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Abstract

Background: The full extent of chromosomal alterations and their biological implications in early breast
carcinogenesis has not been well examined. In this study, we aimed to identify chromosomal alterations associated
with poor prognosis in early-stage breast cancers (EBC).

Methods: A total of 145 EBCs (stage | and Il) were examined in this study. We analyzed copy number alterations in
a discovery set of 48 EBCs using oligoarray-comparative genomic hybridization. In addition, the recurrently altered
regions (RARs) associated with poor prognosis were validated using an independent set of 97 EBCs.

Results: A total of 23 RARs were defined in the discovery set. Six were commonly detected in both stage | and |l
groups (> 50%), suggesting their connection with early breast tumorigenesis. There were gains on 1g21.2-g21.3,
8024.13, 8924.13-21, 8g24.3, and 8g24.3 and a loss on 8p23.1-p22. Among the 23 RARs, copy number gains on
16p11.2 (NUPRT) and 17g12 (ERBB2) showed a significant association with poor survival (P = 0.0186 and P = 0.0186,
respectively). The patients simultaneously positive for both gains had a significantly worse prognosis (P = 0.0001). In
the independent replication, the patients who were double-positive for NUPRT-ERBB2 gains also had a significantly
poorer prognosis on multivariate analysis (HR = 7.31, 95% Cl 2.65-20.15, P = 0.0001).

Conclusions: The simultaneous gain of NUPRT and ERBB2 can be a significant predictor of poor prognosis in EBC.
Our study will help to elucidate the molecular mechanisms underlying early-stage breast cancer tumorigenesis.
This study also highlights the potential for using combinations of copy number alterations as prognosis predictors

for EBC.

Background

Breast cancer is the most common female cancer and
the leading cause of cancer-related mortality in women
worldwide [1,2]. Due to mammographic screening and
advances in chemotherapy, breast cancer mortality rates
have decreased in developed countries since 1990 [3,4].
Nonetheless, axillary-node negative patients treated by
surgery showed a ten-year recurrence rate of approxi-
mately 20% [5]. The five-year survival rate of stage I and
IT breast cancer patients is reported to be approximately
80% to 88% [6-8]. This means that 10-20% of early-stage
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breast cancer (EBC) patients have poor clinical out-
comes. When considering the large impact that breast
cancer has on public health, it is worth investigating
genetic mechanisms underlying poor clinical outcomes
of some EBCs.

Genomic instability is one of the hallmarks of breast
cancer. DNA copy number aberrations, commonly
detected phenomena in cancer lesions, are thought to be
involved in tumorigenesis and to affect cancer pheno-
types [9]. Different patterns of copy number alterations
are associated with distinct gene expression patterns and
clinical characteristics of breast cancer [10]. A number
of chromosomal alterations and subsequent expression
changes have been investigated to determine their impli-
cations in clinical phenotypes or prognosis. These inves-
tigations have resulted in the identification of some
cancer-related genes in breast cancer [11]. For example,
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HER?2 amplification/overexpression is known to occur at
an early developmental stage of ductal carcinoma in situ
(DCIS). Loss of 16q, where potential tumor suppressor
genes such as E-cadherin (CDHI1) and CDHI3 are
located, is also known to be a major event in low-grade
invasive ductal carcinoma [12,13]. Especially, recent
larger-scale studies have elucidated the molecular com-
plexity of breast cancer and suggested novel genetic sub-
groups [14-18]. However, since most of them studied
Caucasians or Hispanics, the profiles of chromosomal
alterations and their biological implications in Asians are
relatively less well studied.

In this study, we aimed to describe commonly occur-
ring chromosomal alterations in EBC (stage I and II)
and to explore the implications of recurrently altered
regions (RAR) on patient prognosis. For this purpose,
we analyzed DNA copy number alterations (CNAs)
across the whole genome using oligoarray-comparative
genomic hybridization (CGH) in a discovery set of EBC
patients. RARs in the discovery set that were found to
be significantly associated with prognosis were validated
in an independent replication set. Our results will con-
tribute to a better understanding of early tumorigenesis
in breast cancer and will help to predict the prognosis of
EBC patients.

