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Abstract

cholangiocarcinoma.

Background: Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor
(EGFR)-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their
effect remains limited. The present study sought to understand the molecular genetic characteristics of
cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling.

Methods: We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell
surface EGFR expression by fluorescence-activated cell sorting (FACS), and EGFR ubiquitination and protein binding
by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines.
Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling.

Results: Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of
phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In
RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and
non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin
ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045), were also observed in RBE cells.

Conclusion: In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration
in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of
individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of
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Background

Cholangiocarcinoma is the second most common pri-
mary malignancy of the liver whose only therapeutic op-
tion is radical surgical resection or hepatectomy [1]. As
the 5-year overall survival rate with curative resection
(RO resection) is reported to be 30.4% for intrahepatic
cholangiocarcinoma [2], effective adjuvant therapy is
needed to improve disease prognosis. Molecular-targeted
treatment is superior to traditional chemotherapy
through its ability to selectively suppress cancer cells.
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Overexpression [3], gene amplification [4], and mutation
[5] of epidermal growth factor receptor (EGFR) have all
been associated with the tumorigenesis and progression
of cholangiocarcinoma, and thus EGFR and its molecular
transducers are thought to be ideal therapeutic targets
for cholangiocarcinoma treatment [6,7]. However, further
understanding of the mechanism of aberrant EGFR sig-
naling is needed to refine molecular targeted therapy due
to the limited response rate of cholangiocarcinoma to
EGFR-targeted therapy in clinical trial [8].

EGFR has important functions in cell proliferation,
survival, migration, and differentiation via the activa-
tion by several distinct ligands, which include EGF,
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transforming growth factor-alpha and heparin-binding
EGF [9]. The receptor stimulates numerous signal
transduction cascades, such as those for mitogen-acti-
vated protein kinase (MAPK), phosphoinositol kinase,
the anti-apoptotic kinase Akt, and several transcrip-
tional regulators [10]. Aberrant EGFR activity has
been shown to play a key role in the development
and growth of various types of cancer cells [11,12].
To date, several mechanisms involving abnormal acti-
vation of EGFR have been reported, including
increased production of ligands, increased levels of
EGFR protein, EGFR mutations giving rise to consti-
tutively active variants, defective down-regulation of
EGFR, and cross-talk with heterologous receptor sys-
tems [13].

Down-regulation of EGFR by endocytosis and degrad-
ation is the major negative regulatory mechanism of at-
tenuating EGFR signaling activation [14]. Upon ligand
binding, cell surface EGFR is endocytosed into the cyto-
sol and sequestered in a sorting/early endosome for ei-
ther recycling or degradation [15]. Ubiquitination
mediated by the E3 ubiquitin ligase Cbl is a key post-
translational protein modification in EGFR endocytosis
in porcine aortic endothelial (PAE), Hela, and laryngeal
carcinoma cell line Hep2 cells [16,17], as well as in EGFR
degradation in Chinese hamster ovary (CHO) and
human embryonic kidney (HEK) cell line 293 T cells
[18,19]. In a related report, Cbl mutation and reduced
EGFR ubiquitination inhibited early endosome fusion
and EGFR degradation in HEK 293 cells [20].

The present study demonstrated impaired degradation
and enhanced recycling to the plasma membrane of
EGFR under EGF stimulation in RBE cells. Since hypo-
phosphorylation of Tyr1045 and a diminished associ-
ation of c-Cbl and EGFR were considered as the re-
sponsible mechanisms, upregulation of Tyrl045
phosphorylation might be a useful alteration in EGFR-
targeted therapy.

Methods

Materials and antibodies

Human epidermal growth factor (hEGF) was purchased
from Roche Diagnostics GmbH (Mannheim, Germany).
Goat anti-EGFR polyclonal IgG (1005 G), mouse anti-
EGFR monoclonal IgG2 (528), mouse anti-Ub mono-
clonal IgGl (6 Cl1), rabbit anti-Cbl polyclonal IgG
(C-15), and mouse anti-LAMP-1 monoclonal IgG1l
(H4A3) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA). Mouse anti-B-actin monoclonal
antibody (AC-15) was purchased from Sigma Aldrich
(St. Louis, MO). Rabbit anti-phospho-EGF receptor
(Tyr1068) IgG (D7AS5), rabbit anti-phospho-EGF recep-
tor (Tyrl045) antibody, rabbit anti-p44/42 MAPK IgG
(137 F5), rabbit anti-phospho-p44/42 MAPK IgG
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(20 G11), and rabbit anti-EEA-1 IgG (C45B10) were
purchased from Cell Signaling Technology (Danvers,
MA). All oligonucleotides used in this study were
synthesized by Sigma Aldrich.

