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Abstract

exposures with combination treatments.

from accumulation of misfolded proteins.

Background: The ubiquitin-proteasome system (UPS) and the heat shock response (HSR) are two critical regulators
of cell homeostasis, as their inhibition affects growth and survival of normal cells, as well as stress response and
invasiveness of cancer cells. We evaluated the effects of the proteasome inhibitor Bortezomib and of 17-DMAG, a
competitive inhibitor of Hsp90, in rhabdomyosarcoma (RMS) cells, and analyzed the efficacy of single-agent

Methods: To assess cytotoxicity induced by Bortezomib and 17-DMAG in RMS cells, viability was measured by MTT
assay after 24, 48 and 72 hours. Western blotting and immunofluorescence analyses were carried out to elucidate
the mechanisms of action. Apoptosis was measured by FACS with Annexin-V-FITC and Propidium lodide.

Results: Bortezomib and 17-DMAG, when combined at single low-toxic concentrations, enhanced growth
inhibition of RMS cells, with signs of autophagy that included intensive cytoplasmic vacuolization and conversion of
cytosolic LC3-I protein to its autophagosome-associated form. Treatment with lysosomal inhibitor chloroquine
facilitates apoptosis, whereas stimulation of autophagy by rapamycin prevents LC3-I conversion and cell death,
suggesting that autophagy is a resistance mechanism in RMS cells exposed to proteotoxic drugs. However,
combination treatment also causes caspase-dependent apoptosis, PARP cleavage and Annexin V staining, as
simultaneous inhibition of both UPS and HSR systems limits cytoprotective autophagy, exacerbating stress resulting

Conclusion: The combination of proteasome inhibitor Bortezomib with Hsp90 inhibitor 17-DMAG, appears to have
important therapeutic advantages in the treatment of RMS cells compared with single-agent exposure, because
compensatory survival mechanisms that occur as side effects of treatment may be prevented.

Background

Rhabdomyosarcoma (RMS) is the most common sar-
coma among children and adolescents, accounting for
5 % of all malignancies of these age groups. RMS can be
distinguished in alveolar (ARMS), embryonal (ERMS),
and the less common variant pleomorphic RMS sub-
types. ARMS are more aggressive than ERMS, have a
higher tendency to metastasize [1,2] and frequently
localize in the extremities [3]. ERMS mainly originate in
the genitourinary tract, head and neck [4] and have a
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better prognosis than ARMS. In 2/3 of cases ARMS cells
harbour a reciprocal chromosomal translocation t (2;13)
(g35;q14) [5] that generates the chimeric transcriptional
factor PAX3-FKHR, which causes aberrant gene expres-
sion in RMS cells and influences tumour aggressiveness
[6].

Recently, Bortezomib and 17-DMAG have been sug-
gested as potential new agents for the treatment of
RMS, being both drugs effective at reducing RMS cell
survival and invasiveness [7,8]. Bortezomib (Velcade™)
is a dipeptidyl boronic acid derivative, that inhibits the
chymotryptic-like activity of the 26S proteasome sub-
unit, and promotes apoptosis through G,/M cell cycle
arrest, activation of stress response and impairment of
NF-«B signalling [9]. Bortezomib-dependent inhibition
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of proteasome activity is a therapeutic strategy under
investigation in several tumour types, used either as
single agent or in combination with conventional che-
motherapeutic agents [10,11]. 17-DMAG [17-(Dimethy-
laminoethylamino)-17-Demethoxygeldanamycin] is a
soluble geldanamycin derivative [12], a benzoquinoid
ansamycin antibiotic inhibitor of the Hsp90 molecular
chaperone, which prevents nucleotide binding and
ATPase activity of Hsp90 [13], thus impeding the cor-
rect folding of several signal transduction proteins
involved in tumour cell growth and survival [14]. 17-
DMAG has been studied for its antitumor activity in
blastomas [15], carcinomas and leukemias [16], where it
caused inhibition of cell growth and survival.

