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Abstract

induction of apoptosis/necrosis.

mammary cell function and breast cancer.

\

Background: Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression.
These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory
and immune responses, Ca’" homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation,
differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family
member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic
and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation.

In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer.

Methods: The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary
breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via
immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus
of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent
immunocytochemisty. Lastly, cells were treated with H,O, to detect changes in hornerin expression during

Results: Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique
regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is
decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast
carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we
demonstrate the presence of post-translational fragments that display differential subcellular localization.

Conclusions: Our data opens new possibilities for hornerin and its proteolytic fragments in the control of
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Background

The S100 protein family, consisting of over 20 members,
constitutes the largest subgroup of calcium binding pro-
teins. These proteins share amino acid sequence similar-
ity as well as the functional EF-hand structure motif,
which plays a key role in calcium binding through a
helix-loop-helix topology. Proteins containing this motif
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are involved in virtually all normal and pathological cell
functions including gene transcription, inflammatory
and immune responses, regulation of protein phosphor-
ylation, transcription factors, anti-microbial responses,
Ca”* homeostasis, the dynamics of cytoskeleton consti-
tuents, as well as cell proliferation, differentiation, and
death [1-3]. Given the global importance of these pro-
teins, inhibitors of specific S100 proteins are currently
being developed as therapeutics for diseases including
diabetes mellitus, heart failure, neurological diseases,
and several types of cancer [2,4].

The role of S100 protein in breast cancer is only begin-
ning to emerge. A recent observational study demonstrated
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upregulation of S100A1, S100A2, S100A4, S100AS6,
S100A8, S100A9, S100A10, S100A11, and S100A14 in
basal-type breast cancers compared to non-basal types.
In the same study, it was determined that expression of
S100A8 and S100A9 were elevated in high grade com-
pared to low grade tumors and estrogen receptor (ER)
negative tumors compared to ER positive tumors [5].
Mechanistic studies demonstrated that overexpression of
S100A4 induced metastatic capability in non-metastatic
breast cancer cells and stimulated metastasis of benign
tumors in transgenic mouse model systems [6]. SI00A7
was shown to be upregulated in high-grade ductal car-
cinoma in situ, and is correlated with poor prognosis in
estrogen negative breast cancer. In vitro, SI00A7 overex-
pression increased breast cancer cell growth, invasive-
ness, and increased tumorigenicity in a xenograft mouse
model [7,8]. On the other hand, S100A2 expression was
found to be reduced as breast cancer progressed from
carcinoma in situ to carcinoma [9]. Corresponding to
this observation, SI00A2 has also been proposed as a
tumor suppressor in early stage lung carcinogenesis [10].

We recently performed mass spectrometry analysis of
the extracellular matrix of whole breast tissue with the
goal of determining underlying differences in the normal
breast microenvironment between premenopausal African-
and Caucasian-American women [11]. Premenopausal
African-American women suffer disproportionately from
breast cancer mortality compared to Caucasian women.
Both social and biological mechanisms are contributory,
including a higher prevalence of aggressive basal-like
breast cancers in African-American women. Hornerin,
an S100 protein family member, was detected in signifi-
cantly higher abundance in the Caucasian-American
samples. Therefore we further investigated the biological
functions of this protein, only to find that little is known.

Hornerin was first characterized in the mouse embryo
epidermis and was also detected in the skin, tongue, and
forestomach of the adult tissues examined [12]. Hor-
nerin contains a Ca** binding EF-hand domain at the N
terminus followed by a spacer sequence and an extensive
repetitive domain rich in glycine and serine [12]. Its
similarity in structural features, expression profile, exten-
sive posttranslational proteolytic processing, and tissue
localization to profilaggrin indicated a role in keratino-
cyte cornification. Additional studies demonstrated the
presence of hornerin in regenerating, psoriatic and healthy
human skin, and that hornerin is a component of cornified
cell envelope [13-15]. While it might initially seem pecu-
liar that a protein involved in cornification of the skin is
found in breast tissue, it is important to recall the evolu-
tionary development of the mammary gland. In all mam-
mals, the mammary gland organogenesis arises from a
localized thickening of the epidermis. An elevation of
the epidermal mammary crest and the development of a
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milk-line on both sides of the mid-ventral line of the
embryo form the mammary buds, which eventually pro-
gress to form the functional mammary gland [16].
Indeed, other proteins involved in epidermal/skin func-
tion have been shown to perform roles in mammary
gland physiology. Neuregulin3 regulates the cell fate of
pluripotent epidermal cells, including those that ultim-
ately differentiate into progenitor cells of the mammary
gland [17]. Additionally, LMO-4 a member of the LIM-
only family of transcriptional co-regulatory proteins
functions in both epidermal cell migration and mam-
mary gland differentiation [18,19].

