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The heat shock protein-90 co-chaperone,
Cyclophilin 40, promotes ALK-positive, anaplastic
large cell lymphoma viability and its expression is
requlated by the NPM-ALK oncoprotein
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Abstract

Background: Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell
lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These
translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate
numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock
protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this
lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to
specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our
preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is
up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we
examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated
whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines.

Methods: NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the
expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52
examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in
combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined.

Results: We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was
promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with
SiRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell
lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the ability of this
oncoprotein to signal.

Conclusions: This is the first study demonstrating that the expression of immunophilin family co-chaperones is
promoted by an oncogenic tyrosine kinase. Moreover, this is the first report establishing an important role for Cyp40 in
lymphoma.
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Background

Anaplastic lymphoma kinase-positive, anaplastic large cell
lymphoma (ALK+ ALCL) is an aggressive non-Hodgkin
lymphoma of T/null cell immunophenotype [1-3]. This
lymphoma primarily presents in children, adolescents, and
young adults where it accounts for 10-20% of childhood
non-Hodgkin lymphomas [1]. ALK+ ALCL is characterized
by the presence of chromosomal translocations involving
the ALK gene, which encodes for a receptor tyrosine
kinase belonging to the insulin receptor super-family.
These translocations result in the expression of ALK
fusion proteins that are critical for the pathogenesis
of ALK+ ALCL [2,3]. Moreover, ALK fusion proteins
have been implicated in the pathogenesis of a subset
of non-small cell lung carcinomas (ALK+ NSCLC)
[4-7] and inflammatory myofibroblastic tumours
(ALK+ IMT) [8-10]. In ALK+ ALCL several different
ALK translocations have been described [2,3]; how-
ever, the most common (~80%) is the t(2;5)(p23;q35)
translocation involving the nucleophosmin (NPM)
gene which generates the NPM-ALK oncogene [1-3].

NPM-ALK consists of the N-terminal region of NPM
and the C-terminal kinase and intracellular domains of
ALK [11,12]. The NPM portion of this fusion protein
possesses a dimerization domain required for the tyro-
sine kinase activity and transforming ability of NPM-
ALK [13,14]. The activity of the NPM-ALK oncoprotein
is also critically dependent on the molecular chaperone,
heat shock protein-90 (Hsp90) [15-18]. Hsp90 is a ubi-
quitously expressed protein that assists in the proper
folding and activity of numerous cellular proteins
[19,20]. Hsp90 promotes the stability of NPM-ALK
[15-18], as treatment of cell lines with the Hsp90 inhibi-
tor, 17-Allylamino-Demethoxygeldanamycin (17-AAG),
resulted in the proteasomal degradation of NPM-ALK
[17]. The treatment of ALK+ ALCL cell lines with 17-
AAG resulted in cell cycle arrest and the induction of
apoptosis [15,18]; however, these effects are likely due to
more than just decreased NPM-ALK levels. Hsp90 in-
hibition also decreased levels of the pro-survival serine/
threonine kinase Akt, the cell cycle-associated proteins
cyclin D1, cyclin-dependent kinase 4 (cdk4), and cdké,
as well as several other proteins in ALK+ ALCL
[15,18,21]. The treatment of ALK+ ALCL cell lines with
17-AAG resulted in decreased phosphorylation of the
serine/threonine kinase Erk without affecting Erk levels
[15]. Moreover, the treatment of ALK+ NSCLC with
Hsp90 inhibitors resulted in Erk dephosphorylation as
well as the degradation of Akt and the EML4-ALK onco-
protein in these tumours [22-24].

Hsp90 inhibitors are also effective at inhibiting EML4-
ALK-driven tumourigenesis in vivo in the mouse [22,23],
and the treatment of three ALK+ NSCLC patients with
the Hsp90 inhibitor, IPI-504, resulted in a partial
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response in two of the patients and stable disease in the
other [25]. Importantly, Hsp90 inhibitors are effective
against tumour cells expressing ALK fusion proteins that
possess mutations that render them resistant to the ALK
inhibitor, Crizotinib [24,26]. Thus, Hsp90 inhibitors may
be useful in treating patients that develop resistance to
ALK inhibitors.