We used Bortezomib and 17-DMAG as single agents
or in combination and we demonstrated that when
added simultaneously they induce growth inhibition and
cell death in rhabdomyosarcoma cells.

Methods

Cell cultures

Human RMS cell lines RD, RH30 were maintained in
RPMI 1640 medium containing 10 % heat-inactivated
fetal calf serum (FCS), 2 mmol/L glutamine, 100 U/mL
penicillin and 100 pg/mL streptomycin and grown under
standard tissue-culture conditions.

Reagents and antibodies
17-DMAG was purchased from Alexis (Axxora Life Sci-
ence, USA), dissolved in dimethylsulfoxide (DMSO) at
concentration of 10 mM and stored at —80 °C.
Bortezomib was kindly provided by Millenium Phar-
maceuticals (Millenium Pharmaceuticals, Inc. Cam-
bridge, Massachusetts, USA). Antibodies against PARP
and LC3B were purchased from Cell Signaling (Cell Sig-
naling Technology, Inc., Danvers, Massachusetts, USA),
[B-actin, PMSEF, chloroquine and rapamycin from SIGMA
(SIGMA-Aldrich Co., St. Louis, Missouri, USA). Leupep-
tin and aprotinin protease inhibitors were obtained from
CAPPEL (ICN Biomedicals Inc., Irvine, California, USA)
and Calbiochem (Merck, Darmstadt, Germany), respect-
ively. Acridine orange was purchased from Invitrogen
(Invitrogen, Eugene, Oregon, USA), whereas DAPI nu-
cleic acid stain, anti-tubulin antibody and fluorophore-
conjugated goat anti-rabbit Alexa488 antibodies were
from Molecular Probes (Invitrogen, Eugene, Oregon,
USA). Horseradish peroxidase-conjugated sheep anti-
mouse and donkey anti-rabbit antibodies were obtained
from GE Healthcare (GE Healthcare Bio-Sciences AB,
Uppsala, Sweden). For western blot analysis, proteins
were quantified by the BCA protein assay (Pierce Chem-
ical, Co., Rockford, Illinois, USA), transferred to nitro-
cellulose membranes (Schleicher & Schuell-Whatman,
Maidstone, Kent, UK), and visualized by using Chemicon
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chemiluminescence reagents (Chemicon International,
Inc., Temecula, California, USA).

Cell viability assays
Cell viability was assessed by MTT assay. Briefly, 3x10°
cells were seeded in 96-well plates and cultured in the
presence or absence of the test-drugs at 37 °C for up to
72 h. MTT salt ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide); SIGMA Co., USA) was added
for 4 h and reduction of MTT salt was measured at 24 h
intervals by spectrophotometer at 540 nm wave-length.
To determine apoptosis, cells were treated with drugs
or left untreated as indicated. After 48h-treatment,
0,5x10° cells were harvested and washed with temperate
PBS. The cells were resuspended in 1 mL of 1X
annexin-binding buffer (10 mM HEPES, pH 7.4;
140 mM NaOH; 2.5 mM CaCl,), stained with 5 ul
annexin-V-fluorescein isothiocyanate (FITC) and 5 pl of
propidium iodide (PI), and then incubated for 15 min-
utes at room temperature in the dark (Immunostep Re-
search, Salamanca, Spain). Apoptotic cells were then
determined by flow cytometry, using a FACS Calibur
(Becton Dickinson, Franklin Lakes, New Jersey, USA).
Both early apoptotic (annexin-V-positive, PI-negative)
and late apoptotic cells (annexin-V-positive, PI-positive)
were analyzed. To measure autophagy, cells were stained
with acridine orange (AO) to detect vesicular organelles
characteristic of lysosomal activity. Briefly, cells were
cultured in medium, treated as described above and AO
was added for 15 minutes at final concentration of 5 pg/
mL. Cells were analyzed and photographed by using a
fluorescence microscope with a digital camera (Leica DC
300F) and by using Leica IM1000 software (Leica
Mycrosystem Ltd., Wetzlar, Germany).

