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Background: The CD34"CD38 subset of AML cells is enriched for resistance to current chemotherapeutic agents
and considered to contribute to disease progression and relapse in Acute Myeloid Leukaemia (AML) patients

Methods: Chemosensitivity in phenotypically defined subsets from 34 primary AML samples was measured by flow
cytometry following 48 hr in vitro treatment with gemtuzumab ozogamicin (GO, Mylotarg) and the
farnesyltransferase inhibitor tipifarnib/zarnestra. The DNA damage response was measured using flow cytometry,

Results: Using a previously validated in vitro minimal residual disease model, we now show that the combination
of GO (10 ng/ml) and tipifarnib (5 uM) targets the CD34"CD38" subset resulting in 65% median cell loss compared
to 28% and 13% CD347CD38 cell loss in GO-treated and tipifarib-treated cells, respectively. Using phosphokinome
profiling and immunofluorescence in the TF-1a cell line, we demonstrate that the drug combination is
characterised by the activation of a DNA damage response (induction of yH2A X and thr68 phosphorylation of
chk2). Higher induction of yH2AX was found in CD347CD38" than in CD347CD38" patient cells. In a model system,
we show that dormancy impairs damage resolution, allowing accumulation of yH2AX foci.

Conclusions: The chemosensitivity of the CD347CD38" subset, combined with enhanced damage indicators,
suggest that this subset is primed to favour programmed cell death as opposed to repairing damage. This
interaction between tipifarnib and GO suggests a potential role in the treatment of AML.
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Background

Acute myeloid leukaemia is a disease in which patients
tend to respond well to remission induction chemother-
apy, but relapse is common because current therapy
cannot totally eradicate the leukaemic cells. Cells which
survive chemotherapy may have a distinctive biology (e.g.
active survival pathways, quiescent cell cycle status) com-
pared to the bulk of cells in the clone, and/or may be pro-
tected by the bone marrow niche microenvironment in
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which they reside. For this reason the identification of a
post-remission chemotherapy that can specifically target
these cells is crucial. The CD34"CD38" cell subset was ori-
ginally thought to contain all the leukaemia initiating cells
[1]. Whilst leukaemia initiating cells with a more mature
phenotype have now also been found [2,3], the subset
remains of particular interest since it is enriched for quies-
cent, chemoresistant cells which are associated with the
likelihood of relapse [4-6].

Gemtuzumab ozogamicin/GO (Mylotarg) is a chemother-
apeutic agent that consists of a humanised anti-CD33 anti-
body (Hp67.6) conjugated to N-acetyl-calicheamicin 1,
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2-dimethyl hydrazine dichloride, a potent enediyene antitu-
mour antibiotic. In the MRC AML 15 trial, AML patients
<60 years with favourable risk disease who were treated with
GO in combination with induction chemotherapy showed a
significant survival benefit, and a trend was also documented
for patients with intermediate risk [7]. This benefit to good
risk patients was found in a similar study conducted by the
Southwest Oncology Group (SWOG) [8]. Older patients, in-
cluding those with intermediate risk cytogenetics, also bene-
fit from the addition of GO to remission induction
chemotherapy [9,10]. Using an in vitro short-term culture
system consisting of a defined “niche-like” microenvironment
we previously showed that GO treatment can target CD34
"CD38" cells [11]. We therefore investigated whether CD34
"CD38" cell sensitivity to GO could be enhanced by another
anti-leukaemic chemotherapeutic agent for which clinical ef-
ficacy has already been established. Several agents were
examined in a preliminary study, of which tipifarnib
appeared to be the most promising. Tipifarnib is an orally
bio-available, nonpeptidomimetic, methylquinolinone
farnesyltransferase inhibitor, exhibiting clinical activity
against a number of haematological malignancies [12-14]
and has shown enhanced toxicity when combined
with other chemotherapeutic agents [15-17]. A Phase
IT trial combining tipifarnib with etoposide showed ele-
vated complete remission (CR) rates in AML patients
[18]. Tipifarnib has also been assessed in combination
with idarubicin/cytarabine in a Phase I/II study and found
to cause better CR duration and higher CR rates in AML
patients with chromosome 5/7 abnormalities [19].

In this report we establish the efficacy of combining
tipifarnib with GO in vitro, particularly in CD34"CD38"
AML cells, and investigate the mechanisms involved.