Cell culture and treatment

The immortalized human cholangiocyte MMNK-1 cell
line [21,22] was provided by the Department of Surgery
of Okayama University School of Medicine. The human
intrahepatic cholangiocarcinoma RBE cell line was pro-
vided by the Cell Resource Center of Tohoku University
(Sendai, Japan). Both cell lines were maintained in RPMI
1640 medium (Invitrogen, Tokyo, Japan) containing 10%
FBS supplemented with penicillin and streptomycin at
37°C in 5% CO,. For cell starving assays, 60—-80% conflu-
ent cell cultures were starved in RPMI 1640 medium
containing 0.1% FBS for 12—-16 hr before experiments.
To induce EGFR activation, cells were incubated with
EGF (100 ng/ml) in starving medium for the indicated
time intervals. For long term incubation, EGF was
renewed every 15 min [23]. For recycling inhibition,
monensin (Sigma Aldrich) treatment was performed as
described previously [24].

Immunoblotting

Cells were lysed with 1 ml of ice-cold lysis buffer [0.5%
Triton X-100, 50 mM Tris, pH7.5, 150 mM sodium
chloride, 1 mM EDTA, 1 tablet/10 ml of Complete Mini,
EDTA-free proteinase inhibitor cocktail, and 1 tablet/
10 ml of PhosStop phosphatase inhibitor cocktail (Roche
Diagnosis GmbH)]. Cell lysates were subjected to SDS-
PAGE and transferred to PVDF membranes. Bands were
scanned with a Canoscan 8400 F (Canon, Tokyo, Japan)
and the optical intensity was quantified by ImageJ soft-
ware (National Institutes of Health, Bethesda, MD).

Immunoprecipitation

Total cell lysates were incubated with anti-EGFR anti-
body (528) for 4 hr before further incubation with pro-
tein-G sepharose beads (Amersham Biosciences, NA,
UK) for 2 hr at 4°C. The immunoprecipitate was eluted
and subjected to SDS-PAGE and immunoblotting. Anti-
ubiquitin blotting was done as described previously [25].
Membranes were submerged in distilled water and auto-
claved for 30 min at 121°C before immunoblotting.

Immunofluorescence and confocal fluorescence
microscopy

Cells were seeded onto sterile glass coverslips and fixed
with 4% paraformaldehyde for 15 min before being
blocked and permeabilized in blocking solution (10%
normal goat serum and 0.3% Triton-X 100 in PBS). The
coverslips were then incubated with appropriate primary
and secondary antibodies for 1 hr at room temperature,
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respectively. Images were taken by confocal laser-scan-
ning microscopy with a Leica TCS SP2 (Leica Microsys-
tems, Heidelberg, Germany). Colocalization of EGFR
with EEA-1 or LAMP-1 was quantified using Image]
software and the Colocalization Highlighter plugin (P.
Bourdoncle, Institute Jacques Monod, Service Imagerie,
Paris, France) as described previously [26].

Flow cytometry

Live cell immunostaining and flow cytometry were per-
formed as described elsewhere [25]. All samples were
examined by immunostaining in duplicate using anti-
EGFR antibody (528) and Mouse IgG2 negative control
antibody (Dako, Carpinteria, CA). Cells were then incu-
bated with Alexa Fluor 488 goat anti mouse IgG second-
ary antibody for 30 min. Flow cytometry was performed
and analyzed with a FACS Calibur machine (Becton
Dickinson, Franklin Lakes, NJ) using CellQuest software
(Becton Dickinson). For each sample, the mean fluores-
cence intensity (MFI) value of the negative control was
subtracted from the MFI value of the anti-EGFR anti-
body to calculate the specific EGFR MFI staining.

