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with growth signaling in stably transfected
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Abstract

Background: Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast
cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The
applicability of GnRH anti-proliferation to breast cancer was therefore analyzed.

Methods: GnRH-R expression in 298 primary breast cancer samples was measured by quantitative
immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand
binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in
cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-
I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting.

Results: GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors.
However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast
cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface
GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7
clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin
phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol
phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231
clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I
receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in
transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-
phosphorylation.

Conclusions: Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of expression found in
triple-negative and grade 3 cancers. However, functional cell surface receptors are rare in cultured cells. Intense
GnRH-R signaling in transfected breast cancer cells did not markedly inhibit growth, in contrast to transfected HEK
293 cells indicating the importance of intracellular context. GnRH-R signaling could not counteract IGF-I receptor-
tyrosine kinase addiction in MCF-7 cells. These results suggest that combinatorial strategies with growth factor
inhibitors will be needed to enhance GnRH anti-proliferative effects in breast cancer
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Background
Endocrine suppression using gonadotropin releasing
hormone (GnRH) analogs such as goserelin (a super-
agonist) is commonly used for the treatment of pre-
menopausal estrogen-responsive breast cancer because it
lowers plasma levels of estrogen by inhibiting secretion
of luteinizing hormone and follicle stimulating hormone
from the pituitary gland [1,2] and thereby slows estro-
gen-driven tumor growth.
It has been speculated since a proportion of cancer

cells express GnRH receptor, that activation or inhibi-
tion of GnRH receptor signaling may directly affect cell
growth [3-5].
This could have therapeutic value in both ER-positive

and ER-negative tumors if the GnRH-sensitive popula-
tion could be identified. A range of in vitro and animal
model studies have explored this phenomenon [5-10].
The cellular response to GnRH receptor activation is
complex. Cell-type specific features influencing GnRH
receptor signaling and cell growth-inhibition have been
described in cell lines stably expressing elevated levels of
the GnRH receptor [8-10]. So far, the ability of GnRH
agonist to inhibit cell growth appears to correlate with
the level of GnRH receptor expression at the cell surface
and with the magnitude of inositol phosphate produc-
tion elicited by receptor activation [8,9]. GnRH receptor
activation coupled to Gaq/11-Gbg proteins leads to ele-
vation of intracellular Ca2+ levels, altered cytoskeletal
function and changes in protein kinase activity, includ-
ing protein kinase C (PKC), mitogen activated serine/
threonine kinases (MAPkinases, MAPK) and stress-acti-
vated kinases Cell-type specific effects of GnRH receptor
activation on levels of phosphorylated-ERK1/2 (p-ERK1/
2) have been observed [8,9] which probably reflect the
complexity of protein scaffolds interacting with and
influencing MAPK. Effects of GnRH receptor signaling
on transcription factor activity and gene expression
downstream from MAPK are also likely.
Previous studies have shown that the growth of some

human breast cancer cells (MCF-7, MDA-MB-435 and
-231) can be inhibited when GnRH receptor is targeted
[6,7]. How this effect is achieved is only partially under-
stood [4,10], but it may be more widely applicable to
the regulation of breast cell growth.
Breast cancer is a highly heterogeneous disease arising

through the accumulation of mutations in different cell
types [11,12]. Individual cases can be characterized in
increasing detail using microarray technology and com-
plementary genomic data [13-21]. Consequently, a vari-
ety of alternative drug therapies are currently employed
to treat breast cancer but new treatments aimed at ‘per-
sonalized medicine’ still need to be developed. Various
inter- and intra-cellular signaling pathways driving

cancer cell proliferation, involving steroid hormone
receptors (estrogen receptor) and growth factor- or
growth-factor-like receptors (the EGF receptor family
and insulin-like growth factor receptor, IGF-IR), are tar-
gets for the development of new drugs [22-27]. How
GnRH receptor signaling interacts with these pathways
is an emergent area of study. Recent studies have sug-
gested that breast cancers which possess low or zero
levels of receptors for estrogen receptor, progesterone
receptor and HER2 (triple negative cancers) have higher
levels of GnRH receptor expression [5,7].
We analyzed GnRH receptor in 298 primary breast

cancer tissue samples by quantitative immunofluores-
cence and screened breast cell lines for functional
GnRH receptor. Several well characterized human breast
cell lines known to possess different phenotypes and dif-
ferent oncogenic mutations expressing elevated levels of
GnRH receptor were isolated following cDNA transfec-
tion. The effects of receptor activation on cell growth
and intracellular signaling were studied in order to
determine whether cell phenotype influences the
response to GnRH activation and seek strategies to
develop the use of GnRH receptor as a cancer therapeu-
tic target.

