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Squamocin modulates histone H3
phosphorylation levels and induces G1 phase
arrest and apoptosis in cancer cells
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Abstract

Background: Histone modifications in tumorigenesis are increasingly recognized as important epigenetic factors
leading to cancer. Increased phosphorylation levels of histone H3 as a result of aurora B and pMSK1 overexpression
were observed in various tumors. We selected aurora B and MSK1 as representatives for testing various compounds
and drugs, and found that squamocin, a bis-tetrahydrofuran annonaceous acetogenin, exerted a potent effect on
histone H3 phosphorylation.

Methods: GBM8401, Huh-7, and SW620 cells were incubated with 15, 30, and 60 μM squamocin for 24 h. The
expressions of mRNA and proteins were analyzed by qRT-PCR and Western blotting, respectively. The cell viability
was determined by an MTT assay. Cell cycle distribution and apoptotic cells were analyzed by flow cytometry.

Results: Our results showed that squamocin inhibited the proliferation of GBM8401, Huh-7, and SW620 cells,
arrested the cell cycle at the G1 phase, and activated both intrinsic and extrinsic pathways to apoptosis. In addition,
we demonstrated that squamocin had the ability to modulate the phosphorylation levels of H3S10 (H3S10p) and
H3S28 (H3S28p) in association with the downregulation of aurora B and pMSK1 expressions.

Conclusions: This study is the first to show that squamocin affects epigenetic alterations by modulating histone
H3 phosphorylation at S10 and S28, providing a novel view of the antitumor mechanism of squamocin.

Background
Cancer is generally viewed as a set of diseases driven by
genetic and epigenetic alterations. Epigenetics include
the interrelated processes of DNA methylation, genomic
imprinting, and histone modifications, and epigenetic
aberrations may result in human cancers [1-4]. In the
case of histone modifications, covalent modifications of
the N-terminal tail domains, such as acetylation, methy-
lation, and phosphorylation, are recognized as crucial
epigenetic marks that modulate gene expression and
genomic function. Aberrant histone modifications may
be caused by improper activities of histone-modifying
enzymes, leading to inappropriate expression of tumori-
genesis-related genes [5,6].

In mammalian cells, phosphorylation of histone H3 is
correlated with processes of chromosome condensation
during mitosis and transcription. In addition, H3 phos-
phorylation occurs at two serine residues, S10 and S28,
which can be mediated by histone kinases including
mitogen- and stress-activated protein kinase 1 (MSK1)
and aurora B kinase [7-9]. Recent studies demonstrated
that phosphorylation of histone H3 at Ser10 (H3S10p) is
critical during neoplastic transformation, and the steady
state level of H3S10p is elevated in oncogene-trans-
formed cells and human tumor cell lines [10-13]. More-
over, increased phosphorylation levels of H3S10
resulting from aurora B and pMSK1 overexpression is a
precipitating factor in chromosome instability and may
play a role in carcinogenesis [14,15]. It was suggested
that regulating phosphorylation levels of histone H3
may be a possible target for cancer treatment.
Under the assumption that targeting histone H3 phos-

phorylation by histone-modifying enzymes may have
therapeutic potential for cancer treatment, we have been
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searching for small molecules that modulate enzymes
involved in histone H3 phosphorylation in human
cancer cells. Choosing aurora B and MSK1 as represen-
tatives to test various compounds and drugs, we found
that squamocin (Figure 1) exerted a potent effect on his-
tone H3 phosphorylation. We further used different
cancer cell lines such as GBM8401, Huh-7, and SW620
to evaluate whether it has similar effects on different
caners. We analyzed changes in the cell cycle and apop-
tosis, as well as histone H3 phosphorylation levels in
association with expressions of these histone-modifying
enzymes, in an effort to investigate the possible antitu-
mor mechanism of squamocin.

