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Abstract

Background: Metabolic genes have been associated with the function of metabolizing and detoxifying
environmental carcinogens. Polymorphisms present in these genes could lead to changes in their metabolizing and
detoxifying ability and thus may contribute to individual susceptibility to different types of cancer. We investigated
if the individual and/or combined modifying effects of the CYPIAT Mspl T6235C, GSTM1 present/null, GSTT1 present/
null and GSTP1 lle105Val polymorphisms are related to the risk of developing lung cancer in relation to tobacco
consumption and occupation in Asturias, Northern Spain.

combination effects were observed.

Methods: A hospital-based case—control study (CAPUA Study) was designed including 789 lung cancer patients
and 789 control subjects matched in ethnicity, age, sex, and hospital. Genotypes were determined by PCR or
PCR-RFLP. Individual and combination effects were analysed using an unconditional logistic regression adjusting for
age, pack-years, family history of any cancer and occupation.

Results: No statistically significant main effects were observed for the carcinogen metabolism genes in relation to

lung cancer risk. In addition, the analysis did not reveal any significant gene-gene, gene-tobacco smoking or
gene-occupational exposure interactions relative to lung cancer susceptibility. Lastly, no significant gene-gene

Conclusions: These results suggest that genetic polymorphisms in the CYPTAT, GSTM1, GSTTT and GSTP1 metabolic
genes were not significantly associated with lung cancer risk in the current study. The results of the analysis of
gene-gene interactions of CYPTAT Mspl T6235C, GSTM1 present/null, GSTT1 present/null and GSTPT lle105Val
polymorphisms in lung cancer risk indicate that these genes do not interact in lung cancer development.
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Background

Established risk factors for lung cancer include exposure
to cigarette- and environmental-derived pro-carcinogens.
Cigarette smoking accounts for 80% to 90% of cases
among men and 55% to 80% of cases among women [1].
Occupational exposures in industrial facilities account for
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an additional 9% to 15% of lung cancer cases [2]. However,
although cigarette smoking and occupation are the major
causes of lung cancer, only a small fraction of smokers and
workers in high-risk occupations develop this disease. This
suggests other causes, including genetic susceptibility, may
contribute to the variation in individual lung cancer risk.
This genetic susceptibility may partially result from inher-
ited polymorphisms in the genes involved in carcinogen
metabolism [3-5]. Thus, many toxic compounds impli-
cated in carcinogenesis require both activation by meta-
bolic enzymes classified as Phase I and detoxification by
enzymes classified as Phase II. Genetic changes in genes
that encode metabolic Phase I enzymes and detoxification
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Phase II enzymes are linked to increases in metabolic acti-
vation and decreases in metabolic detoxification of envir-
onmentally derived pro-carcinogens and may increase
lung cancer susceptibility.

Phase I enzymes (e.g., CYP) oxidize a wide range of
substrates, resulting in metabolically active carcinogens.
For instance, CYPIAI is responsible for the metabolic
activation of polycyclic aromatic hydrocarbons (e.g.,
benzo[a]pyrene), a leading pro-carcinogen found in
cigarette smoke and environmental pollution [6]. In
addition, the CYPIA1 Mspl polymorphism in the 3’-
flanking region of the CYPIAI gene [7] is in strong link-
age disequilibrium with a non-synonymous SNP of an
isoleucine to valine amino acid change at codon 462 [8].
Studies suggest that these 2 CYPIAI SNPs are impli-
cated in lung cancer risk [9-11].

Phase II enzymes (e.g., the GST supergene family) play
a central role in the detoxification of toxic and carcino-
genic electrophilic compounds. GSTs are a large family
of cytosolic enzymes that catalyze the detoxification of
potential carcinogens through a conjugation with
reduced glutathione. GSTM1 and GSTP1 metabolize
large hydrophobic electrophiles, such as polycyclic aro-
matic hydrocarbon-derived epoxides [12]. GSTT1, on
the other hand, is involved in the metabolism of smaller
compounds, such as monohalomethane and ethylene
oxide [13]. GSTs also metabolize compounds formed
during oxidative stress, such as hydroperoxides and oxi-
dized lipids, and they are transcriptionally activated dur-
ing oxidative stress [14].

Certain genetic variants in the glutathione S-
transferase genes, such as the GSTMI and GSTTI null
polymorphisms, are prevalent among 50% and 20% of
Caucasians, respectively [15], result in the lack of active
enzyme [16]. Meta-analyses have indicated that the car-
riers of GSTMI null or GSTTI null genotypes have a
slightly higher risk of developing lung cancer compared
to carriers of at least one functional allele [17-19].
GSTP1 is the major isoenzyme expressed in human lung
tissue [20]. A A/G single nucleotide polymorphism
(SNP) located within the substrate-binding domain of
the GSTPI results in an isoleucine to valine amino acid
change at codon 105 (Ile105Val). Notably, the valine al-
lele is associated with a lower conjugating activity when
compared to the isoleucine allele [21-23]. The frequency
distribution of the GSTPI Val allele varies across racial/
ethnic groups [20]. However, epidemiological studies of
the impact of the GSTPI Ile105Val polymorphism on
lung cancer risk, including two meta-analyses, show in-
consistent results [19,24-27].