One aspect of Hsp90 biology that is largely unstudied
in ALK-expressing tumours is the role of Hsp90 co-
chaperones. Many functions of Hsp90 are dependent on
its association with co-chaperone proteins [19,20]. Co-
chaperones mediate various aspects of Hsp90 function,
including the association of Hsp90 with client proteins
and the regulation of Hsp90 ATPase activity [19,20].
Cyclophilin 40 (Cyp40), FK506-binding protein (FKBP)
51, and FKBP52 are members of the immunophilin fam-
ily of Hsp90 co-chaperones. This family is best charac-
terized for its association with Hsp90-steroid hormone
receptor complexes containing client proteins such as
the glucocorticoid, estrogen, progesterone, and androgen
receptors [27-30]. The individual immunophilin family
members show some preference for specific hormone
receptors, and they can both antagonize and promote
the transcription mediated by these receptors. For ex-
ample, FKBP51 inhibits the transcriptional activity of the
glucocorticoid receptor [31-33], while FKBP52 is import-
ant for promoting the transcriptional activity of this re-
ceptor [32-35]. In addition to steroid hormone
receptors, immunophilin co-chaperones have been
found to complex with the Lck [36] and Fes [37] tyro-
sine kinases. As well, the expression and activity of ecto-
pically expressed v-Src oncoprotein in Saccharomyces
cerevisiae is dependent on the Cyp40 homolog, Cpr7
[38]. Immunophilin co-chaperones are important in can-
cer, as Cyp40 and FKBP51 have been shown to promote
the proliferation of androgen-dependent and androgen-
independent prostate cancer cell lines [39].

We identified Cyp40 in a mass spectrometry screen
designed to identify proteins regulated by the JunB tran-
scription factor in ALK+ ALCL (R.J.I and J.D.P; unpub-
lished observation). JunB is an AP-1 family transcription
factor that is highly expressed in ALK+ ALCL [40-42],
and has been shown to promote the proliferation of the
Karpas 299 ALK+ ALCL cell line [43]. This transcription
factor also promotes the expression of CD30 [44,45] and
the cytotoxic protein, Granzyme B [46], in ALK+ ALCL,
which are phenotypic characteristics of this lymphoma
[1,47]. Since co-chaperone proteins are important for
Hsp90 function, and Hsp90 activity is critical in ALK+
ALCL, we were intrigued by our observation that JunB
might promote the expression of Cyp40 in ALK+ ALCL.
In this study, we examined whether the expression of
the immunophilin co-chaperones was regulated by onco-
genic signalling in ALK+ ALCL. We also investigated
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whether the immunophilin co-chaperone proteins were
important for the viability of ALK+ ALCL cell lines. We
found that NPM-ALK induced the transcription of two
immunophilin  family co-chaperones, Cyp40 and
FKBP52, but that only Cyp40 transcription was pro-
moted by JunB. In addition, knocking-down the expres-
sion of Cyp40, but not FKBP51 or FKBP52, reduced the
viability of ALK+ ALCL cell lines. However, knock-down
of the immunophilin proteins did not appear to regulate
NPM-ALK stability or activation. In conclusion, we
demonstrate that some members of the immunophilin
family of Hsp90 co-chaperone proteins are targets of
NPM-ALK signalling, and that Cyp40 plays an important
role(s) in ALK+ ALCL that is not shared by other immu-
nophilin family co-chaperones.

Methods

Reagents and cDNA constructs

The monoclonal antibodies (mAbs) against JunB (C-11
and 204C4a), FKBP51, FKPB52, STAT3, phospho-STAT3
(Tyr 705), Myc, and B-actin were from Santa Cruz Bio-
technology (Santa Cruz, CA). The Cyp40 polyclonal
antibody was also from Santa Cruz Biotechnology. The
anti-JunB (C-11) mAb was used for western blotting,
while the anti-JunB (204C4a) mAb was used in EMSA
experiments. The anti-tubulin mAb was from Calbio-
chem (San Diego, CA), the anti-ALK mAb from Dako
(Burlington, ON, Canada), and the anti-phosphotyrosine
mAb (4G10) was from Millipore (Billerica, MA). Anti-
phospho-ALK (Tyr 338, 342, and 343 of NPM-ALK) and
anti-Akt antibodies were purchased from Cell Signalling
Technology (Danvers. MA). Short interfering RNA
(siRNA) oligonucleotides were purchased from Dharma-
con RNAi Technologies (Lafayette, CO). The NPM-ALK
inhibitor, Crizotinib, was generously provided by Pfizer
[7,48,49]. To generate the human Cyp40 promoter—
driven luciferase reporter construct, we PCR amplified
the Cyp40 proximal promoter (-691 to +62 relative to
the transcriptional start site) from the Karpas 299 cell
line and cloned it into the pGL2 basic luciferase vector
(Promega; Madison, WI). The AP-1 consensus sequence
in the Cyp40 promoter was mutated from TGATTCA to
TAACTAA to generate the AP-1 mutant construct. The
Myc-tagged JunB construct was generated by adding a
double myc tag to the 5" end of the human JunB cDNA.
This was then cloned into the pcDNA 3.1A eukaryotic
expression vector (Invitrogen; Burlington, ON, Canada).