Herein, we demonstrate hornerin expression in human
breast tissue and mammary epithelial and stromal cells,
its regulation throughout postnatal mammary develop-
mental stages in murine tissue, as well as its expression
in correlation with breast cancer subtypes. Furthermore,
we show that proteolytic fragments of hornerin have
distinctive intracellular localization and that induction of
apoptosis/necrosis upregulates hornerin expression in
breast cells. Collectively, these data support a novel role
for hornerin in the regulation of mammary cell function.

Methods

Cell culture

T47D and MDA MB231 cell lines were obtained from
American Type Culture Collection (ATCC; Manassas,
VA) and cultured as instructed. MCF10AI cells [20] were
a kind gift of F.R. Miller, Wayne Sate University, Detroit,
MI, and were maintained as recommended by ATCC.
Cells were passaged using trypsinization (0.05% trypsin-
EDTA; Invitrogen, Gaithersburg, MD) and counted on a
hemocytometer using trypan blue exclusion.

Peripheral blood monocytes and macrophages were col-
lected from premenopausal women undergoing apheresis.
Collection of patient samples was performed in accord-
ance with the Helsinki Declaration under the guidelines
of the National Cancer Institute Review Board, protocol
number 99-CC-0168. Written informed consent was
obtained from all human subjects as specified in the
protocol. Monocytes and macrophages were separated
from other cells using Ficoll-Hypaque (Sigma, St. Louis,
MO) gradient separation and selection by adherence to
tissue culture plastic. Cells were grown in RPMI contain-
ing 5% human serum (Invitrogen) for 24 hr then changed
to RPMI containing 5% FBS until differentiation. Differ-
entiation was performed via treatment with 20 ng/ml of
IFNy (Peprotech, Rocky Hill, NJ) and Lipopolysaccharide
(Sigma) for 5 days.

Immunohistochemistry and immunocytofluorescence

Immunohistochemistry was performed with appropriate
controls as described [21]. Briefly, five-micron-thick
sections of formalin fixed, paraffin embedded tissue or
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tissue arrays (U.S. Biomax Inc., Rockville, MD; arrays
BR2085a and BR805) were de-paraffinized in xylenes,
rehydrated, subjected to antigen retrieval using citrate buf-
fer (DAKO, Carpinteria, CA), and staining was performed
using the Vectastain Elite ABC System (Vector Labora-
tories, Burlingame, CA) according to manufacturer’s
instructions. Color was developed with diaminobenzidine
peroxidase substrate kit (Vector Laboratories) and sec-
tions were counterstained with hematoxylin (Sigma
Aldrich, St. Louis, MO). The commercially available hor-
nerin antibody was purchased from Novus Biologicals
(Littleton, CO) and used as recommended (dilution
1:100). Imaging was performed on an Olympus IX51
microscope (Olympus, Center Valley, PA) and quantified
using NIH Image J64 software (threshold standardized;
measurement determined as percent area: red). A total of
95 invasive lobular carcinoma and 124 invasive ductal car-
cinomas and their associated TNM status were analyzed.