Cell lysis, immunoblotting

To analyze protein expression, treated and untreated
cells were washed twice in 1X phosphate-buffered saline
(PBS) and lysed in lysis buffer (50 mM Tris—HCl [pH
7.5], 150 mM NaCl, 2 mM EDTA, 0,1 % SDS, 0,5 % so-
dium deossycolate, 1 % TritonX-100, 1 mM PMSE,
20 pg/mL aprotinin, 20 pg/mL leupeptin). Lysates were
clarified by high-speed centrifugation (14.000 rpm, at
4 °C x 30 min), and 40-60 pg of whole cell lysates were
fractionated by SDS-PAGE. Proteins were subsequently
transferred onto nitrocellulose membrane, and their ex-
pression was quantified by densitometric analysis and
normalized for the expression of B-actin.

Fluorescence microscopy and DAPI staining

To analyze proteins under non-denaturant conditions,
RMS cells were treated with drugs or left untreated
(DMSOQO) and then spotted onto 12-well multitest slides
(ICN Biomedicals, Inc., USA). Cells were fixed with 4 %
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paraformaldehyde, permeabilized with 0.2 % TritonX-
100 and non-specific reactivity was blocked by incubat-
ing cells with 100 mM glycin followed by 10 % FCS-PBS.
Primary antibodies were added for 1 h at 37 °C, followed
by fluorophore-conjugated secondary antibody Alexa488.
Slides were washed in PBS, counter-stained with DAPI
(4',6-diamidino-2-phenylindole, 1:5000) and mounted
with 1:1 PBS-glycerol. Images were taken with a fluores-
cence microscope equipped with a digital camera (Leica
DC 300F) and analyzed by using Leica IM1000 software
(Leica Mycrosystem Ltd., Germany).

Data analysis

Results were expressed as mean * standard deviation
(SD) of three independent experiments and analyzed by
using the two-sided Student’s ¢ test, with a P value < 0.05
considered significant.

Results

Combinatorial exposure of RMS cells to Bortezomib and
17-DMAG

To assess the optimal conditions for combinatorial use
of Bortezomib and 17-DMAG in rhabdomyosarcoma
tumour cells, the effects of Bortezomib and 17-DMAG
as single agents were first investigated in ERMS (RD)
and ARMS (RH30) cell lines, and cell viability was mea-
sured at increasing time points. In these conditions, Bor-
tezomib and 17-DMAG inhibited proliferation of both
RH30 and RD cells in a time- and dose-dependent man-
ner, although embryonal RD cells resulted more sensitive
to treatments, with a reduction in cell survival of up to
80 % after 72 hours with either Bortezomib (50 nM
IC50=7.5nM) or 17-DMAG (100 nM IC50=35 nM)
(Figure 1A). Drug treatments were less effective in alveo-
lar RH30 cells, as indicated by both the higher IC50
values (Bortezomib ICsy=14nM; 17-DMAG ICg,=45
nM) and the survival rate observed. Therefore, cytotox-
icity of the Bortezomib/17-DMAG combination was
assessed by using multiple drug concentrations and time
points. Under these conditions, Bortezomib and 17-
DMAG added simultaneously increased drug-induced
growth inhibition of both cell lines, and the effect corre-
lated with time exposure (Figure 1B). Combinations of
low doses of Bortezomib (5-7.5nM) with cytostatic con-
centrations of 17-DMAG (<50nM) (open arrowheads)
were more effective than each compound used alone
(closed arrowheads), whereas at higher concentrations
(Bortezomib 20-50nM; 17-DMAG 100nM) cytotoxicity
was independent of treatment modality (Figure 1B and
1C). In this context, Bortezomib/17-DMAG combin-
ation treatment was able to overcome the lower sensitiv-
ity of RH30 ARMS cells to proteasome inhibition,
resulting more effective at inhibiting cell growth and
survival than single-agent treatment.
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Simultaneous induction of apoptosis and autophagy in
RMS cells