Many studies investigating the association between the
CYP1A1 Mspl T6235C, GSTMI present/null, GSTTI
present/null, and GSTPI Ile105Val polymorphisms and
lung cancer risk have been limited by small sample sizes,
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leading to a lack of statistical power [28-31]. Further-
more, pooled analyses to increase sample size have led
to conflicting results between groups, most likely due to
population differences (i.e., ethnicity) or failure to con-
trol for other potential confounders, including age and
sex [32]. Therefore, the four genes analysed in this study
encode enzymes involved in the metabolism of polycyc-
lic aromatic hydrocarbons (PAHs) and aromatic amines,
which are procarcinogens present in both smoking and
occupation, and thus, both variables must be controlled
for in the analysis. This study will show an analysis of
occupation as a method to verify whether individuals
who possess at least one variant allele of the polymorph-
isms studied and belong to list A occupation have a
higher risk of lung cancer than those individuals with
the wild-type genotype.

To examine whether genetic polymorphisms in Phase I
and Phase II metabolic genes are associated with lung can-
cer risk, we studied 4 polymorphisms in the CYPIAI,
GSTM1I, GSTT1 and GSTPI metabolic genes, individually
and combined, in a large hospital-based case—control
study of lung cancer including 789 lung cancer cases and
789 controls from a Caucasian population in Asturias,
Northern Spain. Moreover, we analyzed the possible inter-
actions gene-tobacco and gene-occupational exposure.

Methods

Study population

The CAPUA (Lung Cancer in Asturias [Cancer de Pulmén
en Asturias], Spain) study is a hospital-based, case—control
study conducted by the Molecular Epidemiology Cancer
Unit at the University Institute of Oncology (University of
Oviedo). Details of the study design and methods have been
described elsewhere [33-37]. Briefly, from October 2000 to
December 2010, a standard protocol was used to recruit
incident cases of histologically confirmed lung cancer at
Asturias’ four main hospitals (the Cabuenes Hospital in
Gijén, San Agustin Hospital in Avilés, General Hospital
in Oviedo and Alvarez-Buylla Hospital in Mieres). In
addition, controls were selected from patients admitted
to those hospitals with diagnoses unrelated to the expo-
sures of interest and individually matched by ethnicity,
gender, age (+ 5 years) and hospital. The main specific
pathologies of the final controls selected were as fol-
lows: 36.6% inguinal and abdominal hernias (ICD-9:
550-553), 29.3% injuries (ICD-9: 800-848, 860-869,
880-897), and 12.5% intestinal obstructions (ICD-9:
560, 569, 574). The CAPUA study was approved by the
respective ethics committees of the hospitals involved,
and written consent was obtained from all participants.

Data collection
During the first hospital admission, information on known
or potential risk factors for lung cancer was collected
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personally by trained interviewers using computer-assisted
questionnaires. These structured questionnaires collected
data from each participant on age, gender, socio-
demographic characteristics, recent and past tobacco use,
personal and family history of lung cancer, and occupa-
tional history.

Participants were categorized by smoking status into
three groups: non-smokers, defined as subjects who had
not smoked at least one cigarette per day regularly for six
months or longer in their lifetimes; former smokers that
included regular smokers who had stopped smoking at
least five years before the interview; and current smokers
who met none of the previous criteria. Smoking intensity
(pack-years (PY)) was defined as the number of packs of
cigarettes smoked per day multiplied by the number of
years of smoking. Subjects were also categorized as light
(<37 PY) or heavy (=37 PY) smokers, based on the mean
cumulative tobacco consumption in the control group.

For each job held for a minimum of 6 months or longer,
we obtained information on the industry name, production
type, job title, and the year in which the job began and
ended. Occupations and industries were coded using the
1977 Standard Occupational Classification [38] and 1972
Standard Industrial Classification schemes [39]. Lastly, each
coded occupation was categorized according to the list of
occupations known to be associated with lung cancer (List
A) based on evaluations of carcinogenic risks by the Inter-
national Agency for Research on Cancer (IARC) [40,41].
This list is periodically updated and has been extensively
used worldwide as a standardized tool to quantify the bur-
den of occupational lung cancer [42-47]. Some examples of
List A occupations among our individuals are the following:
Arsenic, uranium, iron-ore, asbestos and talc miners; Cer-
amic and pottery workers; Iron and steel founding (casters,
moulders and core makers); Copper, zinc, cadmium,
aluminum, nickel chromates, beryllium blue collar workers;
Platters; Shipyard/dockyard, railroad manufacture workers;
Coke plant and gas production workers; Insulators, roofers
and asphalt workers; and painters.