Methods
Most reagents were purchased from Sigma UK, includ-
ing D-Trp6GnRH-I (D-Trp6-LHRH, Triptorelin). Anti-
bodies for ERK-1/2 and phosphorylated-ERK1/2 were
purchased from Cell Signaling Technology, UK and for
b-actin, from Sigma, UK. Secondary antibodies conju-
gated to alkaline phosphatase were from Sigma, UK.
Insulin like growth factor receptor-I (IGF-IR) inhibitor
II, EGFR/ErbB2 inhibitor and phosphatidylinositol-4,5-
bisphosphate 3-kinase g (PI3Kg) inhibitor were pur-
chased from Calbiochem, UK. SVCT cells [28] were
purchased from ECACC, UK. MCF-7, MDA-MB-231,
ZR-75-1, and T47D cells were from American Type
Culture Collection (LGC, UK). The GnRH receptor sta-
bly transfected HEK293[SCL60] and prostate WPE-1-
NB26-8 cell lines described elsewhere [8,9] together
with HEK293 cells were used as controls for compari-
son. These transfected models have previously been
shown to demonstrate growth responses to triptorelin
[8,9].

Tissue microarray
Three tissue microarrays (TMAs) were constructed with
triplicate samples from 298 primary breast carcinomas
as previously described [29]. The primary tissue was col-
lected after surgical breast resection between 1999 and
2002 at the Edinburgh Breast Unit, Western General
Hospital, Edinburgh [29]. The study was approved by
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the Lothian Research Ethics Committee (08/S1101/41).
No informed consent (written or verbal) was obtained
for use of retrospective tissue samples from the patients
within this study, most of whom were deceased, since
this was not deemed necessary by the Ethics Committee,
who waived the need for consent. Paraffin embedded
sections were prepared from the TMAs (3 μm thick)
using a microtome and then mounted onto slides. NCL-
GnRHR (A9E4) Leica Microsystems antibody (Novocas-
tra Laboratories, UK) was used to detect the level of
endogenous GnRH receptor immune-staining across pri-
mary breast tumours by quantitative immuno-fluores-
cence (using AQUAnalysis software (HistoRx Ltd.,
USA), as previously described [30]. Data were normal-
ized by mean-centering to reduce systematic variation
between the three TMAs.

Cell culture, transfection and clone isolation
Cells were cultured in Dulbecco’s modified Eagle’s med-
ium (DMEM) with 10% fetal bovine serum. Medium for
SVCT cells was supplemented with recombinant human
insulin and hydrocortisone as specified by the suppliers
(ECACC, UK). HEK293[SCL60] and WPE-1-NB26-8 cells
were cultured as described elsewhere [9]. Cells were
transfected with a plasmid construct, pcDNA3.1(+)
(neo) (Invitrogen, UK) containing a rat GnRH receptor
cDNA insert, using Fugene 6 (Roche, UK) in Optimem-I
(GIBCO, Invitrogen, UK). Cell clones growing in 6 cm
dishes were picked using trypsinization in cloning cylin-
ders (Sigma, UK) and sequentially expanded in multiwell
plates and flasks prior to characterization. Sub-clones
were generated by re-transfecting an individual clone
with a 2.334 kb SV40 promoter-hygromycin phospho-
transferase cDNA fragment excised from pcDNA3.1(-)
(hygro) plasmid (Invitrogen, UK) using PvuII (Promega,
UK) and purified following agarose gel electrophoresis.