For immunocytofluorescence, cells were grown on
8-well chamber slides (Research Products International,
Mt. Prospect, IL,) and fixed/permeabilized in ice-cold
acetone. Following fixation, cells were blocked in 1%
BSA and 5% normal goat serum PBS solution, stained
with the indicated primary antibody overnight at 4°C
(1:100 dilution), washed and then incubated for 1 hour
with an anti-rabbit Alexa Fluor 488 secondary antibody
(1:1000 dilution, Invitrogen). DAPI was used to stain
DNA. Imaging was performed using the Carol Zeiss
LSM510 confocal imaging system (Carl Zeiss Micro-
Imaging, Thornwood, NY) at 63X magnification. For
co-localization of hornerin and macrophage specific
markers, paraffin embedded human and murine mam-
mary tissue was de-paraffinized, rehydrated, subjected to
antigen retrieval as stated above, blocked in a PBS con-
taining 5.0% BSA solution followed by co-incubation of
the hornerin antibody (Novus, dilution 1:100) with either
F4/80 (Santa Cruz, dilution 1:100; to identify murine
macrophages) or CD68 (Novus Biologicals, dilution 1:50;
to identify human macrophages) antibodies, washed, and
then stained with the appropriate secondary antibodies
(1:1000 dilution). Coverslips were applied with VECTA-
SHIELD mounting medium with DAPI (Vector Labora-
tories). Fluorescent imaging was performed using the
Carol Zeiss LSM510 confocal imaging system (Carl Zeiss
Microlmaging, Thornwood, NY) at 63X magnification.
For quantitation of macrophages in murine mammary
tissue, the cells positively stained for hornerin expression
and F4/80 were counted in three separate 40x fields;
a minimum of three glands per developmental stage
was counted.

Exosome isolation and transmission electron microscopy
For all exosome isolation experiments, cells were grown
for at least one passage in growth media that was
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previously depleted of contaminating microvesicles by
overnight centrifugation at 100,000xg. Exosomes were
isolated as previously described [22,23]. Briefly, superna-
tants were subjected to a 300xg (10 min) followed by
2,000xg (10 min) and a 10,000 xg (30 min) centrifugation
at 4°C to remove cell debris. The supernatants were then
centrifuged at 100,000xg for 80 min at 4°C three times,
with 1X PBS washes in-between each centrifugation.
The pelleted exosomes were then solubilized in SDS-
sample buffer for western blot analysis.

Electron microscopy of purified exosomes

Purified exosomes were centrifuged and fixed in buffered
2.0% glutaraldehyde (Tousimis, Rockville, MD). The pel-
let was post-fixed in 1.0% osmium tetroxide in cacody-
late buffer (0.1 M, pH7.2; Electron Microscope Sciences,
Fort Washington, PA) for 1 hour in a room temperature.
The pellet was washed in the same buffer, then in acet-
ate buffer (0.1 M, pH4.2) and stained in uranyl acetate
(0.5% w/v in acetate buffer) for 1 hour. The pellet was
washed in acetate buffer and dehydrated in a series of
ethanol (e.g., 35%, 50%, 75%, 95%, 100%) followed by
100% propylene oxide. The pellet was infiltrated in an
equal volume of Embed-812 epoxy resin (Electron
Microscope Sciences) and 100% propylene oxide over-
night at room temperature. The pellet was embedded in
a fresh resin and cured at 55°C for 48 hours. Thin sec-
tions (80 to 90 nm) were made and mounted on a naked
copper grid and stained in uranyl acetate and lead cit-
rate. The sections were examined by electron micros-
copy (Hitachi 7600, Tokyo, Japan) operated at 80 kV and
the images captured by a digital camera (Advanced Mi-
croscopy Techniques, Chazy, NY). For TEM analysis,
the high-speed pellet was prepared as previously
described [24,25], examined and imaged by Hitachi 7600
microscope operated at 80 kV.

Western blot analysis

Equal concentrations of protein, as determined by the
Coomassie Plus Protein Assay (Thermo Scientific, Rock-
ford, IL), were separated by SDS-PAGE under reducing
conditions. Membranes were blocked in 5% non-fat milk
in TBS buffer with 0.1% Tween (TBST) for 1 hour at
room temperature, then incubated with primary anti-
body (1:1000 dilution for all antibodies; caspase-3, Cell
Signaling Technology, Boston, MA; hornerin, Novus
Biologicals, Littleton, CO) overnight at 4°C in TBST +
5.0% BSA, washed, and incubated with the appropriate
secondary antibody conjugated to horseradish peroxid-
ase (GE Healthcare, Piscataway, NJ) in TBST with 5%
milk for 1 hour at room temperature. Peroxidase activity
was detected using the enhanced chemiluminescence
detection system (ECL Plus, GE Healthcare) as directed.
a-Tubulin was used as a control to show equal loading
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(Santa Cruz Biotechnology, Santa Cruz, CA). Western
blots were quantified using NIH Image] 64.