Genotype analysis

Laboratory personnel were blinded to case and control
status. Genomic DNA was extracted from peripheral
blood samples (97.6% of total) or exfoliated buccal cells
(2.4% of total) as previously described [48]. As quality
control steps, genotyping was repeated randomly in at
least 5% of the samples, and two of the authors inde-
pendently reviewed all results. In this quality control
there was 100% concordance between the replicate sam-
ples and genotype calls between the independent evalu-
ator. The null genotype of GSTMI and GSTTI was
determined by multiplex polymerase chain reaction
(PCR) using B-globin as an internal positive control and
previously described primers and conditions [49]. The
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polymorphisms in CYPIAI and GSTPI (rs1695) were
analysed by polymerase chain reaction (PCR) combined
with restriction fragment length polymorphism (RFLP)
using previously described primers and conditions
[50,51]. PCR was performed in a 10 ul mixture contain-
ing 20 ng of genomic DNA, 0.25 mM of each dNTP, 0.5
units of Taq polymerase (Biotools), and 10 pmol of each
primer in a 1x PCR buffer. PCR products were digested
overnight with the indicated restriction enzyme at 37°C.
DNA fragments were resolved on agarose gels and
stained with ethidium bromide. To verify that the data
obtained by RFLP coincided with the allele sequence,
representative fragments were further purified for PCR-
directed sequencing to confirm the different polymorph-
isms (data not shown).

Statistical analysis

Statistically significant departures from Hardy-Weinberg
equilibrium were evaluated by comparing observed and
expected genotype frequencies among controls using a
chi-square test with 2 degrees of freedom. Differences in
the distribution of categorical data (gender, smoking sta-
tus, family history of lung cancer, and occupational sta-
tus) were tested using a chi-square test. Continuous
variables that were not normally distributed among con-
trols (age, PY) were assessed using a non-parametric
Mann—Whitney U test. Crude odd ratios (ORs) were cal-
culated using Wolf's method [52]. Multivariate uncondi-
tional logistic regression analysis with adjustment for
age, family history of any cancer, tobacco consumption
and worker in list A occupation (no, yes) was performed
to calculate adjusted ORs and 95% confidence intervals
(CIs). Gene-gene and gene-environment interactions
were estimated using a logistic regression model, which
included an interaction term as well as variables for ex-
posure (tobacco consumption, family history of any can-
cer, and worker in list A occupation), genotypes
(CYP1AIL, GSTM1I, GSTTI1 or GSTP1) and potential con-
founders (age).

To analyze the gene-gene interactions, the genotypes
of two genes were combined and sorted into four cat-
egories consisting of no risk alleles (the reference group),
no risk allele for the first gene and any risk allele for the
second, any risk allele for the first gene and no risk allele
for the second, and two risk alleles. For CYPIAI the C-
allele was classified as the putative high risk allele. In the
case of GSTs genes, the putative high-risk alleles were
the >1 null allele for GSTMI1, the >1 null allele for
GSTTI and, finally, the Val allele for GSTP1I.

The sample size of our study for an allele frequency
between 11-35% is sufficient to detect ORs greater than
1.34 or lower than 0.69 with more than 80% power as-
suming a dominant genetic model.
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All statistical analyses were performed using STATA
8.0 software (Stata Corporation, College Station, Texas).

Results

Subject characteristics

The analysis included 789 lung cancer cases and 789
controls from a Caucasian population of Asturias,
Northern Spain (CAPUA Study, acronym for CAncer de
PUlmon en Asturias [Lung Cancer in Asturias]). There
were no statistically significant differences among the
cases and controls regarding gender. There were statisti-
cally significant differences comparing the cases to con-
trols regarding median age (67 vs. 66), tobacco smoking
pack-years (PY) (54 vs. 30.1), family history of lung can-
cer (11.4% vs. 6.5%) and list A occupation status (List A
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cancer) (8.8% vs. 13.2%). There were more current smo-
kers (63.7% vs. 34.3%) and more heavy smokers (62.29
vs. 36.89 PY) among the cases than among the controls.
Histologically, squamous cell carcinoma (39.8%) and
adenocarcinoma (31.3%) were the main types of lung
cancer (summarized in Table 1).

We evaluated the impact of polymorphisms detected
in 4 in Phase I and Phase II metabolism genes (CYPIAI
Mspl T6235C, GSTM1 present/null, GSTTI1 present/null
and GSTPI Ilel105Val) on the risk of developing lung
cancer. Within our study set, in heritance of at least one
GST (M1, T1) deletion or GSTP1 105Val alleles were
fairly common among controls with frequencies ranging
from 21.3-58.1%, as detailed in Table 2. The genotype
frequencies were comparable to other many European

include occupations known to be associated with lung  populations. The genotype frequencies did not
Table 1 Characteristics of lung cancer cases and controls
Characteristic Cases (n=789) Controls (n=789) p?
n (%) n (%)
Gender
Male 697 (88.3) 697 (88.3) 1.000
Female 92 (11.7) 92 (11.7)
Age (yrs), median (range) 67 (33-84) 66 (30-87) 0.034
n 789 789
Smoking Status
Never 51 (6.5) 222 (28.1) <0.001
Ever 738 (93.5) 567 (71.9)
Former 231 (29.8) 291 (37.3) <0.001
Current 494 (63.7) 268 (34.3)
Pack-years ® median (range) 54 (0.65-274.5) 30.1 (0.05-170) <0.001
n 736 559
Family history of any cancer
None 431 (57.2) 467 (59.9) 004
Other cancers 237 (314) 262 (33.6)
Lung cancer 86 (11.4) 51 (6.5) 0
Worker in list A occupation®
No 641 (81.2) 685 (86.8) 0.002
Yes 148 (18.8) 104 (13.2)
Histological type
Squamous cell carcinoma 313 (39.8)
Adenocarcinoma 246 (31.3)
Small cell carcinoma 133 (16.9)
Large cell carcinoma 24 (3.1)
Non-differentiated 49 (6.2)
Others 9(1.1)
Clinical diagnosis 13 (1.6)
Missing 2