Cell lines and electroporations

The Karpas 299 and SUP-M2 ALK+ ALCL cell lines
were cultured in RPMI 1640 supplemented with 10%
heat-inactivated FBS, 2 mM L-glutamine, 1 mM sodium
pyruvate, and 50 pM 2-mercaptoethanol. For transfec-
tions involving siRNAs, 4 x 10° cells were transfected by
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electroporation with 100 nM pooled siRNA as previously
described [50]. Cells were then incubated for 48 h at 37°
C prior to analysis. For luciferase reporter assays, 1 x 10
cells were transfected with 10 pg of the indicated pGL2
luciferase construct and 1 pg of a constitutively expressed
Renilla luciferase construct (to control for transfection ef-
ficiency). In luciferase experiments involving siRNAs,
cells were also transfected with 100 nM pooled control
(non-targeting) or JunB siRNA. For luciferase assays per-
formed on Karpas 299 cells over-expressing JunB, cells
were transfected with the luciferase constructs as
described above and 5 pg of Myc-tagged JunB or empty
vector. Cells were then incubated for 24 h at 37°C prior
to analysis of luciferase activity (see below).

Cell lysis, immunoprecipitations, and western blotting
Cells were lysed in Nonidet P-40 lysis buffer [50] contain-
ing protease inhibitor cocktail (Sigma-Aldrich; Missis-
sauga, ON, Canada), 1 mM phenylmethylsulfonylfluoride,
and 1 mM sodium orthovanadate. Lysates were cleared
of detergent-insoluble material by centrifugation at
~20,000¢ for 10 min. The protein concentration of
cleared lysates was determined using the BCA Protein
Assay kit (Thermo Scientific; Waltham, MA). Anti-ALK
immunoprecipitations were performed by incubating
cleared lysates with 0.5 pg of the anti-ALK antibody and
Protein A-Sepharose beads (Sigma-Aldrich) for 1-2 h at
4°C on a nutator. Beads were subsequently washed with
lysis buffer and bound proteins eluted by boiling in SDS-
PAGE sample buffer. Cell lysates or immunoprecipitates
were resolved on SDS-PAGE gels and transferred to
nitrocellulose membranes. Western blots were visualized
using SuperSignal West Pico Chemiluminescent Sub-
strate (Thermo Scientific) and band intensities quantified
using a LI-COR Odyssey Infrared Imager (LI-COR Bios-
ciences; Lincoln, NE). Expression of the quantified pro-
teins were normalized to tubulin levels and expressed
relative to control (non-targeting) siRNA-treated cells.
The number of independent replicates for each experi-
ment are indicated in the figure legends. To reprobe
blots, membranes were stripped in 0.1% TBST, pH 2
prior to incubation with the new primary antibody.

Quantitative RT-PCR (qRT-PCR)

After collection using the RNeasy mini kit (Qiagen; Mis-
sissauga, ON), total RNA was digested with DNase I to
remove potential DNA contamination, and then reverse
transcribed to ¢cDNA using the Superscript II Reverse
Transcriptase System (Invitrogen; Burlington, ON,
Canada). qRT-PCR was performed using PerfeCTa SYBR
Green FastMix (Quanta Biosciences; Gaithersburg, MD)
on an Eppendorf Mastercycler realplex* thermal cycler.
Cyp40 and FKBP52 mRNA levels were then determined
using the AA-CT method [51] with S-actin as the
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housekeeping gene. The following primers were used:
Cyp40 forward - TCGAGTCTTCTTTGACGTGGA,
reverse - CAGTCGTGTGTCCAATGCCTT; FKBP52
forward - TGCTGAAGGTCATCAAGAGAGAG, re-
verse - ATGGTGGCTATGGCAATGTC; actin forward -
AGAAAATCTGGCACCACACC, reverse - TAGCA-
CAGCCTGGATAGCAA. Results are displayed relative
to control siRNA-transfected cells and represent the
mean and standard deviation of three independent
experiments.