Methods

Cell samples

Blood or bone marrow samples were obtained with writ-
ten informed consent from AML patients and healthy
stem cell donors. Use of these samples was approved by
the Nottingham 1 Ethics Committee and the Nottingham
University Hospitals NHS Trust. Mononuclear cells were
isolated using a standard density gradient centrifugation
method with Histopaque.

Materials

Recombinant cytokines were obtained from R&D Sys-
tems (Abingdon, UK). Phenotyping antibodies were from
Becton Dickinson (Cowley, UK). GO was kindly pro-
vided by Wyeth Pharmaceuticals (PA, USA) and tipifar-
nib by Johnson and Johnson Pharmaceutical Research
and Development (NJ, US). Unless otherwise stated, all
other reagents were purchased from Sigma (Poole, UK).
Stock solutions were prepared as follows: GO (1 mg/mL),
daunorubicin (1 mM), vinblastine (4.5 mg/ml) and
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verapamil (50 mg/ml) were reconstituted in water; tipifar-
nib in 1 V HCL: 2 V Methanol (25 mM), cyclosporin A in
100% ethanol (25 mg/mL).

Cell culture

Cell lines

The KG-1a and U937 cell lines were purchased from
the European Collection of Animal Cell Cultures and
the TF-1a cell line from the American Tissue Culture
Collection (ATCC). U937 and TF-1a cells were main-
tained in RPMI 1640 with 10% foetal calf serum
(FCS; First Link), 2 mmol/L L-glutamine, 100 U/mL
penicillin, and 10 pg/mL streptomycin (R10). KG-1la
were maintained as above but with 20% FCS. All cul-
tures were kept at 37°C in 5% CO, and all experi-
ments were done with cell lines in log phase.
Continued testing to authenticate these cell lines was
done using a panel of monoclonal antibodies toward
the final passage of each batch thawed.

Primary AML cells

Fresh or cryopreserved AML cells were cultured at 10°/ml
for 48 hours, in triplicate in serum-free medium consisting
of Iscove’s modified Dulbecco medium supplemented with
200 pg/ml transferrin, 10 pg/ml insulin, 1% L-glutamine,
2% bovine serum albumin and 10* M mercaptoethanol.
Fibronectin-coated wells and serum free medium (SFM)
were used as previously described [20]. For maintenance of
CD34"CD38" cell phenotype in 48 hours culture we treated
AML samples in serum-free medium with immobilized
fibronectin along with a combination of cytokines consist-
ing of IL-3 (20 ng/ml), SDF-1 (100 ng/ml), SCF (50 ng/ml)
and TPO (50 ng/ml).

Phosphorylated protein detection

For the detection of the relative phosphorylation levels of
46 intracellular kinases we used the Human Phospho-
Kinase Antibody Array (Catalogue # ARY003, R&D Sys-
tems, Abingdon, UK) according to manufacturers’ instruc-
tions. Proteins were visualized using chemiluminescence
(Hyperfilm ECL; Amersham), scanned using a Syngene
densitometer, and analyzed using the GeneSnap software
(Syngene).

Flow cytometry

Chemosensitivity assays and immunophenotyping
Phenotyping was carried out using antibodies to CD34,
CD38, CD123 and CD33. A preliminary comparison of
test/control relative fluorescence intensity (RFI) values
in leukaemic samples versus those of CD34"CD38" cells
from healthy donor samples was carried out to establish
cut-off points to verify the leukaemic nature of samples
assessed (for CD33, n=11, mean RFI +2 standard devi-
ation cut-off point = 8.67; for CD123, n =12, mean RFI +
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2 standard deviation cut-off point = 17). Flow cytometric
enumeration of CD34°CD38  and bulk AML cells were
measured in leukaemic samples as previously described
[20]. Briefly, two flow cytometric analyses were used in
parallel for the analysis of CD34"CD38 cell survival.
One assay allowed reproducible measurement of the
concentration of viable cells at the end of the experi-
ment using 10 pug/ml 7-amino-actinomycin D (7-AAD)
and fixed CD45-stained normal mononuclear cells as
internal standard [21]. The second assay allowed the de-
termination of the percentage of CD123"CD34'CD38"
cells within the viable population using CD34 FITC and
CD38 APC and CD123 PE (or isotype controls) with 7-
AAD. From these 2 analyses we calculated the con-
centration of leukaemic CD34'CD38 cells from the
cell count and the proportion of viable cells which are
CD34"CD38 CD123".

