.3E-02 Consistent ras-related nuclear protein

Lung BUB3 0.82 8.2E-03 Consistent Budding uninhibited by benzimidazoles 3 homolog

Lung USP14 0.74 2.7E-03 Consistent Ubiquitin specific peptidase 14

Thyroid ATR 0.47 5.6E-03 Consistent Ataxia telangiectasia and Rad3 related

Total Consistent N = 20 (66.7%)

Conlon ACLY 1.40 3.7E-05 Inconsistent ATP citrate lyase

Thyroid TSC2 2.18 1.4E-05 Inconsistent Tuberous sclerosis 2, tumor suppressor

Colon CDK1 0.50 7.3E-07 Inconsistent Cyclin-dependent kinase 1

Colon SPPL2A 0.38 3.5E-02 Inconsistent Signal peptide peptidase-like 2A

Conlon TUBG1 0.43 8.5E-05 Inconsistent Tubulin, gamma 1

Liver EHHADH 0.61 4.4E-02 Inconsistent Enoyl-CoA, hydratase/dehydrogenase

Liver CYP4F2 0.70 3.2E-02 Inconsistent Cytochrome P450, family 4, subfamily F

Lung STARD8 0.66 7.5E-03 Inconsistent A subfamily of Rho GTPase

Lung UNC13A 4.73 8.2E-06 Inconsistent Unc-13 homolog A

Thyroid PPAP2A 0.63 2.8E-02 Inconsistent Phosphatidic acid phosphatase type 2A

Total Inconsistent n = 10 (33.3%)

PCR value was the expression level of qRT-PCR results in shR (REGg depletion) cells relative to that in shN (REGg expressing) cells (see Figure S4). The results were
averaged from three independent experiments
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the relative levels of genes predicted to be highly corre-
lated to REGg (Additional file 10: Figure S3). Real time
RT-PCR was performed with specific primers for each
gene in multiple pairs of cell lines or in a specific pair of
cells dependent upon cancer-type specific bioinformatics
data (Additional file 11: Table S8).
The relative expression ratios of each specific gene in

shN and shR cancer cell lines were calculated from aver-
age of three independent experiments and the data with
statistically significant changes (p <0.05) between shN and
shR cells were plotted (Figure 5A and 5B). The expression
of most genes (66.7%, n = 20) in at least one cell line with
or without REGg knockdown was consistent with pre-
dicted correlation to REGg levels (Table 2).
All genes validated by RT-PCR were applied into Inge-

nuity system for core analysis. Network information show-
ing the link among these REGg correlated genes was
displayed in Figure 6A. This analysis placed Myc as the
hub of the interaction network and prompted us to per-
form further analysis on its biological significance. Inter-
estingly, analysis of 11 colon cancer samples suggested
significant positive correlation between cMyc and REGg

(Figure 6B and 6C). The p53 target, PTEN, was also
observed in this network analyses, reinforcing the close
correlation among REGg, p53 pathway, and other cancer
related pathways.

Discussion
REGg-proteasome system represents an emerging path-
way recently recognized to be involved in cancer devel-
opment. This study provides further links between
REGg and multiple cancer related pathways by a combi-
nation of bioinfomatic analysis and molecular biological
approach.
To our knowledge, this is the first computational study

so far in REGg association with multiple cancers. We are
also the first to demonstrate high expression of REGg in
lung and liver cancers despite that overexpression of REGg
in thyroid and colon cancer were reported [6,27]. Tissue
array analyses of four different human cancers, including
lung, colon, thyroid, and liver cancers, revealed significant
increase of REGg protein in over 50% of these cancer sam-
ples. Bioinformatic analysis of human microarray gene
expression profiles indicates that REGg gene expression is

P=0.0013 

P=0.025824 

P=0.008057 

P=0.006694 
2 

1 

4 

2 

2 

1 

3 
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1 

Figure 5 Results of confirmatory qRT-PCR on selected genes. (A) Polar plot of qRT-PCR validation results of selected genes highly correlated
with REGg. Following qRT-PCR analysis of specific genes in REGg knockdown or control cells, data averaged from three independent experiments
were converted into relative fold changes. Fold change values greater than one was shown as positive correlation (brown) and values less than
one represented negative correlation (blue). Genes were arranged in different theta (θ) and radius represent the qRT-PCR fold change values
from 0 to 3. Only data consistent with prediction were shown (see Table 2). (B) Representative qPCR validation experiments. Quantitative RT-PCR
was performed in paired cancer cell lines (shN and shR) with differential levels of REGg expression. Subsets of qRT-PCR results showed the actual
expression differences of a specific gene in these cell lines (results were average from three independent experiments). The relative PCR values
(Table 2) in shN (usually normalized as 1) were divided by the values in shR cells to yield fold changes as shown in Figure 5A. A value greater
than 1 indicates a positive correlation with REGg.
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also increased in most of these human cancers, providing
new evidence that REGg-proteasome pathway may be
involved in the development of multiple cancers.
Computational analysis of datasets from thyroid cancer