Luciferase assays

Luciferase assays were performed on a BMG Labtech
Plate Reader using the Dual-Glo Luciferase Assay Sys-
tem (Promega) and the protocol provided by the manu-
facturer. Cyp40 promoter-driven firefly luciferase and
constitutive Renilla luciferase activity were determined
in triplicate for each sample. The level of firefly activity
was normalized to Renilla activity and triplicate mea-
surements were averaged. Three independent replicates
were performed for each experiment.

Electrophoretic mobility shift assay (EMSA)

Nuclear extracts were collected from Karpas 299 cells
using the ProteoJET cytoplasmic and nuclear protein ex-
traction kit (Fermentas; Burlington, ON, CA). EMSAs
were performed with the LightShift chemiluminescent
EMSA kit (Thermo Scientific) using a biotinylated probe
corresponding to a 20 nucleotide sequence surrounding
the AP-1 site of the Cyp40 promoter (TTGTACTGATT-
CATGTCTTT). The unlabeled AP-1 mutant competitor
contained the same mutation as described for the lucifer-
ase reporter construct (see above). Binding reactions
were performed with 7.5 pg of nuclear protein extract,
100 fmol of the Cyp40 promoter probe, and a 50-fold
molar excess of an unlabeled Cyp40 promoter as a com-
petitor. For super-shift experiments, 1 pg of the indicated
antibody was pre-incubated with the reaction mixture for
15 min on ice prior to addition of the biotinylated probe.

MTS viability assays

After transfection with the indicated siRNAs, cells were
resuspended to 4 x 10* cells/ml and incubated at 37°C
for 48 h. The number of viable cells in each sample was
determined in triplicate using the CellTiter 96 AQucous
Non-Radioactive Cell Proliferation Assay (MTS assay)
(Promega). Triplicate measurements were then averaged
and the percentage of viable cells determined relative to
cells transfected with control siRNA. Each experiment
was performed in quadruplicate.

Statistical analysis
Statistical analysis was performed using paired, one-
tailed t-test in all cases, except the comparison of
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viability with Cyp40 siRNA to combined siRNA in which
an unpaired, one-tailed ¢-test was performed.

Results
JunB promotes Cyp40, but not FKBP51 or FKBP52,
expression in ALK+ ALCL cell lines
To confirm our mass spectrometry findings showing
that JunB promotes the expression of Cyp40 in ALK+
ALCL, we performed western blotting experiments. Des-
pite incomplete JunB knock-down, we observed a de-
crease in Cyp40 protein expression after knock-down of
JunB with siRNA in both the Karpas 299 and SUP-M2
ALK+ ALCL cell lines (Figure 1A). Since Cyp40 belongs
to the immunophilin family of Hsp90 co-chaperone pro-
teins, which includes FKBP51 and FKBP52, we also
examined whether JunB promotes the expression of
these proteins. However, we found that JunB knock-
down did not influence FKBP51 or FKBP52 protein ex-
pression in ALK+ ALCL cell lines (Figure 1B and C).
We next examined Cyp40 mRNA levels after treat-
ment of cells with JunB siRNA, and found that knock-
down of JunB resulted in decreased levels of Cyp40
mRNA in both Karpas 299 and SUP-M2 cells
(Figure 2A). We also generated a luciferase reporter con-
struct where expression of firefly luciferase is under con-
trol of the human Cyp40 promoter. When transfected
into Karpas 299 cells this construct exhibited strong
luciferase activity, which was reduced when cells were
co-transfected with JunB siRNA (Figure 2B). In addition,
over-expression of Myc-tagged JunB was found to pro-
mote transcription from this luciferase promoter con-
struct, further demonstrating that JunB promotes
transcription of Cyp40 (Figure 2C). The Cyp40 promoter
contains a consensus sequence for AP-1 family tran-
scription factors [52] that could be recognized by JunB.
Mutation of this site resulted in reduced luciferase activ-
ity (Figure 2D), demonstrating this site is important for
Cyp40 transcription. To examine whether JunB can bind
this AP-1 site we performed EMSA experiments
(Figure 2E). We found that a protein(s) expressed by
Karpas 299 cells bound to a biotinylated probe corre-
sponding to the AP-1 site in the Cyp40 promoter. We
further found that JunB was a major component of the
probe/protein complex(es) bound to this AP-1 site, as
inclusion of an anti-JunB antibody in the binding reac-
tion resulted in an almost complete super-shift of the
probe/protein complex. Taken together, our results
argue that JunB functions as a direct transcriptional acti-
vator of Cyp40 in ALK+ ALCL.