@ Two-sided Chi-squared test and Mann-Whitney test where appropriate.
P Pack-years for ever smokers.
€ List A includes occupations known to be associated with lung cancer.
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Table 2 Analysis of polymorphisms and lung cancer risk
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Metabolic enzyme Gen SNP Genotype Cases Controls p? Unadjusted OR Adjusted® OR
n (%) n (%) [95% Cl] [95% ClI]
Phase | CYPTA1 Mspl T6235C /T 608 (77.1) 632 (80.1) 0.203 Reference Reference
T/C 172 (21.8) 145 (184) 1.23 [0.96-1.58] 1.16 [0.87-1.53]
c/C 9 (1.1) 12.(1.5) 0.78 [0.33-1.86] 0.83 [0.31-2.20]
T/C+C/C 181 (22.9) 157 (19.9) 0.141 1.20 [0.94-1.53] 1.13 [0.86-1.49]
Phase Il GSTM1 present/null present/present 375 (48.3) 358 (46.1) 0.387 Reference Reference
>=1 null allele 401 (51.7) 418 (53.9) 092 [0.75-1.12] 0.95 [0.76-1.19]
Phase Il GSTT1 present/null present/present 618 (79.6) 611 (78.7) 0.662 Reference Reference
>=1 null allele 158 (204) 165 (21.3) 095 [0.74-1.21] 0.85 [0.64-1.12]
Phase Il GSTP1 lle105Val lle/lle 352 (44.7) 330 (41.9) 0.391 Reference Reference
lle/Val 339 (43.0) 366 (46.4) 0.87 [0.70-1.07] 0.84 [0.66-1.06]
Val/Val 97 (12.3) 92 (11.7) 0.99 [0.72-1.36] 0.83 [0.57-1.19]
lle/Val + Val/Val 436 (55.3) 458 (58.1) 0.263 0.89 [0.73-1.09] 0.83 [0.66-1.05]

@ Chi-squared p-value.

b Adjusted by age, pack-years (non-smoker, <37PY, >37PY), family history of any cancer, and worker in list A occupation”.

" List A includes occupations known to be associated with lung cancer.

substantially deviate from expected distribution under
the Hardy-Weinberg Equilibrium (p = 0.05).

We evaluated the main effects of phase I/phase II
xenobiotic metabolism genes (CYP1A1, GSTM1, GSTP1
and GSTT1) in relation to lung cancer susceptibility
using univariate as well as multivariate statistics. No

significant individual gene effects were observed among
carriers of one or more CYP1Al Mspl 6235C (OR=
1.13; 95% CI=0.86-1.49); GSTM1 null (OR=0.95; 95%
CI=0.76-1.19); GSTT1 null (OR=0.85; 95% CI=0.64-
1.12); GSTP1 Val (OR=0.83; 95% CI=0.66-1.05), as
summarized in Table 2.

Table 3 Analysis of polymorphisms stratified by histological type

Squamous cell carcinoma

Adenocarcinoma

Small cell carcinoma

Ca/Co p* Unadj.OR Adj’OR Ca/Co p*  Unadj. OR Adj.POR Ca/Co p* Unadj.OR Adj.OR
[95% CI]  [95% CI] [95% ClI] [95% Cl] [95% CI]  [95% CI]
CYP1A1 Mspl T6235C
/T 238/247 0384 Reference Reference 194/193 0909  Reference Reference 96/108 0.070 Reference Reference
T/C+ C/C 73/64 118 138 47/48 0.97 083 34/22 1.74 145
(0.81-1.73] [0.86-2.20] [0.62-1.53] [0.50-1.35] [0.95-3.19] [0.74-2.85]
GSTM1 present/null
present/present  160/142 0.147 Reference Reference 109/113 0.712 Reference Reference 56/59 0706 Reference Reference
>=1null allele 149/167 1.00 091 126/122 1.07 0.96 72/69 1.10 1.18
[0.58-1.09] [0.63-1.33] [0.75-1.54] [0.65-1.44] [0.67-1.80] [0.67-2.09]
GSTT1 present/null
present/present 243/239 0.698 Reference Reference 193/186 0414  Reference Reference 103/103 1.000 Reference Reference
>=1null allele  66/70 0.93 0.83 42/49 0.83 [0.52-131] 0.76 [046-1.26]  25/25 1.00 118
[0.63-1.36] [0.53-1.30] [0.54-1.86] [0.58-2.40]
GSTP1 lle105Val
lle/lle 132/143 0374 Reference Reference 115/102 0.235 Reference Reference 59/44 0057 Reference Reference
lle/Val+Val/Val - 179/168 1.15 112 127/140 0.80 0.69 71/86 0.62 061
[0.84-1.59] [0.76-1.63] [0.56-1.15] [0.46-1.02] [0.37-1.02] [0.34-1.08]

@ Chi-squared p-value.

b Adjusted by age, pack-years (non-smoker, <37PY, >37PY), family history of any cancer, and worker in list A occupation”.