Methods
Materials and Chemicals
Dulbecco’s modified Eagle medium (DMEM), fetal
bovine serum (FBS), trypan blue, penicillin G, and strep-
tomycin were obtained from GIBCO BRL (Gaithersburg,
MD, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT), dimethyl sulfoxide (DMSO),
ribonuclease (RNase), and propidium iodide (PI) were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
An Annexin V-FITC Staining Kit was purchased from
Strong Biotech (Taipei, Taiwan). Antibodies against aur-
ora B, H3S10p, and H3S28p were purchased from
Abcam (Cambridge, UK). Antibodies against pERK,
pMSK1, caspase-3, caspase-8, caspase-9, and GAPDH
were obtained from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Anti-PARP was purchased from
Upstate Biotechnology (Charlottesville, VA, USA). Anti-
mouse and anti-rabbit immunoglobulin G (IgG) peroxi-
dase-conjugated secondary antibodies were purchased
from Pierce (Rockford, IL, USA). Polyvinylidene difluor-
ide (PVDF) membranes and an enhanced chemilumines-
cence (ECL) Western blotting detection kit were
obtained from Amersham Life Science (Buckingham-
shire, UK).

Preparation of the squamocin solution
Squamocin was provided by Prof. Yang-Chang Wu,
Graduate Institute of Natural Products, Kaohsiung Med-
ical University, Kaohsiung, Taiwan. The structure of this
compound was verified by means of mass spectrometry

and spectroscopic techniques [16]. Squamocin was dis-
solved in DMSO (< 0.01%) and made up immediately
prior to the experiments.

Cell culture
The GBM8401, Huh-7, and SW620 cell lines were
obtained from American Type Culture Collection
(ATCC, Manassas, VA, USA), and are derived from
brain, liver and colon cancers, respectively. Cells were
maintained in DMEM which was supplemented with
10% FBS, 2 mM glutamine, and antibiotics (100 U/ml
penicillin and 100 μg/ml streptomycin) at 37°C in a
humidified atmosphere of 5% CO2.

Cell growth inhibition assay
Cell viability was determined by an MTT assay, and
results are presented as a percentage of the control. For
the MTT assay, 10 μl of MTT (5 mg/ml) dye was
directly added to the cell cultures. The medium was
removed 2 h later, and cells were lysed with 100 μl of
DMSO. The absorbance at 570 nm was read on a
microplate reader.

Flow cytometry
Externalization of phosphatidylserine (PS) and the mem-
brane integrity were quantified using an Annexin
V-FITC Staining Kit. Cells were washed twice with
phosphate-buffered saline (PBS), and collected by centri-
fugation at 200 × g for 5 min at 25°C. Cells were resus-
pended in 100 μl of binding buffer and labeled with 2 μl
of annexin V-FITC and PI for 15 min at 25°C. After
labeling, cells were resuspended in 500 μl of binding
buffer and detected on a flow cytometer using 488-nm
excitation and a 515-nm band-pass filter for fluoresce
detection and a filter > 600 nm for PI detection. To ana-
lyze the cell cycle distribution, cells were washed twice
with PBS, collected by centrifugation at 200 × g for
5 min at 4°C, and fixed in 70% (v/v) ethanol at 4°C for
30 min. After fixation, cells were treated with 0.2 ml of
the DNA extraction buffer (0.2 M Na2HPO4 and 0.1 M
citric acid buffer; pH 7.8) for 30 min, centrifuged, and
then resuspended in 1 ml of PI staining buffer (0.1%
TritonX-100, 100 μg/ml RNase A, and 500 μg/ml PI in
PBS) at 37°C for 30 min. Cells were detected using a

Figure 1 Structure of squamocin. Squamocin is characterized by a long alkyl chain bearing a terminal a, b-unsaturated g-lactone ring, two
tetrahydrofuran rings, and some oxygenated substitutes along the chain.
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flow cytometer and analyzed by FACScan and the Cell
Quest program (Becton Dickinson, San Jose, CA, USA).

Western blot analysis
Total proteins were extracted as previously described
[17]. Proteins were extracted from the experimental and
control samples and analyzed by sodium dodecylsulfate
polyacrylamide gel electrophoresis (SDS-PAGE) as fol-
lows: after electrophoresis, proteins were transferred
from the gel onto PVDF membranes. The membranes
were blocked with a skim milk solution (5% skim milk
in PBS) and agitated for 30 min at room temperature.
Membranes were exposed to the primary antibody and
agitated for 1 h at room temperature before being
washed three times for 10-min periods with PBST
(0.05% Tween 20 in PBS), and then incubated for 1 h
with the secondary antibody at a 1:2500 dilution. After
incubation with the antibody, the membranes were
washed three times with PBST for 10 min each and
then immersed in an ECL solution (combining solutions
A and B of the ECL kit in a 1:1 ratio) with agitation for
1 min. After washing, the blots were developed by ECL.