Consistent with combination treatment results, 7.5nM
Bortezomib and 50nM 17-DMAG were chosen as suit-
able concentrations to study the relationship between
growth inhibition and survival, and to determine
whether cross-talk between pathways influence RMS cell
fate in the setting of proteotoxic stress. In this context,
it was previously shown that proteasome inhibitors
interfere with protein degradation and increase the
amount of toxic aggregates in the cytoplasm [17-19],
whereas heat shock protein inhibitors activate the
unfolded protein response (UPR) pathway but also
stimulate autophagy to maintain cell homeostasis [20-23].
Autophagy is an important mechanism for the removal of
damaged cytoplasmatic components after cellular stress,
but it can also lead to cell death in collaboration with sev-
eral apoptogenic factors [24]. Therefore, to better under-
stand the mechanisms that lead to growth inhibition and
cell death of RMS cells in the presence of the Bortezomib/
17-DMAG combination, we measured the levels of apop-
tosis and autophagy by monitoring both PARP cleavage
and LC3 processing, respectively. When autophagy is up-
regulated, cytosolic LC3-I protein is cleaved and recruited
to autophagosome membranes (LC3-II) [25], where it
drives autophagic vacuoles formation before lysosome-
mediated proteolysis occurs [26]. Consistent with these
findings, we observed that in these settings PARP cleavage
occurred in RH30 exposed to 17-DMAG, whereas in
ERMS RD cells apoptosis was induced by Bortezomib
(Figure 2A). In both cell lines, the induction of apoptosis
correlated with the conversion of endogenous LC3 protein
from cytosolic LC3-I to the autophagosome-associated
LC3-II form, and this occurred together with the accumu-
lation of perinuclear vacuoles inside cells in the absence of
a clear apoptotic morphology (Figure 2B, upper and lower
panels). For further analysis of autophagy we used the
lysosotropic compound acridine orange, measuring AO
bright green-to-red fluorescence transition in acidic vesi-
cles forming during autophagy [26]. Consistent with LC3-
II accumulation, staining with acridine orange dye
revealed an increase of red fluorescence in RD cells after
treatment with Bortezomib, whereas red fluorescence in
RH30 cells increased only after 17-DMAG exposure
(Figure 2C). Treatment with both Bortezomib and 17-
DMAG enhanced the amount of acidic vacuoles in either
RH30 or RD cells, which was abrogated by the addition of
chloroquine lysosomal inhibitor (Figure 2C). By interfering
with luminal pH, chloroquine suppresses downstream
lysosome-mediated autophagic degradation, whereas rapa-
mycin, by stimulating both expression and processing of
LC3- I, exerts an opposite effect and induces autophagy
[27]. In addition, chloroquine in combination with pro-
teasome inhibitors can enhance caspase-mediated
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Figure 1 Sensitivity of RMS cells to Bortezomib and/or 17-DMAG exposure. (A) To assess cytotoxicity induced by Bortezomib and 17-DMAG,
ARMS (RH30) and ERMS (RD) cells were exposed to increasing drug concentrations, and viability was measured by MTT assay after 24, 48, and 72
hours. Values, expressed as folds of control (untreated cells), represent means of three independent experiments. (B) Time- and dose-dependent
effects of Bortezomib and 17-DMAG treatments were assessed in cells exposed to the thereof combination for up to 72 hours, using multiple
drug concentrations (Bort. 5-7.5-20-50nM; 17-DMAG 10-20-50-100 nM) as indicated (B, Bortezomib; D, 17-DMAG). Cell viability was assessed by
MTT assay, and data were expressed as described above. Values are means of three independent experiments. (C) Dose-response analysis of
RH30 and RD cells treated for 48 hours with 7.5nM Bortezomib, 50nM 17-DMAG or the thereof combination is shown. Drug effectiveness of the
Bortezomib/17-DMAG combination results significantly higher in comparison to that observed after both single-agent treatments (t-test analysis *,
p < 0,05). Values are expressed as folds of control (untreated cells) and are means + standard deviation of three independent experiments. ns: non
significant.