Determination of RNA status

The method of Toba 1995 was used, using 7-AAD to label
DNA and pyronin Y to label RNA [22]. RNA was also
measured on unselected cells by spectrophotometry
(Nanodrop 2000, ThermoScientific, UK distributor Fisher
Scientific, Loughborough, UK).

Measurement of P-glycoprotein protein and function
P-glycoprotein (Pgp) protein and function was measured
using flow cytometric methodology as previously described
[23]. Each assay involved labelling with the fluorescent
probe or antibody of interest and with an antibody against
CD45 to allow leukemic (CD45 low/side scatter low) cells
to be gated. The peridinin chlorophyll protein conju-
gate to CD45 was chosen to avoid spectral overlap
with FITC labels. Briefly, Pgp substrate efflux modu-
lation by tipifarnib, Cyclosporin A, vinblastine and
verapamil was determined in a modulation assay
using rhodamine 123 based on the report by Brox-
terman et al. [24]. For protein measurement, MRK16
anti-Pgp (Kamiya Biomedical) antibody (30 minutes, room
temperature) was used followed by 20% normal rabbit
serum to block (30 minutes, 4°C) and FITC-conjugated
goat anti-mouse secondary antibody (30 minutes, 4°C;
Dako). U937 (Pgp negative) and KGla (Pgp positive) were
used as controls.

Measurement of yH2AX and phospho-Chk2(Thr68)

Cells were fixed and permeabilised using the Leucoperm
kit (AbdSerotec) with an additional 10 minute incuba-
tion in ice-cold methanol after the first fixation step. For
YH2A.X, 2 pg/mL mouse monoclonal antibody (Upstate)
or mouse isotype control (DAKO) was added (2 hours,
RT) and goat anti-mouse IgG FITC F(ab')2 secondary
antibody (DAKO) was used as second layer. For phos-
phorylated Chk2 (Thr68), a rabbit polyclonal antibody
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(1:25 dilution Cell Signalling Technology) was added or
not for 1 hour at RT and goat anti-rabbit FITC was used
as second layer. Data were analyzed on a FACS CANTO
using the DIVA software with the phosphorylation status
expressed as a ratio between test and negative control
antibodies (relative florescence ratio; RFI). For primary
cell work, cryopreserved cells were used (65-99% blasts).
These cells were counterstained with CD34 PerCP and
CD38 APC. The PE channel was not used in order to
maximise accuracy of FITC specific fluorescence without
recourse to fine-tuning compensation for individual
samples. Isotype control antibodies were used to set
gates for CD34 and CD38 fluorescence.

Immunohistochemistry and immunofluorescence

For immunohistochemistry, cells were fixed on glass
slides, labeled with YH2A.X and counted using the H
score, a semi-quantitative measurement of damage foci
per 100 cells, as previously described [25]. For immuno-
fluorescence, cells were labeled as for flow cytometry
and were mounted on glass slides in DAPI-containing
mounting medium.

Cytogenetics, FLT3 and NPM1 status

FLT3/ITDs were analysed by previously described meth-
ods [26]. NPMI1 mutation status was identified as
described by Noguera et al. [27]. Stratification into
favourable, intermediate, and adverse cytogenetics groups
was made according to guidelines established in Medical
Research Council studies [28].

Data output and statistical analysis

Statistical analysis was carried out using the Statistical
Package for Social Sciences, version 16 (SPSS). Tests
used were based on the assumption that cell line data
was parametrically distributed and patient cell data non-
parametrically distributed. P values of <0.05 were consid-
ered to represent significance. The supra-additive nature
of the combination of tipifarnib and GO was made by
comparing the toxicity of the combination with the sum
of the toxicities of the two agents individually by
Wilcoxon signed rank tests.

Results

Assessment of the leukaemic nature of CD34*CD38" cells
The frequency of CD34°CD38 cells in normal bone
marrow has been calculated as 0.02+0.01% mono-
nuclear cells [29]. In 27 of our original cohort of 38 sam-
ples, the proportion of CD34"CD38™ cells was >2%, i.e.
at least 100X the normal value and therefore judged to
be overwhelmingly leukaemic. Of the remaining 11 sam-
ples, 7 over-expressed both CD123 and CD33 on their
CD34"CD38 cells, 1 over-expressed CD123 but not
CD33 and 1 over-expressed CD33 but not CD123. In 2
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samples a defining leukaemic phenotype was not found
and these samples were excluded from further analysis.
In addition, 2 samples had insufficient viable CD34*CD38"
cells for analysis after 48 hour culture, such that the final
cohort analysed comprised 34 samples.