Quantitative real-time reverse-transcriptase polymerase
chain reaction (qRT-PCR)
RNA was isolated from cultured cells, and the analysis was
performed as previously described [18]. The PCR was per-
formed in a final volume of 20 μl using a LightCycler
instrument (Roche Diagnostics) according to the manufac-
turer’s recommendations. The amounts of complementary
(c)DNA were normalized to the housekeeping gene,
GAPDH, to calculate the relative expressions of aurora B
and MSK1 RNA (Table 1). Primers used to detect these
genes were designed using ProbeFinder software http://
www.roche.com and were synthesized by custom oligonu-
cleotide synthesis (Genomics, Taipei, Taiwan). The qRT-
PCR cycling parameters were set as follows: 40 cycles of
95°C for 10 s (denaturation), followed by 60°C for 30 s
(annealing), and 72°C for 1 s (extension).

Statistical analysis
Results from multiple experiments are expressed as the
mean ± standard error. The difference between the treat-
ment and control groups was analyzed by Student’s t-test.
A probability (p) value of < 0.05 was considered significant.

Results
Squamocin decreased aurora B and pMSK1 RNA and
protein expression levels
Aurora B and MSK1 are thought to be involved in chro-
matin organization, gene expression, and carcinogenesis
[14,15]. More than 20 compounds with cytotoxic effects
were screened, and we found a compound, squamocin,
isolated from several genera of the plant family Annona-
ceae, which decreased (m)RNA expression levels of aur-
ora B and MSK1 in cancer cells. The expressions of
aurora B and MSK1 were significantly downregulated in
squamocin-treated GBM8401, Huh-7, and SW620 cells
compared to the control (Figure 2). Similarly, squamocin
treatment decreased the protein expression levels of aur-
ora B and phosphorylated MSK1 (pMSK1) (Figure 3).
These results imply that squamocin regulates aurora B
and MSK1 activities at the transcriptional and transla-
tion levels.

Squamocin downregulated phosphorylation levels of
histone H3 at Ser10 and Ser28
In eukaryotes, aurora B and MSK1 are linked to the phos-
phorylation of H3S10 and H3S28 [7-9]. In order to investi-
gate the effects of squamocin on H3S10p and H3S28p,
cells were treated with squamocin for 24 h, and the pro-
tein expression levels were analyzed by Western blotting.
The results showed that decreased H3S10p and H3S28p
protein expression levels were detected in squamocin-trea-
ted cells (Figure 3). Our experiment revealed that squamo-
cin treatment decreased phosphorylation of histone
H3S10 and H3S28, as well as caused declines in the pro-
tein and RNA expression levels of aurora B and pMSK1.
The modulation of H3S10 and H3S28 phosphorylation by
aurora B and/or pMSK1 indicates that squamocin prob-
ably decreased the phosphorylation of H3S10 and H3S28
by downregulating aurora B and pMSK1 in cancer cells.

Effects of squamocin on cell viability
The growth-inhibitory activity of squamocin was
assessed by an MTT assay. GBM8401, Huh-7, and
SW620 cells were treated with different concentrations
(15~120 μM) of squamocin for 24 h. The results showed
that squamocin-treated cancer cells exhibited significant
loss of viability in dose-dependent manners (Figure 4).
The 50% inhibitory concentrations (IC50) of GBM8401,
Huh-7, and SW620 cells were 46.1, 39.4, and 40.4 μM,
respectively.