NPM-ALK promotes Cyp40 and FKBP52, but not FKBP51,
expression

The NPM-ALK oncoprotein drives much of the signal-
ling underlying the pathogenesis of ALK+ ALCL [2,3],



Pearson et al. BMIC Cancer 2012, 12:229
http://www.biomedcentral.com/1471-2407/12/229

Page 5 of 14

tEf
HEHf

anti-tubulin blot

A Karpas 299 SUP-M2
~
e £ e
siRNA;_& s°_ siRNA:_ & 5
43kDa<|_ = 43kDa-|_ —
anti-Cyp40 blot anti-Cyp40 blot
anti-JunB blot anti-JunB blot
anti-tubulin blot anti-tubulin blot
B Karpas 299 SUP-M2
0 Q
siRNA: & S siRNA: & S
anti-FKBP51 blot anti-FKBP51 blot
antl JunB blot ant| JunB blot
55kDa 55kDa

anti-tubulin blot

C

Karpas 299

oo'h‘ro
Jy, ng

siRNA:
55kDa
anti-FKBP52 blot

siRNA:

55kDa
anti-FKBP52 blot

i
i

B
i

43kD: Da
anti-JunB blot

55kDa

anti-JunB blot
55kDa

f
i

anti-tubulin blot anti-tubulin blot
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including the elevated expression of JunB [43,44,46].
Therefore, we next examined whether NPM-ALK pro-
motes expression of the immunophilin co-chaperones in
ALK+ ALCL. We found that knock-down of NPM-ALK
in Karpas 299 and SUP-M2 cells resulted in significantly
reduced Cyp40 protein levels (Figure 3A). NPM-ALK
knock-down also resulted in a substantial reduction in
JunB levels, that was comparable to the reduction in
JunB observed after JunB siRNA treatment (compare
Figure 3A and Figure 1). Knock-down of NPM-ALK also
resulted in decreased FKBP52 expression, but had no ef-
fect on the expression of FKBP51 (Figures 3B and C, re-
spectively). Using quantitative RT-PCR, we found that
knock-down of NPM-ALK reduced Cyp40 (Figure 3D)
and FKBP52 (Figure 3E) mRNA expression in ALK+
ALCL cell lines. These findings show that both Cyp40
and FKBP52 are transcriptional targets of NPM-ALK
signalling in ALK+ ALCL.

To further examine the regulation of the immunophi-
lin co-chaperones by NPM-ALK, we treated ALK+
ALCL cell lines with the ALK inhibitor, Crizotinib,
which has been shown to be useful in treating patients
with ALK+ ALCL [53] and EML4-ALK+ NSCLC
[7,54,55]. Treatment of Karpas 299 and SUP-M2 cells
with Crizotinib resulted in a dose- (Figure 4A) and time-
dependent (Figure 4B) decrease in NPM-ALK phosphor-
ylation on tyrosines 338, 342, and 343. These phosphor-
ylation sites are located within the activation loop of
the kinase domain, and their phosphorylation correlates
with  NPM-ALK activation [56,57]. Furthermore, we
observed a dose- and time-dependent decrease in
Cyp40 and FKBP52 protein expression in both Karpas
299 and SUP-M2 cells after Crizotinib treatment
(Figure 4C and D). In contrast, Crizotinib treatment
did not decrease FKBP51 expression in either cell line;
however it did result in a modest, but reproducible,
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increase in FKBP51 expression in the Karpas 299 cells
at low Crizotinib doses (Figure 4C). Thus, similar to
our NPM-ALK knock-down results, treatment of ALK+
ALCL cell lines with an NPM-ALK inhibitor resulted in
reduced Cyp40 and FKBP52, but not FKBP5I,
expression.