with thyroid non-cancer disease and liver cancer with
HCC clinical stage information indicated a potential corre-
lation of gradual increase of REGg level with cancer stages
(Figure 3A). Although the sample size and numbers are
relatively small, the results suggest a potential of REGg as
a prognostic cancer marker and hinted some molecular
mechanisms linking REGg to development of cancers
toward later stages or malignancy.
Our meta-analysis disclosed significant correlation

between REGg and many genes in cancer and cancer
related pathways from ingenuity analysis, including color-
ectal cancer, lung carcinoma, sarcoma, lymphoma, tumori-
genesis, cell division and apoptosis related pathways etc.
Importantly, genes downstream of the previously identified

REGg regulated proteins [24,25], p53, was found highly
correlated with REGg expression. Despite that p53 muta-
tion in different cancer may complicate the correlation
status of its downstream target genes with REGg, the over-
all high correlation values strongly support the previous
finding that REGg-mediated regulation of p53 may play an
important role in cancer development. Annotation analysis
indicated significant correlation of REGg with many differ-
ent proteasome components, suggesting that REGg may
be elevated and function together with other proteasome
complexes. Recent studies have indicated important roles
of the ubiquitin-mediated protein degradation pathway in
cancer and application of proteasome inhibitors as a
promising anti-cancer therapeutic approach [28]. An addi-
tional interesting finding is that numerous REGg-corre-
lated genes are involved in metabolism, particularly in
energy metabolism (Additional file 8: Table S7). The link
between cell metabolism and cancers has been well

Figure 6 Ingenuity network analysis of genes validated by qRT-PCR. (A) Each node represents one gene and different shapes indicate a
distinct function shown with the inlet. A solid line between genes indicates an interactive relationship, while a dotted line refers to potential
relationship. A self-centered circle means a self interaction. (B) IHC analysis of Myc and REGg in 11 colorectal cancer samples. All IHC were carried
out using adjacent sections of cancer samples for either anti-REGg or anti-Myc. The stained intensities were scored with double-blinded
approaches following description in Figure 1. Relative fold levels were plotted with REGg in blue lines/dots and Myc in brown lines/dots. (C) A
representative IHC analysis of Myc and REGg expression from sample #5 in (B).
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documented [29]. The result concurs a recent notion that
cancer cell metabolisms are controlled by oncogenes and
tumor suppressor genes [30].
The mathematical approaches of bioinformatics used in

this study are quite standard [18]. To minimize the
chance of acquiring false-positive results and ensure that
most of the strong candidate genes are selected, we set
rigorous criteria for all studies performed. The signifi-
cance of our computational analysis has been underlined
by laboratory validation experiments in 4 pairs of cancer
cell lines in which differential expression of REGg was
created in the same background to facilitate correlation
studies. Results from quantitative analysis of selected
genes were largely consistent with predicted correlations,
suggesting powerful combination of bioinformatics and
molecular biological studies in disclosing potentially
novel functions of REGg-proteasome in cancer progres-
sion. It is not unlikely that REGg could serve as a cancer
marker, particularly for cancers with aggressive behavior.
Given that REGg mainly functions as a proteasome

activator to induce protein degradation, the biological
links between REGg and its correlated genes may reflect
a result of direct or indirect regulation on transcription.
Ingenuity analysis of validated gene network led our
attention to the correlation between REGg and Myc gene.
Previous research documented overexpression of both
genes in colorectal cancers [31-33]. Coincident with the
largest amount of datasets and highest REGg differential
expression from colon cancers, the positive correlation
between REGg and Myc was validated specifically in
HTC116-shN and -shR cells. Since Myc functions as a
transcription factor, we searched REGg promoter and
found numerous Myc binding sites within 1.5 KB
upstream REGg transcriptional initiation site (data not
shown). Yet we could not exclude the possibility that
REGg may target a negative regulator of Myc for degra-
dation. Further experiments will be carried out to under-
stand the molecular detail of these hypotheses. It is likely
that elevated expression of Myc in certain cancer cells is
one of the potential mechanisms contributing to higher
expression of REGg.