Methods

Patients and tumor specimens

As a discovery set for the whole genome array-CGH ana-
lysis, frozen tumor tissues were obtained from 48 EBC
patients who underwent surgical resection at Dankook
University Hospital in Cheonan, Korea (from 1998 to
2002). As an independent replication set, 97 formalin-
fixed, paraffin-embedded (FFPE) EBC tissue samples
(from 1996 to 2002) were obtained from Seoul St. Mary’s
Hospital, Korea. Patient survival status was obtained in
2010 from the Korean Central Cancer Registry, Ministry
of Health and Welfare, Korea. All breast cancers were
stage I, ITA, or IIB. This study was performed under ap-
proval from the Institutional Review Board of the Catholic
University Medical College of Korea (CUMCO06UO015).
Tumor stage was determined according to the standard
AJCC guidelines for tumor-node-metastasis classification
(sixth edition). Clinicopathologic characteristics of the
study subjects are summarized separately for the discovery
and replication sets in Table 1. Hormone receptor status
for ER, PR and HER2 was obtained through a medical rec-
ord review and for the cases without the hormone recep-
tor status, immunohistochemical (IHC) staining for ER,
PR and HER?2 was performed. Based on the IHC measure-
ment, breast cancer cases were categorized into four dif-
ferent molecular subtypes as described elsewhere: luminal
type A (ER + and/or PR +, HER2 -: Luminal A), luminal
type B (ER + and/or PR +, HER2 +: Luminal B), Her2
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Table 1 General characteristics of the study subjects

Characteristics Discovery set Replication set

(n =48) (n=97)

Age group

< 50 years 26(54.2%) 22(45.8%)

> 50 years 48(49.5%) 49(50.5%)
Stage

Stage | 11(22.9%) 25(25.8%)

Stage Il 37(77.1%) 72(74.2%)

Stage IIA 26 50

Stage IIB 11 22
ER status

Positive 25(52.1%) 54(55.7%)

Negative 23(47.9%) 43(44.3%)
PR status

Positive 35(72.9%) 59(60.8%)

Negative 13(27.1%) 38(39.2%)
HER2 status

Positive 11(22.9%) 23(23.7%)

Negative 37(77.1%) 74(76.3%)
Subtype

Luminal A 29(60.4%) 53(54.6%)

Luminal B 10(20.8%) 16(16.5%)

HER2 1(2.1%) 7(7.2%)

TNBC 8(16.7%) 21(21.6%)

overexpressed (ER - and PR -, HER2 +: HER2), and
triple negative (ER -/PR -/HER2 -: TNBC) [19]. For
array-CGH analysis, 10-pum-thick frozen sections of
tumor cell-rich areas (>60%) were microdissected. Gen-
omic DNA was extracted from these sections using a
DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany).
For genomic real-time quantitative PCR (qPCR) analysis,
10-pm-thick paraffin sections of tumor cell-rich areas
(>60%) in the replication set were microdissected. After
paraffin removal, genomic DNA was extracted using a
DNeasy Blood & Tissue Kit (Qiagen). Genomic DNA
from a healthy female individual was used as the normal
reference for all array-CGH experiments. Genomic DNA
extracted from the blood of a Korean female individual
without breast cancer was used as universal normal
reference for all the array-CGH experiments.

Array-CGH and data processing

For array-CGH analysis, 30K whole-genome human oli-
goarrays (Human OneArray ; Phalanx Biotech, Palo
Alto, CA) were used. Oligoarray-CGH was performed as
described elsewhere [20]. In brief, 1 pg of genomic DNA
from tumor tissue was labeled with Cy3-dCTP. The
reference DNA was labeled with Cy5-dCTP (GeneChem,
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Daejon, Korea). Dye-labeled DNA was purified with
BioPrime spin columns (Invitrogen, Carlsbad, CA) and
precipitated with 100 pg of human Cot-1 DNA
(ConnectaGen, Seoul, Korea). The labeled DNA pellet
was dissolved in 50 pl of DIG hybridization buffer
(Roche, Mannheim, Germany), to which 600 pg of yeast
t-RNA (Invitrogen) was added. The labeled DNA solu-
tion was applied on the array and incubated for 48 hours
at 37°C in a MAUI hybridization machine (BioMicro,
Salt Lake City, UT). After washing the slides, arrays were
scanned using a GenePix 4000B scanner (Axon Ins-
truments, Sunnyvale, CA) and feature extraction was
performed using GenePix Pro 6.0. Normalization and re-
alignment of raw array CGH data were performed using
the web-based array CGH analysis interface, Array-
CyGHt [21]. A print-tip Loess normalization method
was used and each probe was mapped according to its
genomic location in the UCSC genome browser (Human
NCBI36/hgl8). In total, 24,107 probes were processed
out of initial 26,616 probes. Array-CGH data for all
48 cancers are available through GEO (accession no
GSE37839).