GnRH binding assay
Levels of GnRH receptor at the cell surface were mea-
sured as described elsewhere, using 125I-labeled His5D-
Tyr6GnRH-I as a radiotracer [8,9]. Cells were grown in
12 or 24 well plastic culture plates. The number of cells
per well was determined on the day of assay using a
hemocytometer to count trypsinized samples from wells
prepared in parallel. For accurate determination of rela-
tive levels of GnRH receptor expression between differ-
ent cell clones, binding assays were performed over a
range of cell confluencies and the results adjusted for
the number of cells per well. Non-specific binding was
determined using empty wells and by the addition of 1
micromolar unlabeled mammalian GnRH-I (Sigma, UK)
to displace specific binding of tracer from cells. Assays
were performed in triplicate and were repeated on sepa-
rate occasions to determine accuracy of measurement.

In vitro cell growth assay
Cells were seeded into 12 well plates and growth was
monitored using the sulforhodamine B (SRB) staining
assay described previously [8,9]. Two milliliters culture
medium per well was sufficient to sustain cell growth
over all time courses investigated. Cells were treated
with a dose range of Triptorelin or vehicle (20% propy-
lene glycol, Sigma, UK). Similar experiments employing
IGF-IR, EGFR/ErbB2 and PI3K inhibitors were per-
formed. Assay measurements were performed in tripli-
cate and were repeated on separate occasions. At each
time point, cells were fixed by adding 1 ml 25% trichlor-
oacetic acid to each well, stored at 4°C for 1 h before
gently washing and drying plates. Fixed cells were
stained with 0.4% SRB in 1% acetic acid, washed, dried
and dissolved in 1 ml 0.1 M Tris pH 10. Absorbance
measurements at 540 nm correlated with the number of
cells per well.

Inositol phosphate assay
Production of 3H-inositol phosphates was measured in
cells grown in 12 or 24 well plates as described pre-
viously [8,9]. Results were standardized according to the
number of cells per well on the day of assay, determined
using spare wells prepared in parallel. Single-dose or
dose-response experiments were performed in triplicate
and on separate occasions. Cells were allowed to reach
50-70% confluence before overnight incubation in
serum-free, inositol-free DMEM containing 1 uCi/ml 3H
myo inositol. Medium was replaced with 1 ml/well
HEPES + DMEM containing 0.1% BSA and 10 mM LiCl
and plates incubated at 37°C for 30 min. This medium
was then replaced with fresh medium containing vehicle
or treatment and incubated at 37°C for 1 h. Medium
was removed and cells were fixed with 1 ml/well 0.1 M
formic acid and incubated at 4°C for 30 min. 3H-inositol
phosphates were purified from the supernatant using
Dowex ion exchange chromatography. The final eluate
was measured using a scintillation counter.

Western blotting
Cells were grown in six-well plastic culture plates until
50-70% confluent. Some samples were washed twice
with phosphate buffered saline prior to incubation in
serum-free medium overnight. Cells were treated with
100 nM Triptorelin or vehicle for specific time periods
prior to lysis and harvesting. Samples were processed
for western blotting as described previously using
NP40 lysis buffer at at 4°C [8,9]. For quantitative data,
time points were measured in triplicate. Blots were
imaged by a Typhoon phosphor-imager (GE Health-
care, UK) using enhanced chemi-fluorescence detection
and analyzed using ImageQuant software (GE Health-
care, UK).
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Inverse PCR analysis of DNA integration sites
Genomic DNA was prepared from MCF-7-30 cell sub-
clones stably transfected with SV40 promoter-hygro-
mycin resistance DNA fragment (hygroR). Aliquots of
genomic DNA were digested with a single restriction
endonuclease (Promega, UK) which cuts at only one
site within the hygroR DNA fragment (either AvrII,
PvuI, SacII or ScaI) and relegated to form circular
DNA containing flanking DNA from the genomic inte-
gration site using T4 DNA ligase. Pairs of polymerase
chain reaction (PCR) primers targeting the hygroR
DNA, flanking the cut-religation site were used to
amplify DNA adjacent to the hygroR integration site
by walking away from the hygroR sequence. Purified
PCR products were cloned into pcr4 sequencing vector
(Invitrogen, UK) and subjected to automated DNA
sequence determination.