" List A includes occupations known to be associated with lung cancer.
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Table 4 Analysis of interaction between polymorphisms and tobacco consumption in lung cancer risk
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Cases/Controls n(%)/n(%) p? Unadjusted Adjustedb p-interaction

OR [95% Cl] OR [95% Cl]

CYP1A1 * PY

T/T-Non-smokers 40(5.1)/182(23.1) <0.001 Reference Reference 0.071

T/C+C/C-Non-smokers 11(1.4)/40(5.1) 5[0.59-2.65] 1.16 [0.59-2.52]

T/T-Smokers<37PY 139(17.6)/262(33.2) 241 [1.61-3.62] 247 [1.64-3.71]

T/C+C/C-Smokers<37PY 32(4.1)/77(9.8) 9 [1.10-3.25] 1.83 [1.06-3.17]

T/T-Smokers>=37PY 429(54.4)/187(23.7) 1044 [6.78-16.07] 10.14 [6.46-14.99]

T/C+C/C-Smokers>=37PY 138(17.5)/40(5.1) 15.70 [8.52-28.94] 15.38 [9.32-25.38]

GSTM1 * PY

present/present—-Non-smokers 26(3.3)/102(13.2) <0.001 Reference Reference 0.544

>=1 null allele-Non-smokers 25(3.2)/119(15.3) 0.82 [0.45-1.52] 0.82 [044-1.52]

present/present-Smokers<37PY 70(9.0)/149(19.2) 4 [1.09-3.10] 1.87 [1.10-3.17]

>=1 null allele-Smokers<37PY 96(12.4)/182(23.5) 2.07 [1.25-342] 2.10 [1.26-3.51]

present/present-Smokers>=37PY 279(35.9)/106(13.7) 10.33 [5.98-17.84] 10.27 [6.24-16.84]

>=1 null allele-Smokers>=37PY 280(36.0)/117(15.1) 9.39 [5.49-16.05] 9.00 [5.49-14.73]

GSTT1 * PY

present/present-Non-smokers 40(5.1)/185(23.9) <0.001 Reference Reference 0.060

>=1 null allele-Non-smokers 11(1.4)/36(4.6) 1 [0.66-3.02] 1.44 [0.67-3.09]

present/present-Smokers< 37PY 129(16.6)/264(34.1) 2.26 [1.50-3.40] 2.31 [1.53-3.50]

>=1 null allele-Smokers< 37PY 37(4.8)/67(8.6) 2.55 [1.49-4.38] 2.62 [1.52-4.50]

present/present-Smokers>=37PY 449(57.9)/161(20.8) 12.90 [8.25-20.17] 12.72 [8.55-18.91]

>=1 null allele-Smokers>=37PY 10(14.2)/62(8.0) 821 [4.85-13.87] 8.05 [5.02-12.91]

GSTP1 * PY

lle/lle = Non-smokers 22(2.8)/93(11.8) <0.001 Reference Reference 0344

lle/Val+Val/Val = Non-smokers 29(3.7)/127(16.1) 0.97 [0.52-1.79] 0.95[0.51-1.78]

lle/lle-Smokers< 37PY 84(10.7)/141(17.9)

lle/Val+Val/Val-Smokers<37PY 87(11.0)/199(25.3)

lle/lle-Smokers > =37PY 246(31.2)/95(12.1)

lle/Val+Val/Val-Smokers>=37PY 320(40.6)/132(16.8)

252 [1.46-4.36] 269 [1.55-4.66]

[ [
0 [
5 [1.08-3.15] 1.79 [1.04-3.08]
[ [
[ [

10.95 [6.06-19.76] 10.64 [6.24-18.15]
10.25 [5.85-19.95] 10.05 [5.98-16.90]

@ Chi-squared p-value.

P Adjusted by age, family history of any cancer, and worker in list A occupation’”.

" List A includes occupations known to be associated with lung cancer.

Individual effects of CYP1A1 and GST SNPs on lung
cancer and histological subtypes

No association was found between CYPIAI Mspl T6235C
polymorphism and lung cancer risk (adjusted OR=1.16;
95% CI =0.87-1.53; adjusted OR =0.83; 95% CI =0.31-2.20;
adjusted OR =1.13; 95% CI=0.86-1.49 for T/C genotype,
C/C genotype and T/C + C/C genotypes, respectively).