Knock-down of Cyp40 reduces the viability of ALK+ ALCL
cell lines

Hsp90 is vitally important for the proliferation and sur-
vival of ALK+ ALCL cell lines [15,18], and is required
for the expression and/or activation of important signal-
ling proteins in this lymphoma [15-18,21]. Therefore, we
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Figure 3 NPM-ALK promotes Cyp40 and FKBP52, but not FKBP51, expression in ALK+ ALCL. Western blot analysis (left) and quantification
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bars represent the standard deviation of the mean of three independent experiments. p values were obtained using paired, one-tailed t-tests. N.S.
indicates a p value >0.05.
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examined whether the immunophilin co-chaperones
were similarly important in ALK+ ALCL by examining
the effect of their knock-down on cellular viability.
Treatment of cells with Cyp40 siRNA resulted in a sig-
nificant reduction in viability in both Karpas 299 and
SUP-M2 cells as measured by MTS assay (Figure 5A).

However, we found that reducing the expression of ei-
ther FKBP51 or FKBP52 did not affect the viability of
these cell lines (Figure 5A). The immunophilin co-
chaperones associate with some of the same Hsp90-
client protein complexes [37,58,59]; therefore, we exam-

ined whether knock-down of FKBP51 and FKBP52 in
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combination with Cyp40 resulted in a greater reduction
in viability compared to knock-down of Cyp40 alone.
Knock-down of all three immunophilin family members
in combination did not significantly reduce viability over
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Cyp40 knock-down alone in Karpas 299 and SUP-M2
cells (Figure 5B). This finding argues that the reduced
viability observed in these cell lines is predominantly
due to decreased Cyp40 expression.
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paired, one-tailed t-tests. § p < 0.05, + p < 0.01, # p < 0.005.

Figure 4 Inhibition of NPM-ALK activity results in reduced Cyp40 and FKBP52 protein levels. (A) Western blot analysis examining NPM-
ALK phosphorylation (anti-pALK blot) in Karpas 299 (upper) or SUP-M2 (lower) cells left untreated or treated with 25, 50 or 75 nM of the ALK
inhibitor, Crizotinib, for 48 h. (B) NPM-ALK phosphorylation in Karpas 299 (upper) or SUP-M2 (lower) cells left untreated or treated with 75 nM
Crizotinib for 24, 48 or 72 h. Note: all cells were split into fresh Crizotinib-containing media 24 and 48 h post-treatment to maintain the cells in
logarithmic growth. (C & D) Western blot analysis of Cyp40, FKBP52 and FKBP51 protein levels in Karpas 299 (upper) or SUP-M2 (lower) cells
treated as in (A) or (B). * indicates a non-specific band in the anti-FKBP51 blot. Quantification of blots are shown to the right and represent the
mean and standard deviation of four (C) or three (D) independent experiments. p values comparing untreated cells to cells treated with each
concentration of Crizotinib (C) or comparing treated cells at each time point to untreated cells at the 24 h time point (D) were obtained using

Cyp40 knock-down does not affect NPM-ALK levels or
tyrosine phosphorylation, nor the tyrosine
phosphorylation of cellular proteins in ALK+ ALCL

Cyp40 is primarily noted for its role in co-chaperoning
with Hsp90 in complex with steroid hormone receptors
[27-30]. However, Cyp40 has also been found in Hsp90/
kinase client complexes. For example, Hsp90/Cyp40 com-
plexes associate with the Lck [36] and Fes [37] tyrosine
kinases, and the stability and signalling capacity of ectopi-
cally expressed v-Src in S. cerevisiae is dependent on the
yeast Cyp40 homolog, Cpr7 [38]. Therefore, we examined
whether the decrease in viability due to Cyp40 knock-
down could be attributed to a failure of Cyp40 to help
Hsp90 stabilize NPM-ALK and/or allow NPM-ALK to
signal. We observed no difference in NPM-ALK levels
(Figure 6A) or tyrosine phosphorylation (Figure 6B) in
Karpas 299 and SUP-M2 cells treated with Cyp40 siRNA
compared to control siRNA. Moreover, we saw no signifi-
cant alteration in the tyrosine phosphorylation of total
cellular proteins after Cyp40 knock-down (Figure 6C).
However, knock-down of NPM-ALK in these cell lines
resulted in a dramatic reduction in the tyrosine phosphor-
ylation of cellular proteins (Figure 6C). We also observed
no effect on phosphorylation of STAT3 on tyrosine 705
after knock-down of Cyp40 (Figure 6C). Phosphorylation
of STAT3 on this residue is promoted by NPM-ALK sig-
nalling [60-62] and is critical for STAT3 DNA binding
and transcriptional activity [63-65]. We also found no al-
teration in the levels of Akt (Figure 6C), which is a known
Hsp90 target in this lymphoma [15]. Thus, while Cyp40 is
important for the viability of ALK+ ALCL cell lines, our
results argue that it does not appear to be influencing via-
bility through regulating NPM-ALK levels or activity, or
levels of the Hsp90 client protein Akt.