Graphical and Statistical analyses
Immuno-fluorescence data were analyzed by one-way
ANOVA using Minitab version 16 (Minitab Inc., USA).
Prism software (GraphPad, USA) was used to prepare
graphs and to calculate EC50 and IC50 values. Western
blots were quantified using ImageQuant software (GE
Healthcare). Quantitative data were analyzed using on-
line tools for T-test, http://easycalculation.com/statis-
tics/standard-deviation.php and http://www.quantitati-
veskills.com/sisa/.

Results
GnRH receptor immuno-staining is highly variable across
primary breast tumors but functional endogenous
receptor is not detectable in breast cell lines
Tissue microarrays of 298 primary breast carcinomas
from two cohorts of patients were examined by quanti-
tative immunofluorescence (AQUA, HistoRx) for
expression of GnRH receptor. The tumors were classi-
fied into three groups, triple negative phenotype (TNP,
lacking ER, PR and HER2), HER2 positive or luminal
[29]. There was a large dynamic range in the level of
GnRH receptor staining (Figure 1) and the level was
significantly higher in the TNP than luminal tumors (p
= 0.005). GnRH receptor staining was also higher in
grade 3 tumors compared to grade 2 tumors (p =
0.021).
Initial assessment of an immortalized human breast

epithelial cell line (SVCT) and four human breast cancer
cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231)
indicated that these models did not possess detectable
levels of endogenous GnRH receptor at the cell surface
when analysed using a binding assay employing a 125I-
labelled GnRH analog (His5-D-Tyr6-GnRH-I). The cells
did not accumulate 3H-inositol phosphates following
treatment with Triptorelin (Figures 2 and 3).

Stably transfected breast cell lines can be generated with
functional GnRH receptor
To model GnRH receptor positive breast cancer, the
above-mentioned cell lines were transfected with a
GnRH receptor cDNA expression construct in
pcDNA3.1(+) neo and cells resistant to G418 were
cloned. At least thirty G418-resistant clones derived
from each cell line were screened for expression of
GnRH receptor using the binding assay and classified
according to relative level of receptor detectable at the
cell surface. Relative levels of specific binding exhibited
by representative clones are depicted in Figure 2A. One
SVCT clone (SVCT-2) expressed high levels of GnRH
receptor at the cell surface. Approximately 50% of trans-
fected MCF-7 clones exhibited moderate levels of speci-
fic GnRH binding (clones MCF7-6, -10, -12 and -30 in
Figure 2A). A proportion of transfected ZR-75-1 cell
clones also expressed moderately high levels of specific
GnRH binding (see clone ZR-75-1-12 in Figure 2A).
One out of 30 transfected MDA-MB-231clones
expressed high levels of GnRH receptor, but no trans-
fected T47D clones exhibited GnRH binding (Figure
2A). MCF-7hygro 14 cells were sub-cloned from MCF-
7-30 cells by re-cloning (to generate MCF-7-30-7) fol-
lowed by transfection with a promoter-hygromycin
resistance gene fragment (hygro) and followed again by
further sub-cloning. Of these sub-clones, MCF-7hygro14
possessed the highest levels of cell surface GnRH recep-
tor (see Figure 2B for examples). Analysis of the integra-
tion site of the hygromycin resistance gene, using
restriction endonuclease excision, DNA circularization,
inverse PCR-cloning and DNA sequencing, indicated
insertion immediately 5’ to the CMV promoter driving
transcription of the rat GnRH receptor cDNA in MCF-
7hygro14. In all other MCF-7hygro clones investigated,
the hygro gene was inserted adjacent to the 3’ flank of
the rat GnRH receptor cDNA (data not shown).
Levels of cell surface GnRH receptor in SVCT-2,