Squamocin arrested the cell cycle at the G1 phase and
induced apoptosis
To further evaluate the potential relevance of histone H3
phosphorylation in cancer therapy, we examined the
effects of squamocin on cell growth and viability. Cells

Table 1 Information about the primers and probes used
in qRT-PCR

Gene Forward primer Reverse primer Probe

aurora B attgctgacttcggctggt gtccagggtgccacacat 69

GAPDH agccacatcgctcagacac gcccaatacgaccaaatcc 60

MSK1 tggtgctgacagattttggt caaaaggaatatgctctttcagtttc 5
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were treated with squamocin for 24 h, and the cell cycle
distribution and apoptosis were measured by a flow cyto-
metric analysis. Squamocin treatment significantly
increased the population of G1 phase cells (Figure 5).
Also, high levels of apoptosis were detected in squamo-
cin-treated cells (Figure 6). As shown in Figure 5, treat-
ment of cells with 0, 15, 30, and 60 μM of squamocin
resulted in G1 phase accumulation of cells corresponding
to 37.8%, 46.7%, 60.6% and 56.3%, respectively in
GBM841 cells (Figure 5A), 41%, 59.7%, 53.6%, and 54.5%,
respectively in Huh-7 cells (Figure 5B), and 53.2%, 64.9%,
59.1%, 54.5%, respectively in SW620 cells (Figure 5C).
Moreover, squamocin-treated cells were stained with
propidium iodide (PI) and annexin V to determine the
apoptotic cells. Cells were differentiated among viable
(annexin V, PI double negative), early-apoptotic (annexin
V positive, PI negative) and late-apoptotic (annexin V, PI
double positive) cells. Treatment of cells with 0, 15, 30,
and 60 μM of squamocin increased the percentage of
early apoptosis from 0.7% to 14.1%, 4.3%, and 5.3%,

respectively and late apoptosis from 4.1% to 5.5%, 21.9%,
and 49%, respectively in GBM8401 cells (Figure 6A),
early apoptosis from 1.8% to 15.1%, 21%, and 7.6%,
respectively and late apoptosis from 3.0% to 8.6%, 12.1%,
and 62.9%, respectively in Huh-7 cells (Figure 6B), and
early apoptosis from 3.0% to 21.2%, 20.1%, and 22.8%,
respectively and late apoptosis from 1.2% to 2.4%, 20.2%,
and 36.9%, respectively in SW620 cells (Figure 6C).
Further, we extended our study to apoptosis-associated
molecules and found that increasing levels of caspase-3,
-8, and -9 activities and cleavage of poly ADP-ribose
polymerase (PARP) were observed in squamocin-
induced apoptosis (Figure 7). From the results, it is evi-
dent that squamocin affected cell cycle progression and
apoptosis.

Effects of squamocin on mitogen-activated protein kinase
(MAPK)
The MAPK signaling pathway is implicated in a wide
range of cellular functions, including cell proliferation,

Figure 3 Downregulation of aurora B, pMSK1, H3S10p, and H3S28p protein expression levels was observed with squamocin
treatment. Cells were incubated with 15, 30, and 60 μM squamocin for 24 h. Proteins were extracted and analyzed by Western blotting. GAPDH
was used as a loading control. (A) GBM841 cells. (B) Huh-7 cells. (C) SW620 cells. Data are representative of three independent experiments.

Figure 2 Squamocin decreased expression levels of RNA of aurora B and MSK1. GBM841, Huh-7 and SW620 cells were incubated with 30
and 60 μM squamocin for 24 h. mRNA was extracted and detected by qRT-PCR. Data represent fold change versus controls, and values were
normalized to GAPDH. Data are the mean of three independent experiments. *p < 0.05, compared to the control.
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differentiation, survival, and apoptosis [19]. To assess
whether activation of the MAPK signaling pathway is
involved in squamocin-induced apoptosis, we investi-
gated the activities of MAPK. The results showed that
squamocin treatment significantly decreased ERK

phosphorylation (pERK) levels and increased JNK phos-
phorylation (pJNK) levels (Figure 7). It was determined
that activation of JNK affects members of the Bcl-2
family and activates caspases-3, -8, and -9 which results
in apoptosis, whereas ERK is connected to cell survival

Figure 5 Squamocin induced cell cycle arrest at the G1 phase. Cells were treated with 15, 30, and 60 μM squamocin for 24 h, and then cells
were stained with propidium iodide (PI) and analyzed for DNA content by flow cytometry. G1, S, and G2/M indicate cell phase. Cells without
squamocin treatment served as a control. (A) GBM841 cells. (B) Huh-7 cells. (C) SW620 cells. Data are the mean of three independent
experiments. * p < 0.05, compared to the control.