For the GSTMI present/null polymorphism, the fre-
quency of the GSTMI null genotype was lower in the
cases (51.7%) than in the controls (53.9%), although not
statistically significant. When we analyzed the associ-
ation between the GSTMI genotypes and lung cancer
risk, we found that the >1 null allele was no associated
with the risk of developing lung cancer (adjusted OR =
0.95; 95% CI=0.76-1.19).

In the case of the GSTT1 present/null polymorphism
the frequency of the GSTT1 null genotype was lower in
the cases (20.4%) than in the controls (21.3%), although
not statistically significant. We did not find any evidence
of an association between the GSTMI genotypes and
lung cancer risk.

Finally, the frequency of the GSTPI1 Val allele was
0.338 in the cases and 0.349 in the controls. The fre-
quency of the Val/Val genotype was slightly higher in
the cases (12.3%) than in the controls (11.7%). When we
analysed the association between the GSTPI1 genotypes
and lung cancer risk, we found no association between
individuals with the variant genotype Val/Val or the car-
riers of variant allele Val (Ile/Val + Val/Val) and the risk
of developing lung cancer (adjusted OR =0.83; 95% CI =
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0.57-1.19 and adjusted OR = 0.83; 95% CI = 0.66-1.05, re-
spectively) (Table 2).

Individual effects of carcinogen metabolism genes on
histological lung cancer subtype

The stratified analysis by histological type of the
CYPIA1 Mspl T6235C, GSTMI present/null, GSTTI
present/null, GSTPI Ile105Val polymorphisms did not
reveal any statistically significant association (Table 3).

Gene-environment and gene-gene interactions

An analysis of the interaction of each variant carcinogen
metabolism gene alone and tobacco consumption in
lung cancer risk showed that there is no gene-
environment interaction (Table 4). In addition, no asso-
ciation was found in the analysis of the interaction be-
tween GSTMI present/null, GSTTI present/null and
GSTPI Ile105Val polymorphisms and occupation in lung
cancer risk (each gene analysed separately with occupa-
tion). However, the case of the C-allele variant in the
CYPIAI gene could represent a possible interaction with
occupation (adjusted OR [95%CI]: 2.20 [1.11-4.35] for
workers in occupations included in list A), as shown in
Table 5.
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None of the 6 possible paired combinations for the
CYPIA1, GSTMI, GSTTI, and GSTPI polymorphisms
showed a gene-gene interaction (Table 6).

Discussion

In this study, we have examined whether individual or
joint modifying effects among four polymorphic meta-
bolic genes were implicated in the development of lung
cancer in a Caucasian population from Asturias, North-
ern Spain. Our results suggest that the polymorphisms
CYPIA1 Mspl T6235C, GSTMI present/null, GSTTI
present/null and GSTPI Ilel05Val are not associated
with lung cancer risk or cancer subtype.

The analysis performed in the present study between
the polymorphisms studied and tobacco consumption
did not reveal any gene-environmental interaction. The
results showed higher lung cancer risk with higher
tobacco consumption. Finally, no association was
observed in the analysis of interaction between the poly-
morphisms studied and occupation.

Our study has several strengths, including high par-
ticipation levels of eligible cases from a homogeneous
population of similar ancestry and all of our control
subjects being under Hardy-Weinberg equilibrium. In
addition, all of our cases were pathologically confirmed.

Table 5 Analysis of interaction between polymorphisms and worker in list A occupation in lung cancer risk

Cases/Controls n(%)/n(%)

Unadjusted Adjusted®
OR [95% Cl] OR [95% CI]

p-interaction

CYP1AT * List A ©

T/T-No list A 494(62.6)/544(68.9) 0.006 Reference Reference 0.128
T/C+C/C-No list A 147(18.6)/141(17.9) 1.15 [0.88-1.49] 1.04 [0.77-1.39]

T/T-List A 114(14.4)/88(11.1) 143 [1.05-1.93] 1.15 [0.82-1.62]

T/C+C/C-List A 34(4.3)/16(2.0) 2.34 [2.27-4.30] 220 [1.11-4.35]

GSTM1 * List A

present/present-No list A 308(39.7)/317(40.8) 0.015 Reference Reference 0.700
>=1 null allele-No list A 322(41.5)/357(46.0) 0.93 [0.75-1.15] 0.97 [0.75-1.24]
present/present-List A 67(8.6)/41(5.3) 1.68 [1.10-2.56] 138 [0.86-2.22]

>=1 null allele-List A 79(10.2)/61(7.9) 1.33 [0.92-1.93] 1.18 [0.78-1.79]

GSTT1 * List A

present/present-No list A 501(64.6)/525(67.6) 0.015 Reference Reference 0439
>=1 null allele-No list A 129(16.6)/149(19.2) 0.91 [0.70-1.18] 0.81 [0.60-1.09]
present/present-List A 117(15.1)/86(11.1) 143 [1.05-1.93] 1.21 [0.86-1.70]

>=1 null allele-List A 29(3.7)/16(2.1) 1.90 [1.02-3.55] 1.33 [067-2.64]

GSTP1 * List A

lle/lle=No list A 289(36.7)/289(36.7) 0.010 Reference Reference 0.815
lle/Val+Val/Val-No list A 350(44.4)/396(50.2) 0.88 [0.71-1.10] 0.84 [0.66-1.08]

lle/lle-List A 63(8.0)/41(5.2) 1.54 [1.00-2.36] 1.38 [0.85-2.22]

lle/Val+Val/Val-List A

86(10.9)/62(7.9)

1.39 [0.96-2.00]

1.08 [0.72-1.62]

@ Chi-squared p-value.