Quantitative real time PCR

Total RNA was isolated using the Qiagen RNeasy kit
according to the manufacturer’s instructions (Valencia,
CA). RNA was reverse transcribed using MMLV reverse
transcriptase (Invitrogen) and primed with oligo-dT and
random hexamers (Invitrogen). The ¢cDNA was sub-
jected to RT-PCR amplification using gene specific pri-
mers and 2x Brilliant II Sybr Green QPCR Mastermix
(Stratagene; La Jolla, CA). Primer sequences are given in
Table 1. Quantitative RT-PCR was analyzed via the
AACT method, and PCR products were visualized by
agarose gel electrophoresis.

Antibody production

Hornerin N-terminus and C-terminus antibodies were
produced by PRIMM (IMGEN Technologies, Cam-
bridge, MA) via immunization of rabbits with a recom-
binant His-tagged protein (residues N-terminus 14-28
and 199-210, C-terminus 2813 — 2823 and 2834-2846,
GI: 388697) and affinity column purified by the Anti-
body Production and Purification Unit (APPU; National
Cancer Institute, Bethesda, MD). Initial affinity column
purification was followed by an additional purification
using a GE Superdex 200 2.6/60 on an Akta Purifier (GE
Healthcare) in PBS containing 0.1% sodium azide. The
resulting antibody was validated by western blot analysis
against the immunizing protein.

Statistical analysis

Data was evaluated for significance via t-tests or one-
way analysis of variance (ANOVA) with the appropriate
post hoc analysis (Tukey/Bonferroni) using GraphPad
InStat Software version 3.0b (San Diego, CA). Data was
considered significant at P < 0.05.

Results

Expression and localization of hornerin in breast tissue,
mammary cells, and exosomes

Proteomic analysis of the extracellular matrix of normal
breast tissue revealed the presence of the S100 family

Table 1 Primer Sequences

Primer Species  Sequence (5™- 3') ™
Q)

Hornerin ~ Human Forward: TTCGTCTTCCAGCTATGGTCAGCA 60
Reverse: AGTAACTTGAGCCAGACCCGTGTT

Hornerin - Murine Forward: TCTCAACGGTTTGGATCTGGCTCA 60
Reverse: TGTTGACTGCCTTCTGTCTGTCCA

GAPDH Human/  Forward: CCCTCCATTGACCTCAACTAC 60

Murine

Reverse: CCACCTTCTTGATGTCATCAT
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member hornerin [11]. Recent reports have highlighted
the importance of the S100 proteins in breast cancer;
therefore we further examined the role of hornerin in
both normal and cancerous breast tissue. To confirm
the presence and localization of hornerin, immunohisto-
chemistry was performed on breast tissue histosections.
Hornerin was easily detectable in both the stroma and
epithelium, while adipose had significantly lower detect-
able levels (Figure 1A). There appeared to be a higher
concentration of hornerin in the basal and myoepithelial
cells compared to the luminal epithelium. In addition to
the immunohistochemical analysis, we performed west-
ern blot analysis on primary breast fibroblasts and epi-
thelial cells isolated from breast tissue. Hornerin
expression was found in both cell types (Figure 1B).
Lastly, as hornerin has been reported to be excreted into
serum [26], cerebral spinal fluid [27], and in plasma-
derived exosomes [28], we examined exosomes isolated
from primary breast fibroblast and epithelial cell cul-
tures. Hornerin was readily detectable in the exosome
isolations from both cell types (Figure 1C). GAPDH was
used as a marker for exosomes and transmission elec-
tron microscopy images were used to verify successful
exosome isolation [22,23,29].