Figure 4 Inhibition of cancer cell growth by squamocin. GBM8401, Huh-7, and SW620 cells were treated with the indicated concentrations
of squamocin, and cell viability was determined by an MTT assay. Data are the mean of three independent experiments. * p < 0.05, compared
to the control.
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[20,21] Our results indicate that inhibition of ERK and
activation of JNK may participate in squamocin-induced
apoptosis.

Discussion
Annonaceous acetogenins are highly neurotoxic mole-
cules and have been considered as new antitumor agents
found in the plant family, the Annonaceae [22-24].
Extensive studies on annonaceous acetogenins indicated
that these naturally occurring compounds possess a
broad range of biological activities, including anticancer,
antiparasitic, insecticidal, and immunosuppressive effects
[25,26]. On the other hand, recent studies demonstrated
that annonaceous acetogenins can be converted to activ-
ity-based probes for chemical proteomics. These probes
were able to identify new putative targets including
mitochondrial, cytosolic, and reticulum associated
enzymes [27,28]. Squamocin, an annonaceous aceto-
genin, is a major component of various genera of the
Annonaceae. Our previous studies showed that squamo-
cin induces potent cytotoxicity against a variety of
cancer cells [29]. In this report, we found that

squamocin caused cell cycle arrest and apoptosis in
three cancer cell lines. In addition, squamocin decreased
the phosphorylation levels of H3S10 and H3S28 by
downregulating aurora B and pMSK1 expressions, which
might be the antitumor mechanism of squamocin.
Apoptosis, or programmed cell death, is known to

participate in various biological processes. Two main
apoptotic pathways were described: the mitochondrial
(intrinsic) pathway and the death receptor (extrinsic)
pathway. Both pathways induce activation of caspases
and cause cell death. The intrinsic apoptotic pathway
results from cytochrome c release from mitochondria
into the cytosol and activates the initiator caspase-9 and
the extrinsic apoptotic pathway results from activation
of death-domain receptors and activates the initiator
caspase-8 [30]. In addition, it is generally accepted that
the biological activity of annonaceous acetogenins is the
inhibition of nicotinamide adenine dinucleotide
(NADH)-ubiquinone oxidoreductase (complex I) of the
mitochondrial electron transport [25]. This inhibition
suppresses mitochondrial membrane potential and ATP
production as well as leads to intrinsic apoptotic pathway

Figure 6 High levels of early and late apoptosis were detected after squamocin treatment. Cells were incubated with 15, 30, and 60 μM
squamocin for 24 h. Apoptotic cells were determined by a PI and annexin V double-staining assay and analysis by flow cytometry. Annexin V-/
PI-, annexin V+/PI- and annexin V+/PI+ cells were respectively considered to be viable, early-apoptotic, and late-apoptotic cells. Cells without
squamocin treatment served as a control. (A) GBM841 cells. (B) Huh-7 cells. (C) SW620 cells. Data are the mean of three independent
experiments. * p < 0.05, compared to the control.
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[31-33]. In our experiment, increasing levels of caspase-
8 and -9 activities were detected in squamocin-treated
cells, indicating that squamocin activated both intrinsic
and extrinsic pathways to apoptosis in cancer cells.
In mammals, the ERK signaling pathway is the best

studied of the MAPK pathways. Inappropriate regulation
of the ERK pathway is connected to neoplastic transfor-
mation and tumor development. Most cancer-associated
lesions that lead to constitutive ERK activation are asso-
ciated with uncontrolled cell proliferation [34]. Thus,
therapeutic targeting of individual components of the
ERK pathway has attracted much attention for develop-
ing antitumor agents. Inhibition of ERK signaling could
induce an early depletion in cellular ATP coincident with
a loss of mitochondrial membrane potential, and lead to
cytosolic release of mitochondrial proteins and caspases
activation [35]. Besides, cell cycle arrest and apoptosis
caused by ERK inhibition were observed in various cancer
cell lines, indicating the potential utility in antitumor
agent activity [36,37]. MSK1 is a serine/threonine protein
kinase that can be phosphorylated by activated ERK (phos-
phorylated ERK) to promote kinase catalytic activity in
response to multiple stimuli [38,39]. In our experiment,
pERK downregulation was detected in squamocin-treated
cells, and simultaneously caused a decline in the expres-
sion of pMSK1. It is probable that squamocin decreased
the ERK cascade to reduce MSK1 phosphorylation.
Cancer cells frequently undergo mitosis, and many