Real-time PCR

Total cell RNA was extracted with an RNeasy Mini kit
(Qiagen, Hilden, Germany) and reverse transcribed to
c¢DNA with a Takara PrimeScript RT reagent kit (Takara
Bio, Shiga, Japan). Real-time PCR was performed with
Takara SYBR Premix Ex Taq (Takara Bio) using an
Eppendorf Mastercycler ep realplex (Eppendorf, Tokyo,
Japan). Expression of B-actin in each sample was quanti-
fied for standardization of RNA amount. Primers used
for human EGFR and B-actin are described elsewhere
[27] and are listed in Table 1.

RNA interference analysis

Rablla was depleted with siRNA oligonucleotides as
described previously [28]. siRNA was transfected into
RBE cells using Lipofectamine 2000 (Life technologies,
Gaithersburg, MD). Transfected cells were incubated for
another 48 hr before immunofluorescence analysis.
Rablla expression in mock- and siRNA-transfected RBE
cells was quantified by real-time PCR.

Mutation analysis of the EGFR gene

For mutation analysis of the EGFR gene, direct cDNA
sequencing following PCR amplification was conducted
using a BigDye Terminator v3.1 Cycle sequencing kit
(Applied Biosystems, Foster City, CA) and was analyzed
with an ABI Prism 3100 Sequencer (Applied Biosystems).
The primers for PCR amplification are listed in
Table 1.
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Table 1 Primers for PCR, real-time PCR and
Oligonucleotides for Rab11a gene silence

EGFR exon 18 ~ 21 Sense CCtaagatcccgtccatcgec
Antisense cactttgcctecttctgcatggta

EGFR exon 22 ~ 27 Sense ttgggctggccaaactgctgg
Antisense caggcactgggaggaaggtgt

EGFR exon 28 Sense ccacaggcgccttgactgagga
Antisense gcaacttcccaaaatgtgeccg
Sense No.1 agtcgggctctggaggaa
Antisense No.1 ggcagttctectctecg
Sense No.2 ctgtgcaacgtggagagc

EGFR Antisense No.2  ccatctcatagctgtcgg

exon 2 ~ 16 (5 pairs) Sense No.3 Cccaccacgtaccagatg
Antisense No.3  ccatgttgcttggtcctgec
Sense No4 gctgattcaggcttggec
Antisense No.4  ctcaccctccagaagcttge
Sense No.5 ggtctgccatgecttgtg
Antisense No.5  ggcccattcgttggacag

EGFR (real-time PCR) Sense gcacctacggatgcactgg
Antisense ggcgatggacgggatctta

B-actin (real-time PCR)  Sense acgtggacatccgcaaagac
Antisense caagaaagggtgtaacgcaacta

Rab11a (real-time PCR)  Sense ggcacagatatgggacacagc
Antisense aaggcacctacagctccacg

Rab11a siRNA Sense aaugucagacagacgcgaaaatt
Antisense uuuucgcgucugucugacauutt

Statistical analysis

Results were expressed as mean + standard error of the
mean (mean +SE). Differences in results were tested
with a two-tailed Mann—Whitney U test (StatView,
Cary, NC). A p<0.05 was considered to be statistically
significant.

Results

EGFR degradation was impaired upon EGF stimulation in
RBE cells

We first assessed EGF-induced degradation of EGFR
in RBE and MMNK-1 cells by Western blotting
(Figure 1A). EGFR degradation was impaired in RBE
cells compared with MMNK-1 cells (Figure 1A, B).
After 1 hr of EGF stimulation, the expression of EGFR
was 86.3 £2.2% of that of baseline in RBE cells, as com-
pared with 23.1+5.6% in MMNK-1 cells (p<0.05,
n =4, Figure 1B). After 2 hr of EGF stimulation, expres-
sion of EGFR was 68.2+9.2% in RBE cells versus only
11.1 £1.4% in MMNK-1 cells (p < 0.05, n=4, Figure 1B).
We also evaluated EGFR gene expression in RBE and
MMNK-1 cells before and after EGF stimulation, which
revealed no significant differences between these two
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Figure 1 Epidermal growth factor receptor (EGFR) degradation
upon EGF stimulation in RBE and MMNK-1 cells. (A) EGFR
expression before and after 0.5, 1, and 2 hr of EGF treatment as
detected by Western blotting. (B) Quantification of EGFR expression
after 1 and 2 hr of EGF stimulation in RBE cells (closed circles) and
MMNK-1 cells (open circles) from Western blotting. Values are
standardized to the optical intensity of 3-actin and presented as the
percentage value of the EGFR expression value of RBE or MMNK-1
cells without EGF stimulation. *p < 0.05. (C) EGFR mRNA expression
in RBE cells (closed circles) and MMNK-1 cells (open circles) before
and after 1 and 2 hr of EGF stimulation as analyzed by RT-PCR.
Values are standardized to B-actin mRNA expression and presented
as the relative value to EGFR mRNA expression of RBE cells without
EGF stimulation. All results shown are representative of four
independent experiments.