Chemosensitivity to tipifarnib/GO combination in primary
AML cells

We used an in vitro model comprising immobilised
fibronectin, serum-free medium and a mixture of the
cytokines IL-3, SCF, TPO and SDF-1 to support the sur-
vival of CD34'CD38 cells in culture without loss of
phenotype [11]. The response of primary AML blasts to
GO at 10 ng/ml has previously been reported [11], and
this was maintained in the current study. With insuffi-
cient CD34"CD38" cells in most samples to study more
than one concentration of each drug, we carried out a
preliminary study to establish a concentration of tipifar-
nib (5 uM) that would induce a low level (10-30%) cell
kill as a single agent (data not shown). When the cohort
was expanded to 34 patient samples, tipifarnib (5 pM)
treatment (48 hours) was found to induce a median 20%
bulk cell kill versus 13% in CD34*CD38" cells. As previ-
ously found [11] GO (10 ng/ml) treatment (48 hours)
alone caused a greater decrease in viable cells in the
CD34"CD38" subset than in bulk cells (14% in bulk cells
versus 28% in CD34 + CD38- cells, P =0.003). The com-
bination of 5 pM tipifarnib and 10 ng/ml GO resulted in
a median bulk cell kill of 51% and median CD34"CD38"
cell kill of 65% (Tables 1 and 2 and Figure 1A). Exclud-
ing the 1 bulk cell sample and 5 CD34"CD38" samples
in which the sum of the individual toxicities of tipifarnib
and GO was >100%, we determined that the combin-
ation was supra-additive in bulk cells (n =33, P =0.009).
there was a non-significant trend towards a supra-
additive effect in CD34"CD38 cells (n=29, P=0.066,
Figure 1B). Cytogenetics were available for 23 samples
(Tables 1 and 2). By MRC criteria [28] most samples
were of intermediate prognostic risk (n=15). Only five
samples belonged to the poor risk group and three to
the good risk group, rendering any subgroup analysis on
these two latter groups inappropriate. Sensitivity to the
drug combination correlated strongly with sensitivity to
the drugs used individually (rho=0.7, P<0.001 for tipi-
farnib and rho =0.43, P =0.01 for GO in bulk cells, rho =
0.61, P<0.001 for tipifarnib and rho 0.64, P <0.001 for
GO in CD34*CD38" cells).

The tipifarnib/GO combination induces a DNA damage
response pathway

In order to probe for factors which might support supra-
additive killing of AML cells by the combination of GO
and tipifarnib, a preliminary study was carried out in
which the expression of 46 known human phospho-
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kinase proteins was measured in the CD34"CD38" TF-1a
cell line after incubation with tipifarnib, GO and the
combination. Of the 46 phosphoproteins measured, only
chk2 phosphorylation was noticeably increased by the
GO + tipifarnib combination compared to each treatment
alone (data not shown). High expression of phosphory-
lated chk2 with the drug combination was confirmed by
flow cytometry in TF-1a cells, despite there being little or
no chk2 phosphorylated by the drugs individually
(Figure 2a). GO alone induced chk2 phosphorylation in
primary cell culture in bulk cells and in the CD34"CD38"
and CD34"CD38" subsets (Figure 2b,c). No chk2 activa-
tion was observed following tipifarnib treatment alone.
However, the highest level of chk2 activation was seen
with the drug combination in bulk cells as well as
CD347CD38 and CD34"CD38" subsets.

To further investigate the DNA damage response
pathway, we measured the damage recognition and re-
sponse protein YH2AX. In TF-1a, as seen with chk2,
YH2AX was only induced by the combination, not the
individual drugs (Figure 3a). U937 cells, which are sensi-
tive to both agents, were used to illustrate that the flow
cytometric method gives rise to a similar pattern of
increased yYH2AX as determination of foci by immuno-
fluorescence. In these cells the combination induced con-
siderably more yH2AX after 24 hours’ treatment than
individual tipifarnib or GO treatments (Figure 3b,c). The
induction of yH2AX in primary AML samples was also
found to be greatest when the combination of tipifarnib +
GO was used (Figure 3d). Furthermore, in primary cells,
7/8 samples studied showed higher induction of YH2AX
expression occurring in the primitive CD34"CD38" com-
partment compared to the more mature CD34"CD38"
cells (P =0.035, Figure 3e).