mitotic regulators are aberrantly expressed in these cells.
Aurora B, a chromosomal segregation protein, is
expressed during mitosis and carries out vital functions
such as chromosome alignment, a spindle-checkpoint
function, and cytokinesis [40]. Abnormally elevated
expression of aurora B was detected in many human
cancer cells, and this overexpression is linked to

genomic instability which contributes to tumorigenesis
[41]. Accordingly, aurora B inhibitors are important fac-
tors in cancer therapeutics. In this study, squamocin
treatment decreased the expression of aurora B and also
of pERK in cancer cells. The data suggest that squamo-
cin may have potential therapeutic value in treating
cancer.
Several studies demonstrated the roles of histone H3S10

and H3S28 phosphorylation in response to stimuli or
other stresses [42,43]. In eukaryotes, histone H3 phosphor-
ylation is altered along with cell mitosis. This phosphoryla-
tion is correlated with chromosome condensation prior to
mitosis, and when chromosomes are dephosphorylated in
mitosis, it induces chromosome decondensation [9]. In
addition, it was reported that phosphorylation of H3S10
and H3S28 appears in the G2/M phase, and thus, both of
them are widely used as cell cycle markers to index the
G2/M stages [44,45]. Our experiment showed that histone
H3 phosphorylation at S10 and S28 was reduced by squa-
mocin, and the cell cycle was accordingly arrested at the
G1 phase. This indicates that the decreased phosphoryla-
tion of H3S10 and H3S28 presumably caused a failure of
cell cycle progression and resulted in G1 phase arrest with
squamocin treatment.
It is well known that annonaceous acetogenins are the

most potent inhibitors of the mitochondrial respiratory
chain complex I [25]. The number of compounds that
inhibit complex I is increasing, and parts of the diverse
inhibitors, such as rotenoids, piericidins, and myxobac-
terial antibiotics could be gained from natural products.
These inhibitors have been reported to display various
activities in the inhibition of mitochondrial complex
I [46]. Moreover, several reports have showed that the
mitochondrial complex I inhibitor can reduce the phos-
phorylation levels of ERK [47], promote the activity of

Figure 7 Effects of squamocin on apoptosis. Cells were treated with 15, 30, and 60 μM squamocin for 24 h. Proteins were extracted and
analyzed by Western blotting. GAPDH was used as a loading control. Squamocin enhanced caspase-3, -8, and -9 activities, cleaved the functional
protein of PARP, increased phosphorylation levels of ERK, and decreased phosphorylation levels of JNK. (A) GBM841 cells. (B) Huh-7 cells. (C)
SW620 cells. Data are representative of three independent experiments.
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JNK [47,48] and caspases [49,50] as well as cause cell
cycle arrest [51] and apoptosis [50]. Although the effects
of these inhibitors were similar to the effects of squamo-
cin, the squamocin treatment showed a new effect on
histone modifications. Therefore, inhibition of mito-
chondrial complex I, modulation of histone or both may
lead to the squamocin-induced cell cycle arrest and
apoptosis, but the real mechanism needs further
investigation.

Conclusions
Taken together, squamocin, a bis-tetrahydrofuran anno-
naceous acetogenin isolated from several genera of the
plant family, the Annonaceae, induces G1 phase arrest
and activates both intrinsic and extrinsic pathways to
apoptosis in cancer cell lines. This study is the first to
show that squamocin affects epigenetic alterations by
modulating histone H3 phosphorylation at S10 and S28
(Figure 8), providing a novel view of the antitumor
mechanism of squamocin.
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