P Adjusted by age, family history of any cancer, and pack-years (non-smoker, <37PY, >37PY).
€ List A includes occupations known to be associated with lung cancer.
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Table 6 Analysis of gene-gene interactions of CYP1A1 Mspl, GSTM1 present/null, GSTT1 present/null, and GSTP1

lle105Val polymorphisms in lung cancer risk

N° of at-risk alleles Cases n Controls Unadjusted Adjusted® OR p-interaction
(%) n (%) OR [95% Cl] [95% Cl]

CYP1A1-GSTM1

T/T-present/present 283 (36.7) 286 (37.0) Reference Reference 0.923

T/T->=1 null allele 90 (11.7) 0(9.1) 1.30 [0.91-1.85] 1.18 [0.80-1.76]

T/C+C/C-present/present 308 (40.0) 332 (43.0) 0.94 [0.75-1.18] 0.95 [0.74-1.23]

T/C+C/C->=1 null allele 89 (11.6) 4 (10.9) 1.07 [0.76-1.51] 1.07 [0.73-1.59]

CYP1A1-GSTT1

T/T-present/present 461 (59.9) 490 (63.5) Reference Reference 0.185

T/T->=1 null allele 152 (19.7) 120 (15.5) 1.35 [1.03-1.77] 1.26 [0.92-1.72]

T/C+C/C-present/present 130 (16.9) 128 (16.6) 1.08 [0.82-1.42] 0.95 [0.69-1.29]

T/C+C/C->=1 null allele 27 (3.5) (4.4) 0.84 [0.50-1.42] 0.77 [043-1.37]

CYP1A1-GSTP1

T/T-lle/lle 277 (35.3) 266 (33.8) Reference Reference 0916

T/T-lle/Val+Val/Val 5(9.5) 4 (8.1) 1.16 [0.80-1.70] 1.14 [0.74-1.75]

T/C+C/C-lle/lle 327 (41.7) 363 (46.1) 0.86 [0.68-1.08] 0.83 [0.64-1.07]

T/C+C/C-lle/Val+Val/Val 106 (13.5) 5 (12.1) 1.08 [0.78-1.50] 0.93 [0.64-1.34]

GSTM1-GSTT1

present/present-present/present 304 (39.2) 276 (35.6) Reference Reference 0.041

present/present->=1 null allele 71 (9.1) 2 (10.6) 0.79 [0.55-1.12] 0.65 [0.43-0.97]

>=1 null allele-present/present 314 (40.5) 335 (43.2) 0.85 [0.68-1.07] 0.85 [0.66-1.10]

>=1 null allele->=1 null allele 87 (11.2) 3(10.7) 0.95 [0.68-1.34] 0.92 [0.62-1.35]

GSTM1-GSTP1

present/present- lle/lle 161 (20.8) 146 (19.0) Reference Reference 0.493

present/present- lle/Val+Val/Val 212 (274) 209 (27.1) 0.92 [0.69-1.24] 0.88 [0.63-1.23]

>=1 null allele- lle/lle 184 (23.8) 175 (22.7) 0.95 [0.70-1.29] 1.01 [0.71-1.42]

>=1 null allele- lle/Val+Val/Val 216 (27.9) 240 (31.2) 0.81 [0.61-1.09] 0.79 [0.57-1.10]

GSTT1-GSTP1

present/present- lle/lle 276 (35.7) 256 (33.2) Reference Reference 0.880

present/present- lle/Val+Val/Val 341 (44.1) 352 (45.7) 0.90 [0.72-1.13] 0.81 [0.63-1.05]

>=1 null allele- lle/lle 69 (8.9) 5 (84) 0.98 [0.67-1.44] 0.79 [0.51-1.21]

>=1 null allele- lle/Val+Val/Val 87 (11.2) 7 (12.6) 0.83 [0.59-1.16] 0.72 [0.49-1.05]

2 Adjusted by age, pack-years (non-smoker, <37PY, >37PY), family history of any cancer, and worker in list A occupation.

" List A includes occupations known to be associated with lung cancer.

We also applied a strong quality control from genotyp-
ing (explained in detail in Methods section). Inevitably,
the use of hospital-based controls is a potential limita-
tion. The hospitals from which the cases were recruited
were reference centers for all patients requiring
hospitalization. Our controls were referred to these
hospitals due to the presence of acute health conditions
that were unrelated to lung cancer risk factors. There is
always a chance of recall bias consisting of a systematic
error due to differences in memories of cigarette smok-
ing habits or occupational exposures between cases and
controls. Structured interviews, like those used in this
study, help to minimize this type of risk. Moreover, the
prevalence of tobacco smoking and occupational

exposure was in agreement with the literature. Our
sample size is not large enough to find conclusive
results in interaction analysis. Other genes that could
participate in xenobiotic metabolism were not consid-
ered on the current study, which is another possible
limitation. Therefore, our future objective is to validate
these results with more individuals and powerful geno-
typing techniques.