Impaired resolution of damage foci in dormancy-enriched
leukaemia cells

CD34"CD38" leukaemia cells are largely quiescent [4,30]
and reported to be resistant to chemotherapeutic drugs
[4,5]. However, we have shown sensitivity to tipifarnib +
GO in this subset, together with enhanced yH2A. X ex-
pression. YH2A.X induction is associated with double
strand breaks and initiates the homologous recombination
repair pathway [31,32] which is only functional in prolifer-
ating cells. To confirm that dormant CD34"CD38" cells
are sensitive to drugs that induce a double strand break
response, we compared the DNA damage response in pro-
liferating and non-proliferating CD34"CD38" leukaemia
cells by inducing damage in CD34"CD38 KG-la AML
cells which had been enriched for dormancy by inhibition
of the mTOR pathway. In contrast to cells enriched for
dormancy by serum withdrawal, the mTOR inactivation
method produced cells that remained 100% viable over
several days (data not shown). Low RNA content is a
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Table 1 Characteristics of samples used in this study grouped by responses of cells to Tipifarnib and GO: bulk cells

AML#  Cytogenetics  FLT3 Status NPM1 Status CD33 MFI Pgp status Tip% cell loss' GO% cell loss' Tip/GO% cell loss’ Atox®
#19 normal WT WT 1.7 NEG 33 70 85 -
#1 normal ITD MUT 74 NEG 60 23 82 -1
#10 plus 8 ITD WT 3.7 NEG 54 3 75 18
#17 inv(16) ITD WT 22 NEG 35 27 75 13
#13 normal WT WT NEG 42 39 74 -7
#3 inv(16) WT WT 19 POS 36 0 70 34
#15 — ITD WT 33 POS 50 17 69 2
#27 complex ITD WT 38 NEG 0 0 68 68
#33 del(13) ITD — 198 NEG 38 19 65 8
#14 normal ITD MUT 8.7 NEG 43 4 65 18
#32 — ITD MUT 46 NEG 19 18 65 28
#8 normal WT MUT 83 NEG 20 12 63 31
#12 inv(16) WT WT 1.5 NEG 56 28 63 =21
#26 — ITD MUT NEG 22 31 58 5
#11 — ITD MUT 43 NEG 1 1 55 43
#30 — WT WT 38 NEG 29 18 54 7
#34 normal TD MUT 1.3 NEG 4 42 52 6
#20 — WT WT 30 POS 27 23 50 0
#21 del(5q) ITD MUT 59 NEG 40 25 49 =16
#5 normal ITD MUT 75 NEG 0 16 46 30
#25  dupl, add12, add16 WT — 36 POS 18 10 43 15
#9 normal ITD MUT 84 NEG 19 19 42 4
#6 normal ITD MUT 0.19 NEG 31 37 41 =27
#16 — — — 51 — 21 21 40 -2
#4 — ITD MUT 89 NEG 33 0 35 2
#35 complex WT 18.2 POS 14 5 21 2
#31 normal ITD " POS 7 0 20 13
#2 — WT WT 34 POS 2 0 17 15
#7 plus 11 WT 23 NEG 0 3 15 12
#29 normal WT MUT 140 NEG 16 0 14 -2
#28 complex — — 49 POS 0 2 2 0
#18 -5 WT WT 2.1 POS 0 8 0 -8
#36 — WT WT 6.3 — 9 2 0 =11
#23 — WT WT 36 — 0 1 0 -1

34 AML samples used in this study ordered by magnitude of response to tipifarnib + GO (column second from the right).

1% of cells lost after 48 hours treatment (compared to untreated control).

2 Atox = cell loss with drug combination — (cell loss with tipifarnib + cell loss with GO). No values are displayed when cell loss with tipifarnib + cell loss with

GO=>100%.

hallmark of quiescent leukaemic stem/progenitor cells
[33], and rapamicin-treated KG-1a cells displayed a major
loss of RNA, measured as 3.5fold increase in Pyronin Y'**
cells, from 13.6 to 48.6% cells, and a decrease in average
RNA per cell (measured by spectophotometry) of 54%
(Figure 4a). We treated the proliferating parent and
dormancy-enriched KG-1a cells with daunorubicin. The
reason to use daunorubicin rather than GO in this experi-
ment is that daunorubicin induces DNA damage rapidly
[26] and provides a clear-cut model for monitoring

damage induction and resolution before the onset of con-
founding apoptosis. So, whereas cell lines had been
exposed to GO for 24 hours before analysis of YH2A.X ex-
pression, the KG-1a cells were exposed to daunorubicin
for just 2 hours. Immunocytochemistry was used in order
to measure the DNA damage response (DDR) after
2 hours’ treatment with daunorubicin with or without an
additional 2 hours of incubation following drug with-
drawal. The yH2AX antibody was used as a marker of the
DDR: H-scores were recorded to demonstrate the extent