cell lines before or after 1 or 2 hr of EGF stimulation
(Figure 1C).

EGFR downstream signaling was sustained upon EGF
stimulation in RBE cells

To investigate the impact of impaired degradation of
EGFR on EGFR-signaled pathways, we studied the ex-
pression of phosphorylated EGFR (pY1068) and down-
stream phosphorylated p44/42 MAPK (p-p44/42 MAPK)
(Figure 2A). The expression of pY1068 persisted in RBE
cells while a marked decrease of pEGFR was witnessed
in MMNK-1 cells following 2 hr of EGF stimulation
(7.2+0.3 vs. 2.6 + 0.4 folds of pY1068/total EGFR of RBE
cells before EGF stimulation)(p < 0.05, n =3, Figure 2B).
Likewise, p-p44/42 MAPK persisted in RBE cells, but
decreased significantly in MMNK-1 cells after 1 (2.8 + 0.4
vs. 1.7 +0.2 folds of p-p44/42 MAPK/total p44/42MAPK
of RBE cells before EGF stimulation) and 2 hr (2.9+0.5
vs. 0.8 £ 0.0 folds of p-p44/42 MAPK/total p44/42MAPK
of RBE cells before EGF stimulation) (p <0.05, n=3,
Figure 2B) of EGF stimulation.
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Figure 2 Activation of EGFR signaling pathways upon EGF
stimulation in RBE and MMNK-1 cells. (A) Expression of pY1068,
total EGFR, phospho-p44/42 MAPK (p-p44/42 MAPK), and total p44/
42 MAPK before and after 0.5, 1 and 2 hr of EGF stimulation in RBE
cells (closed circles) and MMNK-1 cells (open circles) as detected by
Western blotting. (B) Left: quantification of pY1068 expression
normalized to total EGFR. All values are presented as the relative
value to the value of pY1068/total EGFR in RBE cells without EGF
stimulation. Right: quantification of p-p44/42 MAPK expression
normalized to total p44/42 MAPK. All values are presented as the
relative value to the value of p-p44/42 MAPK/total p44/42 MAPK in
RBE cells without EGF stimulation. *p < 0.05. All results shown are
representative of three independent experiments.

Post-endocytic trafficking of EGFR was blocked at the
early endosome stage in RBE cells

We next investigated the route of endocytosed EGFR
for trafficking to lysosomes and degradation by immu-
nostaining for EGFR and Early Endosome Antigen
1 (EEA-1), a marker of early/sorting endosomes
(Figure 3A), or for EGFR and Lysosomal-Associated
Membrane Protein 1 (LAMP-1), a lysosome marker
(Figure 3B). The colocalization rate was calculated as
the percentage of the integrated density of endosome/
lysosome marker-colocalizing EGFR compared with that
of total EGFR (% total EGFR) (Figure 3C). Double stain-
ing of EGFR and EEA-1 showed that EGFR remained
colocalized with EEA-1 in RBE cells, but not in
MMNK-1 cells, after 30 min of EGF stimulation
(Figure 3A). Colocalization rate calculations confirmed
that EEA-1-colocalizing EGFR was greater in RBE cells
than in MMNK-1 cells after both 30 min (10.7 +2.2%
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Figure 3 Post-endocytic trafficking of EGFR in RBE and MMNK-1 cells. (A) Distribution of EGFR (Alexa Fluor 488) and Early endosome antigen 1
(EEA-1) (Alexa Fluor 555) in RBE and MMNK-1 cells before and after 0.5 and 1 hr of EGF stimulation as obtained by immunofluorescence. White arrows
show points of colocalization. Scale bars: 10 um. (B) Distribution of EGFR (Alexa Fluor 555) and Lysosomal-associated membrane protein-1 (LAMP-1)
(Alexa Fluor 488) in RBE and MMNK-1 cells before and after 0.5 and 1 hr of EGF stimulation as obtained by immunofluorescence. White arrows show
points of colocalization. Scale bars: 10 um. (C) Left: colocalization rate between EGFR and EEA-1 in RBE cells (black columns) and MMNK-1 cells (white
columns) before and after 0.5, 1, and 2 hr of EGF stimulation. Right: colocalization rate between EGFR and LAMP-1 in RBE cells (black columns) and
MMNK-1 cells (white columns) before and after 0.5, 1, and 2 hr of EGF stimulation. Values are the percentage of the integrated density of EEA-1 or
LAMP-1-colocalizing EGFR compared to that of total EGFR. *p < 0.05; **p < 0.01; ***p < 0.001. n= 10 fields. Three independent experiments were