Detection of recurrent copy number alterations

The rank-segmentation statistical algorithm in NEXUS
software v3.1 (BioDiscovery Inc., El Segundo, CA) was
used to define CNAs of each sample. To optimize the al-
gorithmic parameters for calling CNAs, 11 independent
normal-to-normal hybridizations were performed (10
self-to-self and 1 male-to-female hybridizations). The
parameters for defining CNAs were as follows: signifi-
cance threshold = 5.0E-4; maximum contiguous probe
spacing (Kbp) = 1000; minimum number of contiguous
probes per CNA segment = 5; threshold of signal inten-
sity ratio >0.2 on log, scale for gains and < -0.3 on log,
scale for losses. After defining CNAs, RAR was deter-
mined to be the chromosomal segment covering over-
lapping CNAs that appeared in at least 30% of the
samples with P < 0.05 in the discovery set (NEXUS soft-
ware v3.1). High-level amplification (amplification here-
after) was defined as a probe signal intensity ratio of 1.5
or higher on the log, scale. Likewise, a homozygous de-
letion (HD) was defined as a ratio of —1.5 or lower on
the log, scale.

Genomic quantitative PCR analysis

qPCR validation of the significant RARs was performed
using genomic DNA extracted from the FFPE samples of
97 EBCs. As a diploid internal control, a genomic region
on chromosomel3 (13q32.1) that showed no genomic
alteration in the array-CGH data was used. Details in-
cluding primer information for targets and the diploid
control locus are available in Additional file 1. Genomic
qPCR was performed using the Mx3000P qPCR system
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(Stratagene, La Jolla, CA), as described elsewhere [22].
In brief, a 10-pl real-time qPCR mixture containing 10
ng of genomic DNA, SYBR Premix Ex Taq II'" (TaKaRa
Bio, Japan), 1x ROX, and 5 pmole of each primer was
prepared. Thermal cycling conditions consisted of one
cycle of 30 sec at 95°C followed by 45 cycles of 5 sec at
95°C, 10 sec at 55-61°C, and 20 sec at 72°C. All qPCR
experiments were repeated three times and relative
quantification was performed by the AACT method.
When mean genomic dosage ratios of the region be-
tween the target sample and female control DNA
(AACT of target and internal control) were above two,
the region was defined as a copy number gain.

Association rule mining

The association rule mining is used for finding interest-
ing relations among variables in a database. In bioinfor-
matics, the information metric was commonly used to
assess the degree of “surprise” when a pattern actually
occurs [23]. We used CPAR (Classification based on Pre-
dictive Association Rules) [24] algorithm adopting the
information metric which was implemented by the
LUCS-KDD research group (http://www.csc.liv.ac.uk/
~frans/KDD/Software). In CPAR, Laplace accuracy is
used to measure the accuracy of rules. Given a rule 7,
Laplace accuracy is defined as follows:

(Ne +1)
Laplace accuracy(r) Nows £77)
where m is the number of classes and N;,.,; is the total
number of examples that satisfy the rule’s body, among
which N, examples belong to the predicted class, C of
the rule.

Through the CPAR algorithm, association rules were
generated between RAR markers and the survival status
in the discovery set. Each RAR marker was coded as 0
or 1 based on the copy number status; O indicates no
copy number variation and 1 indicates copy number
change in the marker region. Likewise, the survival sta-
tus was coded as 0 (dead) or 1 (alive).

Statistical analysis

To examine the clinicopathologic implications of RARs,
five clinical parameters were used as categorical variables:
age at diagnosis (<50 vs. =50 years), stage, ER status, PR
status, and HER? status. Differential distributions of RARs
in each category were tested by a two-sided Fisher’s exact
test. The false discovery rate (FDR) was used for multiple
comparison correction. In univariate survival analysis, cu-
mulative overall survival was calculated according to the
Kaplan-Meier method. Differences in survival curves were
assessed with the log-rank test. Cox regression was per-
formed to identify RARs associated with prognosis after
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adjusting for age, stage, ER, PR, and HER2. SAS version
9.1 (SAS Institute Inc.,, NC) was used and P-values less
than 0.05 were considered significant in all statistical
analyses.

Results

General characteristics of copy number alterations in EBC
Genome-wide CNAs of the 48 EBCs (discovery set) were
examined individually, as described in the Methods
(Figure 1A). The median number of CNAs per each
sample was 10 (range 1-21). Frequency plots of CNAs
in the discovery set showed that alterations were not
randomly distributed, but were clustered in several hot
regions across the whole chromosomes (Figures 1A and
B). The overall CNA frequency profiles were similar for
stage I and II groups, and among the molecular subtypes
(Additional file 1: Figure S1). Of all 4,396 CNAs, copy
number gains on 16p13.3, 16p12.3, and 17q25, and copy
number losses on 16q21, 17p12, 17p13, and 20qll.1
were significantly more frequent in the stage II groups
based on unadjusted P values (P < 0.05), but none after
multiple comparison correction (Additional file 1: Table
S2). On average, 376 Mb (13% of the whole genome) per
EBC tissue specimen showed chromosomal alterations.