Discussion

ALK+ ALCL express the three related immunophilin co-
chaperones, Cyp40, FKBP51, and FKBP52; however, our
findings demonstrate their expression is distinctly regu-
lated in this lymphoma (Figure 7). Signals originating
from NPM-ALK promote the expression of Cyp40 and
FKBP52, but not FKBP51; whereas the only immunophi-
lin family member regulated by JunB in ALK+ ALCL is

Cyp40. Of note, we were only able to silence JunB ex-
pression by ~50% (see Figure 1), so we are likely under-
estimating the contribution JunB is making to Cyp40
transcription. Since the expression of JunB is promoted
by NPM-ALK in ALK+ ALCL [43,44,46], we think it is
likely that NPM-ALK promotes the transcription of
Cyp40 largely through JunB. However, it is unresolved
whether NPM-ALK regulates Cyp40 transcription exclu-
sively through JunB or via a combination of JunB-
dependent and independent pathways. NPM-ALK
knock-down results in a greater reduction in Cyp40 ex-
pression that JunB knock-down (compare Figures 1 and
2 to Figure 3), despite a similar reduction in JunB levels
in both instances, so we believe it likely that other sig-
nalling pathways activated by NPM-ALK also contribute
to Cyp40 expression. Moreover, since JunB does not in-
fluence FKBP52 expression, this demonstrates NPM-
ALK signalling promotes the transcription of FKBP52
through other downstream effectors. We were surprised
by our finding that FKBP51 protein expression was
modestly up-regulated in Karpas 299 cells treated with
low concentrations of Crizontinib (Figure 4C). However,
since we did not observe this increase in FKBP51 protein
expression in Crizotinib-treated SUP-M2 cells (Figure 4C),
or in Karpas 299 or SUP-M2 cells treated with ALK
siRNA (Figure 3C), we are unsure of the significance of
this observation.

While this is the first report to show an important role
for an immunophilin co-chaperone in lymphoma, several
reports have demonstrated that this family of proteins
perform critical functions in other malignancies. For ex-
ample, knock-down of either Cyp40 or FKBP51 in pros-
tate cancer cell lines decreased cellular proliferation; this
was particularly evident in androgen-dependent cell lines
where these co-chaperones promote the transcriptional
activity of the androgen receptor [39]. Metastatic melan-
oma has high levels of FKBP51, and knock-down of
FKBP51 sensitized the SAN melanoma cell line to ioniz-
ing radiation [66]. This response was postulated to be due
to decreased anti-apoptotic signalling through NF-«B in
response to reduced FKBP51 levels [66]. In contrast, re-
ducing the expression of FKBP51 in breast, lung, and
pancreatic cancer cell lines resulted in reduced sensitivity
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Figure 5 Cyp40, but not FKBP51 or FKBP52, promotes ALK+ ALCL viability. (A) The viability of Karpas 299 (upper) or SUP-M2 (lower) cells
transfected with the indicated pooled siRNAs was measured using the MTS assay (left). Western blots (right) demonstrate the silencing efficiency
of the targeted proteins. * indicates a non-specific band in the anti-FKBP51 blot. (B) Viability of Karpas 299 (upper left) or SUP-M2 (lower left) cells
transfected with the indicated pooled siRNAs. Combined siRNA consists of siRNAs to target the three immunophilin co-chaperones, Cyp40,
FKBP51 and FKBP52. Western blots (right) demonstrate the level of silencing of the indicated proteins. Quantification represents the mean and
standard deviation of four independent experiments. p values comparing cells transfected with the indicated siRNA to those transfected with
control siRNA were obtained using paired, one-tailed t-tests. p values comparing cells transfected with Cyp40 or combined siRNA were obtained

to chemotherapeutic agents [67]. It was suggested in this
study that activation of Akt was partially responsible for
this decreased sensitivity. Thus, the immunophilin co-
chaperones perform important functions in a number of

cancers, and may represent attractive therapeutic targets

in some malignancies.