Hornerin expression during developmental stages of the
murine mammary gland

The previously reported distinct regulation of hornerin
expression during epidermal cell differentiation prompted
us to observe its regulation throughout postnatal mam-
mary gland development. Abdominal mammary glands
isolated from both FVB and Balb/c mice were obtained
from each of the significant developmental stages and
subjected to immunohistochemical analysis using a hor-
nerin specific antibody. Hornerin expression temporally
increased during the differentiation of the gland through-
out pregnancy, with maximal expression observed during
lactation and involution (Figure 2A, B). Quantitation of
the staining demonstrated a significant increase in expres-
sion during the early stages of involution (P < 0.05, repre-
sentative images of quantitation method shown in
Additional file 1: Figure S1). During involution, the
changes occurring in the gland include the reabsorp-
tion of residual milk, loss of the epithelium by apoptosis,
clearance of dying cells, and regrowth of the epithelial
and stromal cells [30]. We also observed a significant
increase in hornerin staining within the macrophages
specifically during lactation and involution compared to
nulliparous tissue (P < 0.05; Figure 2C, D and Additional
file 2: Figure S2). To complement the macrophage stain-
ing observed in the murine tissue, human peripheral
blood monocytes were isolated and treated in the pres-
ence or absence of LPS/INFy (20 ng/ml), the RNA was
isolated and transcript abundance was measured via PCR.
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Figure 1 Immunolocalization of hornerin expression in breast tissue. (A) Reduction mammoplasty tissue sections were subjected to
immunohistochemical analysis using a hornerin specific antibody or corresponding negative control. A minimum of 10 patient samples were
analyzed. Yellow bar=200 pM, red bar=50 puM. (B) Western blot analysis of hornerin expression in primary breast fibroblast and epithelial cell
whole cell lysates isolated from reduction mammoplasty tissue samples. A minimum of five patient samples were analyzed per cell type.
Representative data from five breast fibroblasts and three breast epithelial samples are shown. (C) Western blot analysis of exosomes isolated
from primary breast fibroblast and epithelial cell cultures and representative TEM image of purified exosomes 30,000X. FB = fibroblasts,

Low levels of hornerin were present in the undifferenti-
ated cells, while treatment with LPS/INFy stimulated a
significant increase in hornerin expression in the macro-
phages. The observed increase in hornerin expression in
the differentiated macrophages compared to undifferenti-
ated monocytes suggests the possibility a functional role
for hornerin in phagocytic macrophages.

Hornerin expression in breast cancer

Given the emerging role of S100 proteins in breast
cancer, we investigated hornerin expression in an
in vitro breast cancer progression model. MCF10A cells
are a spontaneously immortalized breast epithelial cell
line that have been extensively used to study normal
breast epithelial function [31]. Through transfection of
the parental line with a constitutively active H-Ras, and
subsequent selection for increasingly aggressive tumor
formation from cells recovered from xenograft tumors,
the pre-malignant MCF10AT, malignant MCF10Cala,
and metastatic MCF10Calh cell lines were developed
[20,32-34]. This series of cell lines provides a unique
opportunity to study breast cancer progression, induced
in a defined method, in a common cell background.

Quantitative real-time PCR was used to determine the
expression levels of hornerin in each stage of the
MCF10A cancer progression model. Transcript abun-
dance exhibited a trend to increase as the tumorigenicity
of the cells progressed (Figure 3A). Western analysis
confirmed the presence of hornerin in the cells, and a
similar pattern of increased expression was observed in
the more tumorigenic cell lines. At the protein level, the
MCF10Cala and MCF10Calh cell lines had significantly
more protein compared to the normal and premalignant
cell lines (P < 0.05). The transcriptional characteristics of
MCFI10A cells share many features of basal progenitor
cells suggesting that these cells may represent a multipo-
tent lineage [35]. Our data localizing the expression of
hornerin in the basal/myoepithelial cells of the human
breast (Figure 1) is consistent with the expression of
hornerin in the MCF10A cell line.

Western analysis also demonstrated posttranslational
proteolytic processing of hornerin, similar to previous
studies in skin [12-15]. Fragments at 50, 80, and 100 kDa
were observed. However, only the 100 kDa fragment
showed differential regulation when comparing the prema-
lignant to the malignant cell lines (Figure 3B, C; P < 0.05).
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Figure 2 Hornerin expression throughout the stages of mammary development. (A) Representative images of mammary glands isolated
from the indicated stages of development that were subjected to immunohistochemical analysis using a hornerin-specific antibody or
corresponding negative control. (B) Data represent the mean +/— SD of a minimum of three glands quantitated using Image J64. *P < 0.05
compared to nulliparous and pregnant glands. (C) Data represent the mean +/— SD of number of hornerin positive macrophages counted per
40x field; a minimum of three glands was counted at each developmental stage and three fields were counted per slide. * *P < 0.05 compared
to nulliparous glands. (D) Representative images of immune cells in mammary glands that were subjected to immunohistochemical analysis
using a hornerin-specific antibody and the corresponding PCR analysis of hornerin in human monocytes/macrophages isolated from peripheral
blood; cells were treated +/— 20 ng/ml of LPS/IFNy for five days. N = nulliparous week 5, Pg = pregnancy day 9, L D1 = lactation day 1,

L D15 = lactation day 15, | D1 =involution day 1, | D7 =involution day 7. Yellow bar=200 pm, Red bar=50 um.