Recurrently altered chromosomal regions in EBC
Except for a few entire chromosomal arm changes, the
majority of copy number alterations were regional
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changes, and some of them were observed repeatedly in
the discovery set. Chromosomal segments that covered
overlapping CNAs appeared in at least 30% of the sam-
ples with P < 0.05 and were defined as RARs (RAR-G
for gains and RAR-L for losses, respectively). A total of
23 RARs (18 RAR-Gs and 5 RAR-Ls) were defined in
the discovery set (Table 2). Figure 2 illustrates the RAR
on 17q12 as an example. Of the 23 RARs, 15 RARs
detected commonly in both stage I and II groups can be
considered earlier events in breast tumorigenesis. Two
RARs (RAR-G14 and -G15), which appeared in less
than 10% of the stage I samples but in over 40% of the
stage II samples, appear to be relatively later events
(Table 2). There were six RARs observed in over 50% of
the discovery samples: RAR-G2 (1q21.2-q21.3), RAR-G7
(8q24.13), RAR-G8 (8q24.13-21), RAR-G9 (8q24.3),
RAR-G10 (8q24.3), and RAR-L1 (8p23.1-p22). All six
highly common RARs were earlier events, as described
above. Their high prevalence and early occurrence sug-
gest that potential driver cancer genes may be included
within the segments. Some cancer-related genes are
located in these highly common, early appearing RARs:
MCLI, CTSK, ARNT, S100A10, PTK2, PTP4A3, and
PSCA in the RAR-Gs; and DLCI1, PINX1, and GATA4 in
the RAR-Ls. Many known or putative cancer-related
genes are also located in other RARs. For example, the
ERBB2, GRB2, and MMP families, as well as the TPM3,
PYGO2, CKSIB, MUCI, CCT3, PRCC, UBE2C, and
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Figure 1 Genome-wide profiles and frequency plot of chromosomal alterations in 48 breast cancer samples. (A) The genomic alteration
profiles of 48 early breast cancers are presented in individual lanes. A total of 24,107 probes are mapped according to the UCSC genome browser
(Human NCBI36/hg18) and ordered by chromosomal position from 1pter to Yqter (X-axis). Tumor vs. reference intensity ratios are plotted in
different color scales reflecting the extent of genomic gains (red) and losses (green), as indicated on the reference color bar (log, scale). (B)
Frequencies of copy number gains and losses in the 48 breast cancers. The green bars denote the copy number gains and the red bars denote
the copy number losses. Boundaries of individual chromosomes are indicated by vertical bars.
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Table 2 Recurrently altered regions in 48 breast cancer specimens

RARs Chr Map position Size Cytoband P- value Freq Freq Freq Event* Cancer-related genes
(Mp) (Mp) (Total) (S-1) (S-l)

RAR-G1 1 143,83-14430 047 g21.1 0.04 48% 36% 51%  Earlier  TXNIP

RAR-G2 1 148,12-15025 213 g21.2-g213 0.01 50% 36% 54%  Earlier  MCLT, CTSK, ARNT, SETDBI, SELENBPI, ST00A10

RAR-G3 1 150,75-155,11 436 g21.3-g23.1 0.04 48% 36% 51%  Earlier  CREB3L4, TPM3, HAXI, IL6R, PYGO2, SHCI,
CKS1B, NES, ADAM15, EFNAT, MUCI, YY1API,
ARHGEF2, RAB25, CCT3, CRABP2, HDGF, PRCC

RAR-G4 1 15848-15947  0.99 023.2-923.3 0.04 48% 45%  49%  Earlier  FT1R, USFI

RAR-G5 1 226,10-22690  0.80 q24.13 004  48% 45% 49%  Earlier  WNT9A, WNT3A

RAR-G6 6 64,05-64,75 0.70 ql2 0.00 38% 45% 35%  Earlier -

RAR-G7 8 123,47-124,74 127 q24.13 0.02 50% 36% 54%  Earlier FAMS3A

RAR-G8 8 126,23-12730  1.07 g24.13-q24.21 0.02 50% 36% 54%  Earlier -

RAR-G9 8 140,69-143,86  3.17 q24.3 0.02 50% 36% 54%  Earlier  PTK2, PTP4A3, PSCA, LYNX1