Jawad et al. BMC Cancer 2012, 12:431
http://www.biomedcentral.com/1471-2407/12/431

Page 6 of 14

Table 2 Characteristics of samples used in this study grouped by responses of cells to Tipifarnib and GO: CD34*CD38"

cells

AML# %CD34°CD38 CD123 MFI CD33 MFI Tip% cell loss’ GO% cell loss’ Tip/GO% cell loss’ Atox?
#13 3 Y] — 88 % 100 -
#19 34 20 14 66 91 100 -
#1 40 51 193 61 40 % -
#10 76 12 05 80 26 94 -
#33 03 46 143 26 67 94 1
#4 17 35 437 57 57 93 -
#14 45 319 97 59 25 93 9
#32 33 62 51 0 45 92 47
#11 25 35 61 12 53 91 26
#9 03 34 13 32 57 90 1
#34 26 70 15 44 31 86 1
#16 23 18 2 0 59 81 2
#17 7 49 16 21 51 81 9
#8 17 53 72 0 0 73 73
#15 78 23 34 47 16 72 9
#5 16 76 74 60 70 10
#6 02 19 57 66 66 0
#20 24 173 31 11 43 64 10
#3 9 84 12 15 0 63 48
#35 37 92 72 62 1 62 -1
#31 08 55 26 41 38 52 27
#26 24 17 9 43 0 43 0
#25 12 42 32 15 2 38 21
#18 85 20 19 8 33 25
#29 09 62 31 64 27 37
#27 14 20 100 0 0 26 26
#2 54 20 31 6 5 18 7
#36 53 6 6.2 27 9 14 -22
#7 23 11 15 0 5 0 -5
#12 03 29 75 0 34 0 —34
#21 6.2 24 53 0 0 0 0
#23 02 42 20 0 2 0 -2
#28 6 17 32 0 0 0

#30 24 90 34 0 0 0 0

34 AML samples used in this study ordered by magnitude of response to tipifarnib + GO (column second from the right).

1% of cells lost after 48 hours treatment (compared to untreated control).

2 Atox = cell loss with drug combination — (cell loss with tipifarnib + cell loss with GO). No values are displayed when cell loss with tipifarnib + cell loss with

GO=> 100%.

of nuclear damage foci as previously reported [25]. As
expected, there were more yH2A.X foci in proliferating
cells compared with quiescence-enriched cells after dauno-
rubicin treatment (Figure 4b). Strikingly, however, when the
drug was removed and cells were allowed two hours to re-
pair, the quiescence-enriched cells were completely unable
to repair daunorubicin-induced damage. These data dem-
onstrate that inhibition of proliferation can allow the accu

mulation of unrepaired damage and therefore indicate a
vulnerability in dormant cells.

Investigation of additional factors that may affect relative
chemosensitivity to the Tipifarnib/GO combination

Pgp status

Where cells were available, we measured the Pgp status
of primary AML samples (31/34 samples, 9 Pgp positive
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and 22 Pgp negative, Tables 1 and 2). GO resistance in
AML blasts is associated with Pgp over-expression
[11,34]. In contrast, tipifarnib has been associated with
inhibition of Pgp-mediated drug efflux [15,35]. Flow
cytometry was used to evaluate the effects of tipifarnib
on Pgp-mediated drug efflux using the fluorescent probe
rhodamine 123 as a substrate. We compared the Pgp in-
hibitory activity of tipifarnib with the more commonly
used Pgp inhibitors, cyclosporin A, vinblastine and ver-
apamil. Our results indicate that Pgp inhibition by tipi-
farnib is well within the range of that exhibited by other
Pgp inhibitors (Figure 5a), confirming Pgp-reversal activ-
ity by tipifarnib. Single tipifarnib and cyclosporin A
treatments of three primary AML cells showed a very

close correspondence between modulation by tipifarnib
and cyclosporin A, (Figure 5b), indicating similar po-
tency between the two agents in inhibiting Pgp activity.
As expected from our previous study [11], Pgp positive
cells were relatively insensitive to GO treatment alone
compared to Pgp negative cells (P =0.038 and P =0.044
for bulk and CD34"CD38" cells, respectively, Figure 5c).
The drug combination also favoured Pgp negative sam-
ples (P=0.038 for bulk cells and P=0.053 for CD34
"CD38" cells). Our data neither supports nor contradicts
the hypothesis that tipifarnib is acting in part as a Pgp
inhibitor: in CD34"CD38" cells median cell kill in the 9
Pgp + samples increased from 15% with tipifarnib and
5% with GO to 52% with the combination, but an
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as phospho-chk?2 test — isotype control fluorescence intensity compared to untreated cells. (@) TF1A cells, n =3, treated for 24 hours. (b) Flow
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increase was only recorded in 6/9 samples and did not
reach statistical significance.