Conclusions
This study provides REGg expression profiles based on
computational analysis of published microarray datasets
and laboratory experiments on cancer samples. Data
analysis links REGg to multiple cancer-related pathways.
Our results indicate potentially important roles of REGg
in multiple cancer types and implicate REGg as a puta-
tive cancer marker.
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Additional material

Additional file 1: Table S2. A summary of 49 datasets collected for
preliminary filtering. Cancer types were identified according to the
sample origin disclosed. Accession numbers were acquired from GEO.
“Sample size” included all samples from cancer, disease and controls.

Additional file 2: Table S3. Datasets selected for analyzing genes
differentially expressed A) All cancer datasets used for two sample
tests. B) All non-cancer disease datasets used for two sample tests. C)
Four datasets with staged information for two sample tests. (XLS 35 kb).

Additional file 3: Table S1. Detailed IHC information of REGg
expression in multiple human cancers. REGg expression status was
scored according to description in Materials & Methods. Overexpression
rate of REGg in each cancer was calculated based on the number of
cases scored ++ and above. Pathological grading and histological
information are provided for lung cancer (A), colon cancer (B), thyroid
cancer (C) and liver cancer (D).

Additional file 4: Table S4. Information of 13 datasets for
correlation analysis. The “Critical Value for test of PCC in two tails” is
variable depending on sample size of each dataset. The “Top % selected”
was arbitrarily set.

Additional file 5: Table S5. Genes in p53 pathway following primary
correlation analysis. The twenty nine p53 regulated genes were
screened following a pilot, less stringent correlation criteria (PCC +/- 0.6;
binomial coefficient as 1). Predicted correlation in datasets was shown.

Additional file 6: Table S6. Ingenuity pathway analysis of genes
highly correlated with REGg. The “Function Annotation” column shows
the annotated pathways from Ingenuity knowledge base. “Molecules”
refer to genes in each pathway. Pathways were ordered according to p-
values.

Additional file 7: Figure S1. Features of genes highly correlated to
REGg following PCC and ingenuity analysis. (A) REGg highly-correlated
genes shared in different cancers. The number in X axis at the bottom of
each column represents the number of cancer types sharing REGg
highly-correlated genes. Y axis refers to the percentage of REGg highly-
correlated gene shared in cancers. (B) Top 15 significant pathways in
Ingenuity analysis of genes highly correlated with REGg. The X- axis
shows the bio-function annotation for each of the 15 pathways. The
black bars (# molecules) corresponding to Y-axis on the left represent the
number of genes in each pathway. The crossed curve corresponding to
Y-axis on the right shows the p-value in logarithm based on 10. The
straight line refers to a cutoff for significant p-value.

Additional file 8: Table S7 KEGG pathway analysis of genes highly
correlated with REGg. “KO” indicates the pathway map ID in the KEGG
pathway database. “Gene Amount” represents the Gene number in each
pathway form input genes.

Additional file 9: Figure S2 Protein-Protein interaction network of
genes highly correlated with REGg. Nodes of sphere stand for proteins.
Colored lines represent different types of protein-protein relationships
including: green for neighborhood, red for gene fusion, blue for co-
occurrence, black for co-expression, purple for experiments validated,
light blue for databases, yellow for text-mining, and gray lines for
homology. Length of the lines stands for the score of functional-link.
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Additional file 10: Figure S3 RNA interference against REGg
significantly attenuated REGg expression and function in different
cancer cell lines. Different cancer cell lines were generated by stably
integrating a control shRNA or an shRNA specifically targeting REGg (in
A549, ARO and HCT116). RNA interference were also performed by
transiently transfecting control (siN) and synthetic siRNA targeting REGg
(siR) to HepG2 cells. Resulted cells normally expressing REGg (shN/siN) or
with REGg depletion (shR/siR) showed expressional and functional
differences as demonstrated by change of p21, the known REGg target.

Additional file 11: Table S8 Primers used in RT-PCR validation
analysis. Sequences of gene-specific primer sets for RT-PCR analysis were
displayed.
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