RAR-G10 8 144,34-146,27 193 q24.3 0.02 50% 36% 54%  Earlier  SCRIB, HSF1, SLCA4

RAR-G11 16 0-3,22 322 p133 0.05 38% 27%  41% UC  MPG, AXIN1, RHOT2, STUB1, MSLN, CACNATH,
IGFALS, GFER, TSC2, PDPK1, MMP25

RAR-G12 16 28,32-31,19 2.87 p11.2 0.05 40% 36% 41%  FEarlier  NUPRI, SULT1A2, SULTIAT, MVE MAPK3,
FUS, PYCARD

RAR-G13 17 34,97-3530 033 ql2 0.03 38% 36% 38%  Earlier  PPPIR1B, PNMT, PERLD], ERBB2, GRB7

RAR-G14 17 70,76-71,21 045 g25.1 0.03 38% 9%  46%  Later GRB2

RAR-G15 17 76,90-78,77 1.87 g25.3 0.03 38% 9% 46% Later  HGS, SIRT7, RAC3, FASN, CSNK1D

RAR-G16 20 43,84-44,15 031 q13.12 0.00 33% 18% 38% uc  UBE2C MMP9

RAR-G17 20 60,17-61,61 144 q1333 0.04 31% 18%  35% UC  ADRMI, LAMAS, NTSR1, BIRC7, EEF1A2

RAR-G18 20 61,67-62,44 0.77 q13.33 0.04 31% 27%  32% ucx TNFRSF6B

RAR-L1 8 8,14-14,07 593 p23.1-p22 0.00 50% 36% 54%  Earlier  CLDN23, PINX1, GATA4, NEIL2, FDFT1, CTSB, DLCI1

RAR-L2 8 15,66-17,12 144 p22 0.02 48% 36% 51%  Earlier  TUSC3, MSRI1, FGF20

RAR-L3 8 24,01-26,72 2.71 p21.2 0.02 48% 36% 51%  Earlier  ADAM28, GNRHI, PPP2R2A, ADRATA

RAR-L4 16 75,79-80,74 4.95 023.1-923.3 0.00 33% 27%  35% uc WWOX, DYNLRB2, PLCG2, HSD17B2

RAR-L5 17 10,54-14,10 3.56 p13.1-p12 0.04 44% 27%  49% uc MAP2K4, ELAC2

RAR-G: RAR-gain, RAR-L: RAR-loss, Chr: chromosome, Freq: frequency, S-I: stage |, S-II: stage |I.
Cancer-related genes: Among all RefSeq genes located in the RARs, the genes which can be searched by the keyword “Cancer/Tumor” from NCBI Gene

(http://www.ncbi.nlm.nih.gov/gene) are listed as “cancer-related genes”.

*Earlier: RARs detected commonly in both stage | and Il groups, Later: RARs appearing in <10% of stage | samples, but in >40% of stage Il samples, UC:

unclassified.

TNFRSF6B genes are located in the RAR-Gs while the
PPP2R2A, WWOX, TUSC3, MAP2K4, and ELAC2 genes
are located in the RAR-Ls (Table 2).

High-level CNAs in EBC

Of the CNAs identified in our EBC specimens, 191 loci
were determined to be high-level CNAs (defined as > 1.5
for amplification or < —1.5 for HD on the log, scale), with
158 amplifications and 33 HDs (Additional file 1: Table
S3). Of the 158 amplifications, 5 were detected in over
10% of the samples: 1q21.3, 8q24.22, 8q24.3, 16pl1.2,
and 17ql12 (Table 3). These five relatively common
amplifications overlapped with earlier event RAR-Gs.
Amplification on 17q12, where the EBBB2 oncogene is
located, was the most frequent occurrence (14/48, 29%),
followed by amplification on 1q21.3 and 8q24.22 (both 9/

48, 19%), where the LCE families and MYC gene are
located, respectively. Examples of high copy number
changes are illustrated in Figure 3. There was no HD
detected in over 10% of the samples.