apoptosis [28], whereas rapamycin when used in com- cell death [29,30]. Therefore, the response pattern to
bination treatments reduces the accumulation of toxic = Bortezomib and 17- DMAG of rhabdomyosarcoma
poliubiquitinated aggregates and attenuates drug-induced cells was investigated in conditions of autophagy
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Figure 2 Induction of autophagy in ARMS and ERMS cell lines. (A) To assess apoptosis and autophagy induction, PARP and LC3 protein
expression were determined by Western blot analysis, after 48 h-treatment with Bortezomib (7,5nM), 17-DMAG (50nM), or the combination
Bortezomib/17-DMAG, using B-actin (actin) as loading control. (B) Under these conditions, analysis of RH30 and RD cell morphology and
chromatin integrity was performed, using a contrast-phase microscope (63x magnification) and processing cells for DAPI/y-tubulin staining. (C)
Effects of single-agent or combinatorial treatments on vacuoles acidification were investigated by staining RH30 and RD cells with acridine
orange (5 pg/mL), in the presence or absence of lysosomal inhibitor chloroguine. (D) Western blot analysis of cleaved PARP and processed LC3
(LC3-Il) proteins in RH30 and RD cells treated with 48 hours with Bortezomib (7.5nM), 17- DMAG (50nM), or their combination, in the presence or
absence of cloroquine or rapamycin. Proteins were analyzed by SDS-PAGE and band densities were measured with NIJ image software. Values are
expressed as folds of control and are means + standard deviation of three independent experiments.

induction or repression, by adding to drug-treated and
untreated cells rapamycin and chloroquine, respectively.
We found that PARP cleavage increased in drug-treated
RD and RH30 cells in the presence of chloroquine, but
not after the addition of rapamycin (Figure 2D). In par-
ticular, suppression of autophagy by chloroquine corre-
lated with the accumulation of cleaved PARP in cells not
sensitive to either proteasome or Hsp90 inhibitors (i.e.
RH30/Bortezomib and RD/17-DMAG, closed arrow-
heads), whereas stimulation of autophagy by rapamycin

exerted the opposite effect primarily in cells that were sen-
sitive to single agent treatments (RD/Bortezomib and
RH30/17-DMAG, open arrowheads). In contrast, LC3-1
processing in response to single agent treatments varied
less significantly, as well as PARP cleavage in cells trea-
ted with the Bortezomib/17-DMAG combination
(Figure 2D), suggesting that alteration of lysosomal func-
tion may be critical for cell survival at the early onset of
stress response, but not following severe stress induction
in late apoptosis.
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Autophagy as a pro-survival mechanism in apoptotic
rhabdomyosarcoma cells

The balance between apoptosis and autophagy is import-
ant in tumour development, but also for response to
therapy, since in addition to their unique role in sup-
pressing and promoting tumorigenesis, respectively,
apoptosis and autophagy may contribute to drug sensi-
tivity when interfacing to each other. To investigate fur-
ther the involvement of autophagy in drug-induced
apoptosis and cell survival, Annexin V/Propidium Iodide
(AV/PI) double staining analysis was performed in
rhabdomyosarcoma cells exposed to Bortezomib, 17-
DMAG, or both, in the presence or absence of rapamy-
cin. Consistent with previous findings, survival of RH30
and RD cells was significantly reduced by the Bortezo-
mib/17-DMAG combination (Figure 3, panels, RH30/
AV /Pl =44.7 %; RD/AV /Pl =56 %) compared with
control and single-agent treatments. This was accom-
panied by increased apoptosis (Figure 3, panels and his-
tograms aside, RH30/AV'=47.3 %; RD/AV'=37 %),
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whereas necrosis was not significantly induced (panels,
RH30/PI" =8 %; RD/PI" =7 %, respectively). Importantly,
pre-treatment with non-toxic concentrations of rapamy-
cin partially suppressed apoptotic cell death caused by
combined exposure to Bortezomib and 17-DMAG
(Figure 3, panels and histograms), therefore supporting
the notion that drug-induced autophagy may act as a
compensatory mechanism in  rhabdomyosarcoma
tumour cells that mitigates stress response and contri-
butes to apoptosis resistance.