FLT3, NPM1, CD34*CD38 cell burden, CD123 and CD33
expression

FLT3 status, nucleophosmin (NPM1) status and CD33 ex-
pression did not affect sensitivity to individual drugs or
drug combinations (P > 0.05). Strikingly, although GO sen-
sitivity in CD34"CD38 cells was inversely correlated with
the percentage of CD34"'CD38 in the sample (P =0.035),
this effect was absent in tipifarnib-treated cells (P =0.82)
and the tipifarnib/GO combination (P = 1).

Discussion

Despite advances in our understanding of the mechan-
isms of leukaemogenesis, AML still remains a disease
with poor outcome, especially because of disease relapse.
This is due to chemoresistant cells surviving the initial
exposure to cancer chemotherapy. The characterisation
of agents that specifically target relapse-causing cells
within their protective niche microenvironment is essen-
tial to achieve complete eradication of minimal residual

disease cells in AML. We have previously reported that
GO targets CD34"CD38 AML subpopulation enriched
for stem and progenitor cells [11]. Moreover the recent
finding that the addition of GO to standard induction
chemotherapy significantly increases disease free survival
and reduces relapse risk in two major multi-centre trials
[9,10] suggests an in vivo effect for GO in targeting cells
contributing to minimal residual disease. The other drug
in the combination we have studied is tipifarnib, which
is clinically available for AML treatment and efficacy of
which has been established [19,36]. However, no previ-
ous study has attempted to combine these two che-
motherapeutic agents. Using 34 primary AML samples,
we showed that the combination of GO and Tipifarnib
is successful at not only targeting the bulk cells but even
more so the CD34"CD38" cell fraction under protective
“niche-like” conditions (Figure 1). Whilst the CD34*CD38"
leukaemia stem and progenitor cell-enriched phenotype
is not the only cell subset to initiate leukaemia in trans-
plantation models, this subset is quiescent, chemore-
sistant and its presence predicts for poor outcome in
AML [4-6].
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Figure 3 yH2AX in treated cells. Cells were treated with 10 ng/ml GO, 5 uM tipifarnib or the combination for the indicated times. FACs data
are expressed as YH2AX test — isotype control fluorescence intensity compared to untreated cells. (@,b) Summary charts for TF-1a and U937 cells
respectively cells after 48 hours’ treatment (c) lllustration of immunofluorescence and FACs plots showing increases in focal
(immunofluorescence) and total (flow cytometry) yH2AX following 24 hours of treatment in U937 cells. (d) Summary charts of flow cytometric
values for primary AML: bulk (n=14); CD34"CD38 (n=9); CD34"CD38" (n=8). Median values are shown by a solid bar. * represents a P value
compared with untreated cells of <0.05 and ** represents P <0.01. () Line graph showing YH2AX induction in CD34"CD38 cells compared to
CD34%CD38" cells in each of 8 samples.

We have demonstrated a DNA damage response to  CD34"CD38 cells tend to be dormant [4,30], and despite
GO alone and to the tipifarnib + GO combination. The its canonical role as a checkpoint kinase, chk2 is known
DNA damage response indicator yH2A.X (Figure 3) and  to respond to damage in dormant cells [37]. It must be
chk2-phosphothreonine68 (Figure 2) were elevated in  borne in mind that the damage response can favour either
CD347°CD38" cells as well as in bulk cells. Leukaemic repair or apoptosis. Thus, whereas CD34"CD38 Lin-cord
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blood cells have a delayed double strand break response
compared to CD34"CD38" progenitors [38], chk2 knock-
down was found to impair, rather than enhance, apop-
tosis in stem cells [39]. This is of particular interest
because Chk2 inhibitors have been developed for the
express purpose of sensitising cancer cells to chemo-
therapy drugs, but in contrast to chkl inhibitors, these
do not have proven efficacy, and in some situations
have been found to inhibit rather than enhance apop-
totic pathways [40]. The data from Dick and colleagues
suggest that apoptosis is favoured by (largely dormant)
haemopoietic stem cells with activated chk2. Our data
suggest that the same may be true of leukaemic cells,
and moreover, by including GO in a combination which
induces DNA damage, the CD33"CD34"CD38" cells over-
expressed in leukaemic [41,42], but not in normal, adult
bone marrow can be targeted.