The presence of hornerin in each stage of the MCF10A
breast cancer progression model prompted us to investi-
gate hornerin expression in correlation to breast cancer
subtype. Breast cancer tissue arrays were analyzed for
intensity of hornerin expression via immunohistochem-
istry. A total of 125 invasive ductal carcinomas (IDC)
and 95 invasive lobular carcinomas (ILC) were analyzed
and results showed a significant increase in hornerin
expression in the ILC (Figure 4A, B, P <0.05). A signifi-
cant correlation was also found with increased hornerin
expression and favorable TNM grade (Figure 4C, P < 0.05).
Hornerin expression was increased in tumors that
invaded the submucosa (T1) compared to more invasive
tumors (T2 - T4) as well as in tumors that lacked patho-
logical lymph node involvement (Figure 4D P <0.05).
No correlation was found with hornerin expression and
patient age.

Subcellular localization of hornerin fragments

In addition to the breast cancer biopsies, the transcript
abundance of hornerin was investigated in a panel of
breast cancer cell lines. No correlation was observed with
estrogen receptor (ER) and progesterone receptor (PR)
status and hornerin expression (MCF7, T47D, ZR75.1,

MCF10AI, MCF10Calh, MDA MB231, SUM159, MDA
MB468 cell lines; analyzed via PCR, data not shown as
well as referenced in [35]). However, western blot analysis
using a commercially available antibody directed against
the N-terminus of the protein indicated a potential differ-
ence in fragmentation of hornerin between the ER/PR
negative and positive cell lines. The ER/PR positive
cells appeared to have overall lower levels of the intact
245 KDa hornerin compared to the ER/PR negative cell
lines (Figure 5A). To further investigate the function of
protein fragmentation, the localization of the fragments
within subcellular compartments was investigated. The
MCF10AI cells had relatively even levels of hornerin
fragmentation (Figure 3) and were therefore used for
subcellular fractionation experiments. The nuclear frac-
tion contained a higher level of the smaller hornerin
fragments, while the membrane fraction contained pri-
marily the intact protein (Figure 5B). To visualize the
localization of the fragment in situ, antibodies directed
against both the N-terminus and C-terminus of the
protein were developed. While the C-terminus antibodies
were not effective in western blot analysis, all antibodies
developed were successful for immunofluorescence. Con-
focal microscopy demonstrated a pattern of predominantly
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Figure 3 Hornerin expression in an in vitro model of breast cancer progression. (A) Quantitative real time PCR analysis of hornerin
transcript abundance in proliferating MCF10A cell line series. Quantified data were normalized to the housekeeping gene GAPDH. (B) Western
blot analysis of hornerin expression in proliferating MCF10A cell line series; a-tubulin was used as a loading control. (C) Data represent
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cytoplasmic/membrane localization of hornerin using
the N-terminus antibody, with comparatively low levels
of nuclear localization while the C-terminus antibody
demonstrated a comparably stronger nuclear accumula-
tion for all cell lines tested (Figure 5C).

Cell death induces hornerin expression and increased
fragmentation

Previous studies show that S100 proteins generate react-
ive oxygen species (ROS) and are strong inducers of
apoptosis [36,37]. Attempts to produce recombinant
hornerin in both bacteria and insect cells failed due
to the exceptionally large size and repetitive sequence