Association of RARs with clinicopathologic features

Five clinical variables (age at diagnosis, stage, ER status,
PR status, and HER2 status) were analyzed to assess
their association with RARs (see Additional file 1). Only
RAR-L4 was significantly associated with ER-positivity
(P < 0.0001, FDR-corrected P = 0.015) (Additional file
1: Table S4). When we observed the distribution of the
RARs by molecular subtypes (Luminal A, Luminal B,
HER2 and TNBC), only RAR-G13 was differently
distributed among the subtypes (P = 1.77 x 10
(Additional file 1: Table S5).
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Figure 2 Example of a recurrently altered region on 17q12. The bottom plot represents the copy number profile of 48 breast cancers
around 7q12 as a heat map. Intensity ratios are plotted in different color scales, reflecting the extent of genomic gains (red) and losses (green), as
indicated on the reference color bar. The upper plot illustrates examples of intensity ratios of individual breast cancers. The red zone represents
RARs defined using our criteria (frequency > 30% and P < 0.05; NEXUS software v3.1). X-axis, genomic position (Mb); Y-axis, Log,Ratio.

RARs associated with prognosis in EBC

Univariate survival analysis was performed to screen
RARs that have potential implications on patient sur-
vival. Univariate analysis was also performed to identify
clinicopathologic features (age at diagnosis, stage, ER,
PR, and HER?2) for inclusion as covariates for Cox regres-
sion. The event was defined as a death within ten years
of the diagnosis. Among the genetic and clinical factors,
RAR-G12 (16p11.2) and RAR-G13 (17q12) were signifi-
cantly associated with poor survival in the discovery set
of 48 EBCs (P = 0.0186 and P = 0.0186, respectively)
(Figures 4A and B).

The role of combinations of the 23 RARs and their
association with poor survival was also explored, as
described in the Methods. As a result, eight com-
bination rules were found to be potentially associa-
ted with death events (Laplace accuracy score >0.75)
(Additional file 1: Table S6). All eight poor survival-
associated rules contained ‘RAR-G12 and RAR-G13
positives, suggesting that the co-occurrence of these
two alterations may affect EBC prognosis. Indeed, on
univariate survival analysis, RAR-G12 and -13 double-
positives had a significantly worse prognosis compared
with the prognosis of others (P = 0.0001) (Figure 4C).

Among the clinicopathologic features, none of them
was associated with survival.

Replication of the poor prognosis-associated RARs

In order to validate the prognosis-associated RARs iden-
tified in the discovery set, a genomic qPCR system was
designed to target the NUPRI gene located in RAR-G12
and the ERBB2 gene located in RAR-G13 (Figure 5A).
For independent validation, the DNA extracted from
FFPE samples of 97 EBCs (replication set) was used. On
univariate survival analysis of the replication set, patients
positive for RAR-G13 (ERBB2) were found to have a sig-
nificantly poorer survival than patients without the
ERBB2 gain (P = 0.0038) (Figure 5B). Patients positive
for RAR-G12 (NUPRI) also showed poorer survival than
negative patients, but only with borderline significance
(P = 0.0839) (Figure 5C). As expected, the patients posi-
tive for both NUPRI and ERBB2 gains had a significantly
poorer prognosis than patients in the replication set that
did not have this combination (P = 0.0014) (Figure 5D).
When survival curves were compared based on a more
detailed RAR status (positive for both RAR-G12 and
-13, positive for either RAR-G12 or -13, and negative
for both), the survival probabilities among the three
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Table 3 Common high-copy number changes (>10%)

Changes Chr Position (Mb) Cytoband Size (Mb) Frequency DGV® Korean CNVP Putative cancer-related genes
AMP9 1 150.82-150.93 19213 0.11 9 (19%) Y Y LCE3C, LCE3B LCE3A, LCE2D, LCE2C, LCE2B
AMP64 8 120.51-135-87 8q24.22 15.37 9 (19%) Y Y DDEFT, ENPP2, FAM83A, FAM84B,

HAS2, MTSS1, MYC, NDRG1, RNF139, TG, WISP1
AMP67 8 144.37-145.55 8qg24.3 1.18 5 (10%) Y Y SCRIB, PLEC1, HSF1
AMP113 16 2840-2842 16p11.2 0.02 6 (13%) Y N CLN3
AMP119 17 3242-3587 17912 345 14 (29%) Y N AATF, ACACA, CDCé6, CSF3, ERBB2, FBXO47,

GRB7, IGFBP4, LASP1, PCGF2, PERLD]1, PLXDCI,
PNMT, PPP1R1B, RARA, RPL19, RPL23, TBC1D3,
THRA, TOP2A

2 Overlapping status with DGV (http://projects.tcag.ca/variation/) entries; ® Overlapping status with CNVs identified from Koreans [35].
Y: overlap, N: no overlap, AMP: amplification, Chr: chromosome.