Discussion

The heat shock proteins (HSP) and the ubiquitin-
proteasome system (UPS) contribute to maintain protein
homeostasis in eukaryotic cells. They have been recently
proposed as therapeutic targets in a wide variety of can-
cers [31,32]. Preclinical studies have demonstrated the
antitumour activity of proteasome inhibitors in child-
hood sarcomas, including rhabdomyosarcoma, Ewing
sarcoma (EWS) and osteosarcoma (OS) [7,33-36]. In
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Figure 3 Analysis of apoptosis induction in RH30 and RD Rhabdomyosarcoma cells. To assess the role of autophagy in drug-treated RH30
and RD cells, apoptosis was measured by flow- cytometry after staining treated and untreated cells (Bortezomib 7,5nM; 17-DMAG 50nM;
Bortezomib/17-DMAG) with Annexin-V-FITC/Propidium lodide (AV/PI) in the presence or absence of non-toxic concentrations of rapamycin (5 ng/
mL). Non-apoptotic (healthy, AV~/PI"), apoptotic (AV*/PI™ and AV*/PI*) and necrotic cells (AV/PI") were identified, and their relative percentages
reported in the corresponding quadrants. The relative amount of each fraction is graphed aside.
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addition, when used in combination with standard che-
motherapeutic agents or targeted therapeutics, prote-
asome inhibitors can increase anti-tumor activity,
suggesting that combination therapy can achieve better
results than single-agent treatments [37,38]. Because
several Hsp90 client proteins are relevant for tumour
growth and survival, inhibition of Hsp90 has also been
investigated in cancer, including rhabdomyosarcomas,
demonstrating that targeting Hsp90 may reduce tumour
cell proliferation and migration, both in vivo and in vitro
[8,12]. Targeting the Hsp90 molecular chaperone has
shown anti-tumor efficacy in Ewing sarcomas, whereas
the efficacy in childhood osteosarcoma is lower and lim-
ited to specific treatment modalities [12,39,40]. Similarly
to proteasome inhibitors, preclinical and clinical studies
in haematological malignancies have demonstrated that
Hsp90 inhibitors are effective as anti-cancer drugs espe-
cially when combined with conventional chemotherapy
or targeted therapeutics [41-44]. Based on these observa-
tions, we investigated the antitumour activity of Bortezomib
and the Hsp90 inhibitor 17-DMAG in rhabdomyosarcoma
cells, comparing single-agent exposures with combination
treatments. Consistent with previous findings [7,8], both
Bortezomib and 17-DMAG were highly efficient at inhibi-
ting growth and survival of RMS cells. Embryonal RD cells
were more sensitive than alveolar RH30 cells to single-
agent exposure, although such a different sensitivity was
not justified by the expression of specific target proteins,
like heat shock proteins, cell cycle inhibitors and pro-
apoptotic factors [45,46]. Conversely, effectiveness of the
combined treatment was comparable among cell lines,
including RH30 cells that responded poorly to Bortezo-
mib alone. Combination of Bortezomib and 17-DMAG
induced autophagy in addition to apoptosis, and this was
confirmed by the concurrent cleavage of LC3-II and
PARP proteins.