An important unanswered question arising from our
study is why reducing Cyp40 expression in ALK+ ALCL
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Figure 7 Pathways influencing expression of the immunophilin
family of co-chaperones in ALK+ ALCL. The transcription of Cyp40
is promoted by signals initiated by NPM-ALK, and we postulate that
up-regulation of JunB by NPM-ALK accounts for much of the
increase in Cyp40 transcription. However, additional signalling
pathways activated by this oncoprotein likely also contribute to
Cyp40 expression. The transcription of FKBP52 is promoted by NPM-
ALK in ALK+ ALCL, but in a manner that is independent of JunB.
Although expressed in ALK+ ALCL, FKBP51 expression is not
regulated by NPM-ALK or JunB in this lymphoma.

function?

cell lines resulted in reduced viability (Figure 5). Specific
experiments to determine whether this is an increase in
apoptosis, a decrease in proliferation, or combination of
both of these processes have been inconclusive. This de-
crease in viability does not appear to be due to an im-
pairment of NPM-ALK activity (Figure 6), and suggests
that the dysregulation of another protein(s) is important
for this phenotype. In addition to steroid hormone
receptors and kinases, Cyp40 is known to associate with
a number of other proteins with a variety of cellular
functions including the c-Myb transcription factor [68],
mutant forms of p53 [69], and the RACKI scaffolding
protein [70]. Also, a genetic study in Arabidopsis identi-
fied an important role for the Cyp40 orthologue,
SQUINT, in microRNA biogenesis [71]. Thus, there are
several cellular activities whose disruption could account
for the decreased viability observed when Cyp40 is
knocked down in ALK+ ALCL cell lines. Regardless of
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the exact cellular activity or activities regulated by
Cyp40 that is important for the viability of ALK+ ALCL
cell lines, our results clearly show these activities are not
redundant with FKBP51 and FKBP52.

Our results show that Cyp40 does not regulate NPM-
ALK levels or activity (Figure 6), but it is possible that
other co-chaperones could be working with Hsp90 to
regulate NPM-ALK activity. There are currently more
than 20 known Hsp90 co-chaperones [19,20]. One of
these proteins, Cdc37, co-chaperones for many kinase
client proteins including Erb-B2, c-Raf, CDK4, CDK6
and Akt [72]. Cdc37 was identified by mass spectrom-
etry as an NPM-ALK associated protein [73], and has
also been shown to complex with EML4-ALK in NSCLC
[22]. These studies however, did not examine whether
these interactions are important for the activity of the
respective ALK fusion proteins. We are currently inves-
tigating whether Cdc37 or other Hsp90 co-chaperones
influence NPM-ALK activity. If a co-chaperone protein
that cooperates with Hsp90 to regulate NPM-ALK can
be identified, it could represent a potential drug target
to treat ALK+ ALCL, and other cancers expressing ALK
fusion proteins, especially in situations where ALK
mutations have resulted in resistance to conventional
ALK inhibitors.

Conclusions

The Hsp90 chaperone protein regulates the NPM-ALK
oncoprotein and other signalling molecules that promote
proliferation and survival in ALK+ ALCL. Co-chaperone
proteins are important co-factors of Hsp90, and in this
study we examined the regulation and function of the
immunophilin co-chaperones in ALK+ ALCL. We show
that NPM-ALK is required for the expression of the
immunophilin co-chaperones, Cyp40 and FKPB52, but
not FKBP51 in ALK+ ALCL. Our findings further dem-
onstrate that regulation of Cyp40 and FKPB52 by NPM-
ALK is distinct, given that Cyp40 expression in ALK+
ALCL is promoted by the JunB transcription factor,
whereas FKBP52 expression is not. Importantly, this is
the first study demonstrating that signalling by an onco-
genic tyrosine kinase promotes the expression of an
immunophilin family co-chaperone, and identifies Cyp40
as a novel JunB transcriptional target. Finally, we dem-
onstrate that Cyp40 promotes the viability of ALK+
ALCL cell lines in a manner that is independent of the
other related immunophilin co-chaperones.
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