of the protein, therefore, we analyzed changes in endo-
genous hornerin expression in response to ROS and
cell death inducing events. MCF10AI cells were treated
overnight with increasing amounts of H,O, and tran-
script abundance was measured via quantitative PCR.
Hornerin expression was increased in a dose-dependent
manner with a significant increase in expression observed
with 3.0 mM treatment (P < 0.05, Figure 6A). A similar
increase in hornerin expression was observed in both T47D
and MDA MB231 cells, as well as with 5-fluorouracil
treatment in the MCF10AI cells (Additional file 3: Figure S3).
These data suggest a common mechanism of increased
hornerin expression in response to apoptosis/cell necrosis
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Figure 4 Correlation of hornerin expression with breast cancer subtype and TNM staging. (A) Representative images of breast cancer
biopsies that were subjected to immunohistochemical analysis using a hornerin-specific antibody or corresponding negative control (219
individual patient samples analyzed). Yellow bar=200 uM. Hornerin expression in correlation with (B) breast cancer subtype IDC = invasive
ductal carcinoma. ILC = invasive lobular carcinoma, (C) tumor grade, and (D) lymph node metastasis. Data represent mean relative
intensity +/— SD. *P < 0.05.

inducing events. Western blot analysis showed extensive
degradation/fragmentation with H,O, treatment after
overnight treatment; therefore a more extensive time-
course and dose response were performed (Figure 6B).
As early as two hours post-treatment an increase in the
~100 KDa fragment of hornerin was evident with the
higher dose of H,O,. The increase in fragmentation was
maximal at four hours post-treatment. A similar pattern
of capase-3 activation was observed, suggesting a correl-
ation between hornerin fragmentation and apoptosis.
Overall these data support a role for hornerin in cell
death related events, similar to other S100 proteins.

Discussion

The mammary gland is proposed to have developed dur-
ing evolution from the transformation of an apocrine
sweat gland [38], and it is well documented that during
embryonic development the mammary gland arises from
local thickening of the ventral embryonic epidermis [16].
Together these two observations support the potential
role of hornerin, a protein involved in the cornification
of skin, in mammary cell function. Herein, we demon-
strate hornerin expression and localization in breast tis-
sue and breast cancer, as well as changes in regulation

during cell apoptotic/necrotic events. These data high-
light the multifunctional role of hornerin in tissue add-
itional to skin.

Lower levels of H,O, stimulate apoptosis, while high
levels induce necrosis in breast cancer cells [39]. Our
data show that both low and high concentrations of
H,0O, induced hornerin expression and fragmentation
in all cell lines observed, corresponding with activation
of caspase-3. The immense size, complex and repetitive
sequence of hornerin resulted in failed attempts to suc-
cessfully produce a recombinant protein, overexpress the
protein, or significantly knock down the levels in cell
lines; therefore, we were unable to directly determine
whether the increase in mRNA levels and protein frag-
mentation are promoting cell survival or promoting cell
death. However, other S100 protein family members
have been shown to promote both cell survival and
apoptosis in mammary epithelial cells and breast cancer
[5,40]. S100A7, S100A8 and S100A9 are direct down-
stream targets of, and transcriptionally repressed by,
BRCA1 [41]. Bioinformatic analysis using PHOSIDA
posttranslational modification database predicts three
prominent proteins implicated in the control of cellular
response to DNA damage as transcription factors for
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Figure 5 Localization of hornerin fragments in breast cancer cells. (A) Representative western blot of hornerin products in breast cancer
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hornerin (DNA damage response kinase, casein kinase 1
(CK1) and glycogen synthase kinase-3 (GSK-3)). Further-
more, a direct interaction of hornerin with PinX1 was
identified in a large scale mapping of protein-protein
interactions by mass spectrometry [42]. PinX1 has been
identified as a major tumor suppressor, essential for tel-
omerase activity and maintaining chromosome integrity
[43]. These observations along with our data demon-
strating a significant upregulated of hornerin during
early stages of involution and that hornerin expression is
upregulated in less aggressive, lymph node negative, T1
breast tumors (Figure 4), strongly suggests a role for
hornerin in promoting apoptosis and tumor suppression.

Hornerin was detected in exosomes secreted from
mammary cells. As hornerin was localized to the cell
membrane of mammary cells (Figure 5) hornerin may
have been incorporated into the exosomes during the
fusion of the multivesicular bodies with the plasma

membrane and subsequent release from the cell, or as a
component deposited within the exosome. Cells release
exosomes for multiple purposes, including the eradica-
tion of obsolete proteins and as a mode of intracellular
communication [44]. The latter is especially true for
immune cells, and it is of note that we observed signifi-
cant hornerin expression in stromal immune cells during
lactation and involution. Family members S100A8 and
S100A9 are excreted into the extracellular environment
via a protein kinase C dependent mechanism in neutro-
phils, monocytes and myeloid progenitors in response
to cell damage and act as danger signals that activate
other immune cells and endothelial cells [45].