groups were significantly different, with the probability =~ Gs was found to be a strong independent indicator of
of surviving decreasing with greater RAR positivity = poor prognosis, showing additive effects (HR = 7.31,
(P = 0.0052; P for trend = 0.0020) (Figure 5E). 95% CI 2.65-20.15, P = 0.0001) (Table 4).
Multivariate analysis with the two significant RARs

identified on univariate analysis and the covariates (age  Discussion

at diagnosis, stage, ER status, PR status, and HER2 sta-  In this study, we analyzed the genome-wide copy num-
tus) revealed that the copy number gain status of ERBB2  ber alteration profiles in 48 EBCs using 30K oligoarray-
(RAR-G13) was an independent indicator of poor CGH. We delineated RARs under the assumption that
prognosis in EBC (Hazard ratio [HR] = 5.36 , 95% CI  commonly altered chromosomal segments in EBCs may
1.80-15.98, P = 0.003) (Table 4). When the multivariate  contain driver genes essential for initiation or early pro-
analysis was performed with NUPRI-ERBB2 combined gression of breast tumorigenesis. It is also possible that
status and the same covariates, positivity for both RAR-  some RARs have prognostic implications in EBC. To
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AN

explore this possibility, we defined RARs in a discovery
set of EBC and examined their associations with progno-
sis. A total of 23 RARs were defined, and all of them
were found to overlap at least one of the recently
reported CNAs in breast cancer including EBC, suggest-
ing the reliability of our data [14-17]. The nature of
RARs (gain or loss) was also largely consistent with the
previous observations. For example, RAR-L3 (8p21.2)
and RAR-L5 (17p12), where PPP2R2A and MAP2K4 are
located, respectively, and RAR-G13 (17ql2), where
ERBB?2 is located, were consistently detected in a recent
large-scale breast cancer genetic subgroup study [14]. In
particular, 21 of the 23 RARs overlap recurrent copy
number alterations identified in EBCs (stage I and II)
from whites, blacks, and Hispanics by Thompson et al.’s

recent study [15]. However, the recurrent gain on
14q11.2 in Thompson et al.’s report was not detected in
our array-CGH analysis. This difference, which requires
further investigation, may be due to a Korean EBC-
specific feature or to the probe design of the array-
platform used in this study. We validated the association
of RARs with prognosis in the larger independent repli-
cation set of 97 EBCs. In addition to RARs, some entire
chromosomal arm changes were also commonly observed
(> 30% of the samples) in this study (Additional file 1:
Table S7), and are largely consistent with previous ob-
servations in breast cancer of diverse ethnic groups
[11,25].

Of the RARs identified in this study, 15 were com-
monly detected in both stages I and II, which suggests
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Table 4 Results of multivariate aalysis

Variable Hazard ratio 95% confidence interval P value*
Lower Upper
Using each RAR
Age 1.01 041 248 0.986
Stage 354 1.01 1239 0.048
ER 1.63 061 434 0325
PR 0.82 032 213 0.690
HER2 048 0.19 1.17 0.105
RAR-G12 255 073 8.90 0.141
RAR-G13 5.36 1.80 15.98 0.003
Using RAR double-positives
Age 1.00 041 244 0.993
Stage 3.73 1.06 13.04 0.040
ER 1.60 0.61 4.24 0.343
PR 0.84 032 215 0.709
HER2 046 0.19 1.14 0.094
RAR-G12*RAR-G13 7.31 2.65 20.15 0.0001

RAR-G12*RAR-G13: NUPRT (RAR-G12) and ERBB2 (RAR-G13) copy number gain
double-positives.
*Significant result (P < 0.05).

that these copy number alterations were acquired at an
earlier stage of EBC. In particular, 6 of the 15 earlier
event RARs, RAR-G2 (1q21.2-q21.3), RAR-G7 (8q24.13),
RAR-G8 (8q24.13-21), RAR-G9 (8q24.3), RAR-G10
(8q24.3), and RAR-L1 (8p23.1-p22), appeared in over
50% of cases. Some genes located in these six RARs have
been suggested to be involved in early breast tumorigen-
esis. For instance, the PTK2 gene located on 8q24.3
(RAR-G9) is a member of the focal adhesion kinase
(FAK) subfamily of protein tyrosine kinases. Overexpres-
sion of FAK was suggested to be an early event in DCIS
tumorigenesis [26]. Although the protein levels of poten-
tial cancer-related genes in these six highly common loci
were not examined in this study, our data suggest that
the six alterations may be commonly occurring genetic
events in the initial stage of breast cancer development.
Based on our findings, two RARs on 17q25 can be con-
sidered relatively late events in breast tumorigenesis,
since the RARs on 1725 (RAR-G14 and -G15) were
scarcely observed in stage I (<10%), but were quite fre-
quent (>45%) in stage IL. Interestingly, a copy number
gain on 17q25.3 was reported to be one of the
recurrence-associated chromosomal alterations in one
previous report on Korean women with breast cancer
[27].