performed.
. J

vs. 44+0.9% total EGFR) (p <0.05, n=10, Figure 3C, Double staining of EGFR and LAMP-1 showed that
left) and 1 hr (14.4+£2.0% vs. 1.2+0.2% total EGFR) (p EGEFR did not colocalize with LAMP-1 in RBE cells, but
<0.01, n=10, Figure 3C, left) of EGF stimulation. rather aggregated near the nucleus and colocalized with
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LAMP-1 in MMNK-1 cells after 30 min of EGF stimu-
lation (Figure 3B). Colocalization rate calculations veri-
fied that LAMP-1-colocalizing EGFR was markedly less
in RBE cells than in MMNK-1 cells after 30 min
(1.3+£0.3% vs. 8.9+1.9% total EGFR) (p <0.001, n=10,
Figure 3C, right) and 1 hr (7.5+0.7% vs. 17.5+2.0%
total EGFR) (p <0.001, n =10, Figure 3C, right) of EGF
stimulation. These results demonstrated that whereas
EGFR was retained in early endosomes upon EGF
stimulation in RBE cells, it was sorted to lysosomes
quickly in MMNK-1 cells.

Recycling of EGFR was enhanced in RBE cells

As endocytosed EGFR were not sorted to lysosomes
following sequestration in early endosomes in RBE
cells, we hypothesized that non-degraded EGFR might
undergo recycling back to the cell membrane after
this trafficking block. We first quantified cell surface
EGFR before and after EGF stimulation. Before EGF
stimulation, the amount of cell surface EGFR was
comparable between RBE and MMNK-1 cells. After
1 hr of EGF stimulation, the amount of EGFR on the
surface of RBE cells (41.1+2.2MFI) was approxi-
mately three times that on MMNK-1 cells
(14.6 £ 1.2MFI) (p<0.05, n=4, Figure 4A, left). We
then investigated if the excessive EGFR on RBE cell
surfaces was caused either by slow endocytosis or
enhanced recycling by employing the recycling in-
hibitor monensin. The percentage values of cell sur-
face EGFR after EGF stimulation compared to those
beforehand (% control) were compared between
groups with or without monensin treatment for both
cell lines. In RBE cells, monensin treatment signifi-
cantly reduced cell surface EGFR expression
(15.1+£0.8% vs. 28.3+1.8% control) after 1 hr of
EGF stimulation (p <0.05, n=4, Figure 4A, middle).
However, no difference was observed between
groups with or without monensin treatment in
MMNK-1 cells (Figure 4A, right). These results indi-
cated that approximately half of the excess EGFR
expression on RBE cell surfaces was due to abnor-
mal recycling. Immunofluorescent staining of EGFR
and EEA-1 showed that monensin treatment also
retained more EGFR in early endosomes in RBE
cells (Figure 4B). Immunofluorescent staining of
EGFR and EEA-1 or LAMP-1 demonstrated that
Rablla depletion could suppress cell surface EGFR
expression and maintain more EGFR in the early
endosome of RBE cells (Figure 4C, lower panel,
upper right). Rablla depletion could not promote
EGEFR sorting into late endosome/lysosome in RBE
cells (Figure 4C, lower panel, lower right), hence
EGFR degradation was not enhanced by this treat-
ment (data not shown).
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EGFR was hypo-ubiquitinated, EGFR-c-Cbl association was
impaired, and Tyr1045 was hypo-phosphorylated upon
EGF stimulation in RBE cells