MCF-7hygro14 and MDA-MB231-34 were similar to
levels in stably transfected HEK293[SCL60] cells and pros-
tate WPE-1-NB26-8 cells described elsewhere [8,9] (Fig-
ure 2A).
The presence of functional GnRH receptor in these

clones was confirmed by measuring production of 3H-
inositol phosphates following addition of Triptorelin.
SVCT-2, MCF-7hygro14 and MDA-MB-231 cells
expressing rat GnRH receptor generated elevated levels
of 3H- inositol phosphates following GnRH receptor
activation which correlated with receptor expression
level (Figure 3A-C). MDA-MB-231-34 cells exhibited
elevated basal phospholipase C activity (Figure 3C). The
dynamics of inositol phosphate accumulation following
GnRH receptor activation were similar in the different
cell lines but differences in turnover following removal
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Figure 1 GnRH receptor is expressed across a wide range in breast cancer and is highest in triple negative tumours when measured
by immunostaining. Association of GnRH receptor expression and (A) Cancer type and (B) Cancer grade. Quantitative immunofluorescence
(AQUA) was used to measure GnRH receptor. One way ANOVA was used to test for significant differences between subtypes, the mean for each
group is shown with a dashed line. C. Representative examples of high GnRH receptor expression (top images) and low expression (bottom
images). Left hand images are immunohistochemical images of tissue microarray (TMA) cores of individual breast cancer with brown staining
corresponding to GnRH receptor expression and blue to haematoxylin staining. Right hand images are immunofluorescence images of TMA
cores, with red staining corresponding to GnRH receptor expression, blue (DAPI) staining indicating cell nuclei and green staining detecting
cytokeration (ie carcinoma cell) staining. White arrows indicate areas of positive expression.
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of inositol phosphatase inhibition (LiCl wash off)
occurred according to the cell line (Figure 3D and 3E).
The decrease in levels of 3H- inositol phosphates was
slower in SVCT-2 cells.

The GnRH super-agonist Triptorelin had little or no effect
on growth compared to inhibitors of IGFR-1 or EGFR
The effects of Triptorelin on cell growth were investigated
for a number of the stably transfected clones. Growth of
SVCT-2 was modestly inhibited by treatment with Trip-
torelin (~10-18% inhibition relative to vehicle treated cells
after 4 days, Figure 4A), with an IC50 of approximately 0.3
nM. In contrast, application of IGF-IR inhibitor II resulted
in complete growth inhibition accompanied by cell death,
with an IC50 of ~11 μM). Co-treatment with 100 nM Trip-
torelin had a small additive growth-inhibitory effect, shift-
ing the IGF-IR inhibitor growth-inhibition dose-response
curve slightly to the left (Figure 4B), reducing the apparent
IC50 to ~9 μM. Treatment of SVCT-2 cells with EGFR/
ErbB2 inhibitor resulted in a 50% growth-inhibition after 4
days, with IC50 of ~ 2 μM and co-treatment with 100 nM
Triptorelin did not significantly affect growth in these
experiments (Figure 4C).
Growth of MCF-7hygro14 was not affected by GnRH

receptor activation, in contrast to the effect on HEK293

[SCL60] cells (Figure 4D and 4E). Treatment of MCF-
7hygro14 with IGF-IR inhibitor II resulted in growth-inhi-
bition and cell death (IC50 ~17 μM) and co-treatment with
100 nM Triptorelin had no significant effect (Figure 4F).
Time-course experiments indicated that growth-inhibition
could be reduced following washout of IGF-IR inhibitor II
using phosphate buffered saline followed by replacement
with normal culture medium. Growth-inhibition could be
reduced to less than 10% over 4 days if the inhibitor was
removed after a 2 hour exposure. Treatments for 6 hours
or more resulted in growth-inhibition of more than 20%
(Figure 4G). Treatment of MCF-7hygro14 cells with
EGFR/ErbB2 inhibitor resulted in a 50% growth inhibition
after 4 days, with IC50 of ~ 5 μM and co-treatment with
100 nM Triptorelin did not significantly affect growth in
these experiments (Figure 4H). Dose-response studies
using a PI3K inhibitor (ranging from 5 nM to 7 μM) indi-
cated that the maximum dose did not affect growth over 4
days and co-treatment with 100 nM Triptorelin did not
significantly alter this result (Figure 4I).
Growth of ZR-75-1-12 (slow growing) and MDA-MB-

231-34 was also not affected by treatment with Triptore-
lin (Figure 4J and 4K).