When we assessed the prognostic implications of
RARs, RAR-G12 (16p11.2) and RAR-G13 (17q12) were
significantly associated with poorer prognosis in the dis-
covery set. A number of cancer-related genes are located
in these two RARs: NUPRI1, MVB MAPK3, FUS, and
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PYCARD are located in RAR-G12 while ERBB2, GRB7,
and PPPIRIB are located in RAR-G13. Among these po-
tential cancer-related genes, Nuprl is known to interact
with various molecules involved in cell cycle regulation,
programmed cell death and transcription activity. For
these reasons, Nuprl is a potential molecular target in
the development of anticancer drugs [28]. Although the
NUPRI gene has been suggested to be responsible for
the growth and progression of many cancers including
breast cancer [29,30], the prognostic implications of the
NUPRI gene in EBC have not been reported. Amplifica-
tion and overexpression of the ERBB2 oncogene in
RAR-G13 (17q12) is known to be associated with high
recurrence rates and reduced breast cancer survival
[31-33]. The frequent copy number gains (38%) and
amplification (29%) of ERBB2 in this study are consist-
ent with previous studies on breast cancer [11,34].

In a replication analysis by genomic qPCR, the prog-
nostic implication of ERBB2 gain (RAR-G13) was suc-
cessfully replicated in the larger replication set, but that
of the NUPRI gain (RAR-G12) was not. We hypothe-
sized that the NUPRI gain itself might not be an influen-
tial alteration, but that EBC prognosis is more strongly
affected by the co-occurrence of NUPRI with a strong
driver mutation (ERBB2). Association-rule mining
results also supported the predictive power of their co-
occurrence for poor prognosis. As expected, when these
two RARs were combined and used as an independent
factor, the hazard ratio increased in an additive manner.
A stronger significance level was also achieved on Cox
regression analysis compared with when only ERBB2
was used, which may reflect the multigenic nature of
cancer.

In this study, 191 high-level CNAs (158 amplifications
and 33 HDs) were detected by array-CGH, and 5 of
them were detected in more than 10% of the samples. A
substantial number of the high-level CNAs overlap data-
base of genomic variants (DGV, http://projects.tcag.ca/
variation/) entries and the copy number variants (CNVs)
identified from Koreans [35]. Although the limitations of
DGV are well known in terms of accuracy and overesti-
mation, we cannot rule out the possibility that some
high-level CNAs identified in this study are copy CNVs
because we used DNA from a single individual as a uni-
versal reference. All five of the common amplifications
(observed in >10% of the samples) also overlap the CNV
loci in DGV. However, four of them, except for one very
small (0.02 Mb) amplification on 16p11.2, were reported
to be amplifications or copy number gains in breast
cancer by a recent high-resolution array-CGH analysis
[15-17,36], suggesting that these four common amplifi-
cations are likely CNAs. The amplification frequency of
ERBB?2 in this study was largely similar to the previous
studies including Koreans [37-39].
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There are several limitations in this study. First, due
to the limited sample size of subtypes, we could not
see the prognostic implications of the RARs in the
four molecular subtypes properly. Second, we did not
examine the molecular mechanisms of the synergistic
effect of the ERBB2-NUPRI co-occurrence. Further
studies will be required to delineate the roles of NUPR1
gain and the simultaneous ERBB2-NUPRI gains in early
breast tumorigenesis. Third, we used single reference
DNA in this study, so it is possible that some of the
CNAs identified in this study are CNVs, especially small-
sized CNAs overlapping previously reported CN'Vs.

Conclusion

In this study, we found six highly common RARs in
EBCs and determined the potential of simultaneous
alterations of ERBB2 (17q12) and NUPRI (16pl11.2) as
significant predictors of poor prognosis in EBC. Our
study will help to elucidate the molecular mechanisms
underlying early-stage tumorigenesis in breast cancer. In
addition, our study shows the potential for combinations
of copy number alterations to be used as prognosis pre-
dictors for early-stage breast cancer.
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Additional file 1: Figure S1. Genome-wide frequency plots of
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cancers. Table S4. Correlation between RARs and clinicopathologic
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Table S6. RAR combination rules associated with death events.

Table S7. Frequency of chromosomal arm changes in 48 breast cancers.
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