Several studies have shown that the CYPIA1 Mspl
T6235C polymorphism is associated with an increased
lung cancer risk in Asian populations, especially in rela-
tion to tobacco smoking [11,32]. However, previous re-
search, including a review of 20 studies [9] and two
pooled analyses [32,53], in addition to our results
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suggest that there is not an established association be-
tween this polymorphism and increased lung cancer risk
in Caucasian populations.

Although biological studies have shown evidence of
variant genotypes in the GST genes, including GSTM1I,
GSTTI1 and GSTPI, resulting in reduced enzymatic ac-
tivity in the cell, epidemiological studies do not support
these findings. Many studies, including several meta-
analyses and pooled analyses, support our finding that
these three polymorphisms are not associated with lung
cancer risk [17-19,24-27].

A large meta-analysis conducted in 2006, including
19,729 cases and 25,931 controls from 117 studies [19],
found an increased lung cancer risk associated with the
GSTM1I present/null polymorphism. However, when
only studies with more than 500 case/control pairs were
considered, no association was observed. Similarly,
pooled analyses with either non-smokers from 23 studies
[53] on cases from a Caucasian population younger than
60 years old with non-small cell lung cancer [4] were
not significantly related to lung cancer or disease
progression.

In relation to the GSTTI present/null polymorphism,
two meta-analyses and three pooled analyses have been
performed to date. Similarly to the GSTMI present/null
polymorphism, the meta-analysis carried out by Ye et al.
[19], including 9,636 cases and 12,322 controls from 44
studies, revealed an increased lung cancer risk associated
with the variant genotype of GSTTI. However, when
only studies with more than 500 case/control pairs were
considered, no association was observed. In addition, a
meta-analysis of 34 studies found no association be-
tween this polymorphism and lung cancer risk in a Cau-
casian population [18]. The three pooled analyses, one
including 34 studies [18], the second with non-smokers
from 8 studies [53], and the last including cases of a
Caucasian population younger than 60 years old with
non-small cell lung cancer [4], showed no statistically
significant associations.

Finally, a recent meta-analysis including 8,322 cases
and 8,844 controls from 27 studies found no association
between the GSTPI Ilel05Val polymorphism and lung
cancer risk [25] among all study participants or stratified
by race/ethnicity. These findings corroborate findings
from another meta-analysis of 25 studies with 6,221
cases and 7,602 controls [19] and with a pooled analysis
including cases of a Caucasian population younger than
60 years old with non-small cell lung cancer [4].

Analyses of gene-gene interactions are especially import-
ant in the glutathione metabolic pathway where multiple
enzymes with overlapping functions and shared substrates
have been associated with susceptibility to carcinogens and
toxic agents. In this study, no association was found prob-
ably due to the failure to consider an exhaustive chart of
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carcinogen metabolism related genes. However, other stud-
ies have found positive results in the gene-gene interaction
analysis [24,27,54], which could support the notion that
genome-based lung cancer risk is likely to be influenced by
combinations of single risk genes of modest effect as well
as synergistic gene-gene interactions.

Although it is well established that occupational ex-
posure is an important risk factor for lung cancer [2]
and the metabolic genes studied here are implicated in
the metabolism of important occupational carcinogens
[6,12,13], very few studies on genetic variants in these
metabolic genes have been able to take occupation into
account because of the difficulty to compile that infor-
mation. Thus, while several studies have analysed the
effect of these polymorphisms on the individual suscep-
tibility to different cancers, particularly bladder cancer,
while controlling for occupation [55-58], only five stud-
ies to date have controlled by occupational exposure in
lung cancer [5,29,59-61]. Nazar-Stewart et al. [59] evalu-
ated the occupational exposure to arsenic, asbestos, and
welding or diesel products as potential effect modifiers
for the GSTMI present/null, GSTTI present/null, and
GSTP1 1lel05Val polymorphisms but found no associ-
ation. Jourenkova-Mironova et al. [29], Reszka et al. [5],
and Risch et al. [60] used occupational exposure as a
confounding variable and Yin et al. [61] used occupation
as matching variable. No study has used occupational
exposure; therefore, we have added to this discussion by
evaluating the possible modification of the relationship
between workers in high occupational risk and lung can-
cer development.

Conclusions

In summary, our results suggest that the four genetic
polymorphisms studied in the CYP1AI, GSTM1, GSTT1
and GSTPI metabolic genes are not associated with lung
cancer risk in our total population of Caucasians from
Northern Spain. Furthermore, the negative results in the
gene-gene interactions analysis seem to indicate that
these interactions do not have an association with lung
cancer development. Well-designed and powerful epi-
demiological studies are necessary to determinate the
true role of genetic susceptibility in lung cancer.
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