To specifically examine whether the DNA damage re-
sponse is enhanced or impaired in dormant CD34
"CD38 cells, we studied mTOR-inhibited KG-1a cells
treated with daunorubicin, and found that these incur a

smaller double strand break response than proliferating
cells during a short pulse of drug, but are almost totally
unable to repair the damage, such that, by two hours
post-treatment, they have a higher burden of yH2A.X
foci than proliferating cells. Hence, our data confirm
that a DNA damage response can be induced in dor-
mant CD34"CD38" leukaemia cells. However, in the case
of primary cells treated in vitro with GO and tipifarnib,
another potential scenario is predicated on the fact that
leukaemic CD34"CD38" cells, driven by autocrine and
paracrine cytokines [33], frequently re-enter the cell
cycle. Thus we cannot conclude definitively that the
observed damage responses are occurring in truly quies-
cent cells.

GO alone induced high chk2 phosphorylation in pri-
mary cell culture in bulk cells and in the CD34*CD38"
and CD34"CD38" subsets, consistent with a previous
finding [43]. In contrast, tipifarnib did not appear to in-
duce a double strand break response as a single agent.
However tipifarnib sensitivity is associated with defi-
ciency of the short patch single strand break repair
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molecule aprataxin [18,44] and tipifarnib has been
reported to induce DNA damage via reactive oxygen
species [45]. Of interest here is that both calicheamicin
and reactive oxygen species produce 3’phosphoglyolate
(3’P@Q) blocking groups in DNA, which, if not processed
efficiently, will result in strand breaks [46]. The combin-
ation of a 3'PG-bistrand DNA damage inducer and a re-
active oxygen species inducer may result in complex
locally damaged sites which in turn may contribute to
the large increase in the double strand break response
seen with the drug combination. Tipifarnib has many
potential molecular targets in AML cells [47] and we ac-
knowledge that any one of these may contribute to the
mechanism of its activity and interaction with GO. How-
ever, the importance of the DDR in the interaction emerged
strongly from our initial phosphokinome profiling.

Sensitivity to GO + tipifarnib in vitro varied from 0% to
100% in our cohort. We reported strong correlations be-
tween the toxicity induced by the combination and the
toxicities of the individual drugs. The lack of relationship
between CD33 expression levels and GO toxicity was un-
surprising, given that this has already been explored ex-
tensively, with evidence for [48] and against [49,50] the
expected association. Jedema and colleagues have previ-
ously noted that the failure of excess free CD33 antibody
to block GO-mediated toxicity in primary AML blasts is
concentration-dependent, and occurs at concentrations
greater than 1 ng/ml (we used 10 ng/ml in the current
study) [50]. These authors found evidence for antibody
uptake by endocytosis, and their work was predicated on
the finding in a clinical study that CD33 expression did
not clearly correlate with GO response. Walter and col-
leagues found that CD33 expression had a statisti
cally significant correlation with outcome in 276
AML patients treated with GO monotherapy, but this
effect was small and therefore had minimal predictive
value [48].

We and others have previously reported a role for Pgp
in GO sensitivity [11,34]. In the current study we have
shown that a significant association remains when tipi-
farnib is used together with GO, despite the role of tipi-
farnib as a Pgp inhibitor. Normal haematopoietic CD34
"CD38" cells over-express Pgp, but we have shown previ-
ously that leukaemic CD34"CD38" subsets express Pgp at
the same levels as more mature cells in the sample [11],
so we could not expect Pgp over-expression to account
for differences in chemosensitivity between bulk cells
and CD34"CD38" cells in the same individuals.

Conclusions

In summary, this study is the first to assess combining
GO with tipifarnib, both of which separately have shown
clinical efficacy in AML. This drug combination tar-
gets AML cells in vitro including the CD34"CD38" cells
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associated with chemoresistance. The activation of a
DDR pathway by GO is amplified by its combination
with tipifarnib. Based on our in vitro data we suggest
assessing this two drug combination in the clinic as a po-
tential chemotherapy regimen in the treatment of AML.
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