Most of the S100 genes, including hornerin, are clus-
tered on chromosome region 1q21, a region frequently
altered in epithelial tumors [45]. Our data show an
increase of hornerin expression in invasive luminal
breast cancer patient samples compared to invasive ductal
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carcinomas, and had significant correlation with tumors
of a less aggressive pathology. Additionally, the ER/PR
positive cell lines displayed more hornerin fragmentation
than the more aggressive ER/PR negative cell lines. It is
possible that the fragmentation of hornerin is an import-
ant mechanistic step in controlling hornerin action simi-
lar to that previously demonstrated in prostate cancer
cells [46] or the MCF7 breast cancer cell line [47]. It is
of note that the MCF10A breast cancer cell line progres-
sion model showed increasing amounts of hornerin
expression as the tumorigenicity of the cells progressed.
This observation is in contrast to the data observed in
the breast cancer tissue array (i.e. the less aggressive
tumor tissue had higher levels of hornerin expression).
We hypothesize that the fragmentation and localization

of the fragments relates to the function of hornerin,
thereby explaining these discrepancies. Indeed, less hor-
nerin fragmentation is observed in the more aggressive
MCF10A lines, similar to less fragmentation observed in
the ER/PR negative breast cancer cell lines (Figure 5),
which are inherently more invasive and tumorigenic
compared to the ER/PR positive cell lines [35,46]. It is
possible that the enhanced fragmentation directly relates
to the increase in intensity and abundance of hornerin
detected in the lobular breast tissue tumor samples com-
pared to the ductal carcinomas.

Our scanning confocal microscopy data show dif-
ferential localization of hornerin. Specifically, using anti-
bodies directed against the N-terminus of hornerin
we showed enhanced membrane staining and minimal
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nuclear localization, while nuclear localization was
robustly evident when using an antibody directed against
the C-terminus. This differential subcellular localization
of the fragments may suggest alternative functions for
full length and fragmented hornerin. A similar mechan-
ism of subcellular localization of protein fragments was
recently described for Ral binding protein-1 (RalBP1), a
protein implicated in Ras function [47], and other mul-
tiple functions localized to various subcellular regions
including the nucleus, the actin cytoskeleton, and with
the mitotic spindle and centrosome during mitosis [47].
Moreover, RalBP1 was shown to be proteolyzed into sev-
eral fragments with differential subcellular localization,
suggesting the proteolyzed fragments mediated different
cellular functions.

Furthermore, differential subcellular localization of
other S100 family members has been reported [48]. Dis-
tinct intracellular localization of S100A6 and S100A4
was shown to be dependent on calcium concentrations
in the MDA-MB231 metastatic epithelial breast adeno-
carcinoma cells and cervical carcinoma HeLa cells [48].
The authors propose the S100 proteins are involved in
tumor cell calcium homeostasis. Additionally, S100A11
was shown to change from a strictly nuclear localization
in normal breast tissue to a more cytoplasmic localiza-
tion in breast tumors. The authors hypothesized that
in normal breast S100A11 translocates to the nucleus
which increases transcription of negative regulators of cell
growth, while in cancer the loss of nuclear translocation
may lead to an inability to control cell growth [49].

Conclusion

Our data highlight the potential role for hornerin, an
S100 protein family member, in mammary cell function.
We demonstrate hornerin expression in breast epithelial
cells, stromal fibroblasts and macrophages, and show
unique regulation of hornerin expression during distinct
phases of mammary development. Furthermore, we show
a decrease in hornerin expression in invasive ductal car-
cinomas compared to invasive lobular carcinomas and
less aggressive breast carcinoma phenotypes, and altered
cellular expression of hornerin during induction of apop-
tosis. Finally, we demonstrate the presence of post-
translational fragments that display differential subcellular
localization, which opens new possibilities for the exist-
ence of fragment-specific functions of hornerin.
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