To explore the mechanism of impaired EGFR sorting for
degradation in lysosomes in RBE cells, we compared
levels of EGFR ubiquitination following 3, 10, and
15 min of EGF stimulation between RBE and MMNK-1
cells. Ubiquitination of EGFR in RBE cells remained low
during the 15-min time course, whereas in MMNK-1
cells, ubiquitinated EGFR peaked at 3 min after EGF
stimulation, and then gradually decreased (Figure 5A, B).
The difference of EGFR ubiquitination was most remark-
able after 3 min of EGF stimulation between the cell
lines (2.4+0.5 vs. 8.1+1.4) (p<0.05 n=4, Figure 5B).
Also, we studied the association between EGFR and c-
Cbl before and after EGF stimulation. C-Cbl associated
with EGFR after 3, 10 and 15 min of EGF stimulation in
MMNK-1 cells although this phenomenon was not
observed in RBE cells (Figure 5A). When we studied the
expression of phosphorylated Tyr1045 (pY1045) and
total ¢-Cbl after 3, 10 and 15 min of EGF stimulation in
both cell lines, we uncovered that phosphorylation of
Tyr1045 was impaired in RBE cells but intact in
MMNEK-1 cells (Figure 5C).

Discussion

The present study indicated that gene and protein ex-
pression levels of EGFR before EGF stimulation did not
differ significantly between RBE and MMNK-1 cell lines.
However, whereas EGFR protein expression was mark-
edly down-regulated under sustained EGF stimulation in
MMNK-1 cells, a considerable amount of endocytosed
EGFR was retained in early endosomes in RBE cells.
EGFR over-expression on the plasma membrane was
observed in this cell line as well.

Clathrin-coated vesicles containing EGF-EGFR com-
plexes release their coat and fuse with early endosomes
quickly following endocytosis. Since the EGF-EGEFR com-
plexes do not dissociate in the early endosome, EGFR
remains phosphorylated and associated with Cbl [29].
Cbl mediates the interaction between EGFR and endoso-
mal sorting complex required for transport (ESCRT) ma-
chinery and promotes EGFR sorting in multi-vesicular
bodies (MVB) [30]. An early dissociation of the EGF-
EGFR complex because of abnormally low pH in endo-
somes or an unstable association between EGF and
EGFR-HER2 heterodimers enhances the recycling of un-
occupied EGFR [10]. In our study, EGFR was retained in
early endosomes and kept phosphorylated at Tyr1068 in
RBE cells. Thus, early dissociation of the EGF-EGFR
complex was not considered to be the mechanism of
impaired degradation and enhanced recycling of EGFR
in RBE cells.
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Cbl-mediated ubiquitination is critical for EGFR early
endosome exit, lysosome sorting, and degradation
[18,19]. Since low levels of EGFR ubiquitination and
poor Cbl association were observed in RBE cells, we con-
sidered these factors to be attributed to the dramatically
diminished EGFR degradation in RBE cells. Reduced Cbl
association and/or impaired EGFR ubiquitination could
be linked with a Cbl mutation in the RING Finger do-
main, especially cysteine 381 (C381), which is the first

cysteine of the C3HC, zinc finger motif [31], or at the
RING finger C-terminal flank, especially valine 431
(V431) and phenylalanine 434 (F434) [20]. Apart from
mutations in c-Cbl, the loss of the Cbl docking site on
EGER (pY1068 and pY1045) for numerous reasons, such
as EGFR mutations in the tyrosine kinase domain [32,33]
or mutations at ubiquitination sites of EGFR [34], could
also lead to reduced Cbl association and/or impaired
EGFR ubiquitination. In RBE cells, no mutations at
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Figure 5 EGFR ubiquitination, c-CbI/EGFR association, and
pY1045 expression upon EGF stimulation in RBE and MMNK-1
cells. (A) EGFR ubiquitination and EGFR-associated c-Cbl before and
after 3, 10, and 15 min of EGF stimulation. (B) Quantification of EGFR
ubiquitination from Western blotting in RBE cells (closed circles) and
MMNK-1 cells (open circles). Values are standardized to the optical
intensity of EGFR and presented as values relative to that of
ubiquitinated EGFR/total EGFR in RBE or MMNK-1 cells before EGF
stimulation. *p < 0.05. (C) Expression of pY1045 and c-Chl in total
cell lysates before and after 3, 10, and 15 min of EGF stimulation. All
results are representative of three or more independent experiments.