Consistent with these findings, inhibition of prote-
asome activity causes the accumulation of misfolded
proteins inside cells, which bind to heat shock proteins
in discrete structures known as aggresomes and are sub-
sequently degraded by lysosomes [47]. Attachment of
ubiquitin to proteins, in fact, not only constitutes a deg-
radation signal for the proteasome, but also serves for
removal of proteins by lysosome-mediated autophagy
[48]. In these conditions, unfolded proteins are delivered
to lysosomes by heat shock proteins, in what is known
as chaperone-mediated autophagy (CMA) [23,49-52].
Macroautophagy, the most important lysosome-
mediated type of autophagy, does not usually need shut-
tling substrate proteins by heat shock proteins, but re-
cent evidences suggest that in some cases heat shock
proteins translocate ubiquitinated proteins into lyso-
somes and assist their autophagic degradation as well
[48,53]. Collectively, these findings indicate that autophagy
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may be activated by proteasome inhibitors, likely as a re-
sponse mechanism that alleviates from stress and protects
cells from apoptosis [19,54-56]. Consistent with this sce-
nario we demonstrated that autophagy is activated in
rhabdomyosarcoma cells to withstand drug-induced cyto-
toxicity, as suggested by LC3-I activation and intensive
cytoplasmic vacuolization. As expected, the inhibition of
autophagy by chloroquine increases caspase-dependent
PARP cleavage in rhabdomyosarcoma stressed cells,
whereas its induction by rapamycin partially rescued cells
from drug-induced apoptosis. In particular, inhibition of
apoptosis occurs when cells are pretreated with rapamycin
prior to administering Bortezomib and/or 17-DMAG,
whereas the inhibition of autophagy increases cell death
when induced together with both proteasome and Hsp90
inhibition. This suggests that RMS cells may activate
autophagy as cytoprotective response to drug treatment,
and the inhibition of autophagy enhances sensitivity of
RMS cells to anti-cancer drugs, including Hsp90 and pro-
teasome inhibitors. Of note, inhibition of autophagy is
more effective at early onset of stress response than fol-
lowing apoptosis induction, providing evidence that
autophagy occurs before cell death and it functions pri-
marily as a cell survival mechanism.

The ubiquitin-proteasome and autophagy-lysosome
are often considered distinct degradation systems. How-
ever, recent studies suggest that these two pathways are
mechanistically linked [53,56], as proteasome inhibition
induces autophagy when removal of toxic polyubiquiti-
nated aggregates is necessary for cell survival, while pro-
teasome activity is induced when formation and activity
of lysosomes are impaired. Autophagy and apoptosis are
events regulated by common survival pathways, including
the JNK1, Bcl-2 and the PI3K/AKT signaling pathway. It
has been shown that JNK-dependent phosphorylation of
Bcl-2 promotes cell survival by disrupting Bcl-2 binding to
Beclin-1 and activates autophagy, whereas sustained Bcl-2
phosphorylation blocks Bcl-2 anti-apoptotic activity and
apoptosis overwhelms autophagy [57,58]. AKT phosphor-
ylates and prevents Bad pro-apoptotic activity and inhibits
autophagy by impairing TSC1TSC2 tumor suppressor
proteins activity [59]. Of note, JNK and AKT are, among
survival proteins, mostly affected in rhabdomyosarcoma
cells treated with proteasome and Hsp90 inhibitors, but
their involvement in drug-induced autophagy have not
been investigated yet [7,8,60].

Nevertheless, our findings suggest that combination
treatment with Bortezomib and 17-DMAG can overcome
autophagy, a mechanism protecting rhabdomyosarcoma
cells from drug-induced cytotoxicity. Further studies are
warranted on the use of low concentrations of proteasome
inhibitors in combination with Hsp90 inhibitors, both
in vitro and in vivo, as they might represent a tool capable
of counteracting protective mechanisms, such as
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autophagy, that may affect treatment efficacy and, ultim-
ately, the outcome of RMS patients.

Conclusions

Our study showed that the combination of Bortezomib
with 17-DMAG exerts more potent inhibitory effects on
RMS cell growth than each agent alone. Combination
treatment has important therapeutic advantages because
it counteracts survival mechanisms that occur as side
effects of treatment. These results may contribute to
new therapeutic approaches in rhabdomyosarcoma.
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