. J

C381, V431 or F434 of Cbl, the tyrosine kinase domain
or Tyr1068 or 1045 residues of EGER, or of the extracel-
lular domain that binds to ligands (exon 2~16) [35]
were identified. Meanwhile, we observed that transfected
wtEGFR behaved similarly to endogenous EGFR; Myc-
tagged WtEGFR in pcDNA3.1, a kind gift from Dr.
Tokuzou Arao [36], was transfected into RBE cells and
revealed that Myc-tagged wtEGFR was retained in early
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endosomes and was not sorted into late endosomes/lyso-
somes (data not shown). This verified that endogenous
EGFR was not the reason for impaired EGFR degrad-
ation in RBE cells. However, unlike Tyr1068 that could
be phosphorylated normally, Tyr1045 could not be phos-
phorylated following EGF stimulation. Combining this
with the data from Grevdal et al. [37], who described
that a direct association of c-Cbl with EGFR pY1045 was
important for MVB sorting of EGFR, we surmised that
aberrant EGFR sorting into lysosomes in RBE cells was
caused by an impaired association between c-Cbl and
EGER through pY1045.

Hypophosphorylation of Tyr1045 has been reported in
non-small cell lung cancers (NSCLCs) bearing EGFR
mutations in the tyrosine kinase domain [33] and in an
EGFRVIII variant bearing an internal in-frame deletion in
the extracellular domain [38]. However, no EGFR muta-
tion was identified in our RBE cells, nor was Tyr1045 of
the transfected wtEGFR seen to be phosphorylated (data
not shown). Willmarth et al. [39] reported similar find-
ings caused by stimulation with one member of the EGF
family, Amphiregulin (AR), in SUM149 human breast
cancer cells. In their study, AR activation of EGFR
resulted in increased steady-state levels of the receptor
that accumulated at the cell surface as a result of
decreased phosphorylation of Tyr1045 on EGFR (wild
type) and a resultant failure to ubiquitinate [39]. How-
ever, the mechanism of Tyr1045 hypophosporylation
without mutation as in RBE cells remains unclear. Apart
from an abnormality of EGFR or its ligand, a diminished
EGF-EGFR interaction affinity and reduced receptor-
associated tyrosine kinase activity caused by phosphoryl-
ation of EGFR threonine residues through protein kinase
C (PKC)-dependent [40] or independent pathways [41]
may be speculated as the mechanism of Tyr1045 hypo-
phosphorylation in RBE cells. Uncovering the mechan-
ism of Tyrl045 hypophosphorylation is of great
importance in restoring EGFR degradation and nega-
tively controlling EGFR over-activation in RBE cells.

Lastly, we employed two methods to verify the role of
EGER recycling in cell membrane EGFR over-expression:
monensin treatment [24,42] and Rablla protein deple-
tion [43]. Rab proteins regulate various steps in recyc-
ling: Rab4 regulates fast/direct recycling from the early
endosome to the cell membrane [44], and Rablla regu-
lates recycling from the deeper perinuclear recycling
compartment [43]. Monensin treatment blocks recycling
from both the early endosome and perinuclear recycling
compartment [24]. Suppressed cell surface EGFR expres-
sion by monensin treatment or Rablla depletion indi-
cated that enhanced recycling occurred at least in the
perinuclear recycling compartment in RBE cells with
EGF stimulation. Furthermore, early endosome retain-
ment of EGFR without recycling inhibition showed that
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recycling in RBE cells did not significantly take place
through fast/direct recycling from early endosomes.

Conclusions

Recent strategies examining EGFR-targeted therapy of
cholangiocarcinoma have focused on EGFR tyrosine
kinases related to the signaling of mutated and over-
expressed EGFR. Our results indicated significantly
impaired EGFR degradation associated with hypo-phos-
phorylation of Tyr1045 and enhanced recycling of EGFR
to the cell membrane in RBE cells. In cholangiocarci-
noma cell types resembling RBE, up-regulation of EGFR
Tyr1045 phosphorylation may be a potentially useful
molecular alteration in EGFR-targeted therapy.
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