The levels of p-ERK1/2 were influenced by integration of
signaling from multiple cell surface receptors which
blocked responses to activated GnRH receptor
Levels of phosphorylated ERK1/2 (p-ERK1/2) in trans-
fected MCF-7 cell clones were transiently elevated by
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Figure 2 Stably transfected breast cell lines can be generated
with functional GnRH receptor. Relative levels of GnRH at the cell
surface detected by ligand binding assay in human cell lines stably
transfected with rat GnRH receptor cDNA expression construct A.
Subclones of MCF-7 clone 30 expressing modified levels of GnRH
receptor at the cell surface were isolated. HEK293 and T47-D10 cells
demonstrated background levels of binding. All other cell lines
shown demonstrated significantly (p < 0.05 ANOVA) higher levels of
specific binding. B. MCF-7-30-7 was subcloned from MCF-7-30 and
then transfected with a PvuII SV40-hygromycin resistance gene
fragment. Clones resistant to G418 and hygromycin were screened
for altered GnRH receptor expression. GnRH receptor levels were
elevated in clone MCF-7-30-hygro14, similar to levels in HEK293

[SCL60]. * p < 0.05 (ANOVA followed by Dunnett’s test) indicates
significantly higher in MCF-7-30-7 and MCF-7-30-hygro14 relative to
MCF-7-30 binding.
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Figure 3 Dynamics of GnRH receptor activation following treatment with Triptorelin. Treatment of stably transfected cells with GnRH
elicited high levels of 3H- inositol phosphate (IP) production (A-C). Removal of GnRH and LiCl revealed the dynamics of 3H- inositol phosphate
turnover in different cell types (D,E). The decrease in levels of 3H- inositol phosphates was slower in SVCT-2 cells. Statistically different values (p <
0.05 ANOVA followed by Dunnett’s test) compared to control values were as follows; for A, All values shown for SVCT-2 and HEK293[SCL60] cells >
-10 log [peptide]; for B, all values shown > -10 log [peptide] for all 3 cell lines; for C, all values shown > -10 log [peptide] for both cell lines; for
D, all values shown for SVCT-2 and all values up to 180 min for WPE-1-NB26-8; for E, all values from 30 min to 180 min.
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Figure 4 The effect of Triptorelin on growth of cells stably transfected with GnRH. A. Growth of SVCT-2 after 4 days was marginally
inhibited (10-18%) by treatment with Triptorelin. However, cell growth was effectively inhibited by IGF-IR inhibitor II and co-treatment with
Triptorelin exerted a small additive effect (B). EGFR/ErbB2 inhibitor reduced SVCT-2 cell growth, but co-treatment with Triptorelin had no effect
(C). Growth of MCF-7-30-7hygro14 cells was not affected by treatment with 100 nM Triptorelin (D), unlike HEK293[SCL60] cells (E) after 4 days.
Growth and survival were inhibited by IGF-IR inhibitor II but co-treatment with Triptorelin had no effect (F). Transient exposure to 15 μM IGF-IR
inhibitor II for up to 2 hours resulted in less than 10% growth-inhibition after 4 days, longer exposures resulted in more extensive growth-
inhibition (G). Growth of MCF-7-30-7hygro14 cells was inhibited by EGFR/ErbB2 inhibitor but not affected by treatment with 7 μM PI3Kg inhibitor
and co-treatment with 100 nM Triptorelin exerted no significant growth-inhibition (H and I). Growth of ZR75-1-12 (J) and MDA-MB-231-34 (K)
was unaffected by treatment with 100 nM Triptorelin. * p < 0.05 (ANOVA followed by Dunnett’s test).
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GnRH receptor activation provided cells were incubated
in serum-free medium overnight prior to stimulation. In
the presence of serum, GnRH receptor activation did
not significantly affect levels of p-ERK1/2 (Figure 5).
Levels of p-ERK1/2 were not altered by GnRH receptor
activation in serum-starved MDA-MB231-34 cells (Fig-
ure 5A).
Treatment of MCF-7hygro14 cells with 15-20 μM

IGF-IR inhibitor II caused a rapid (within 30 minutes)
and permanent decrease in levels of p-ERK1/2 in the
presence of serum. The inhibitor did not elicit this
effect in MDA-MB-231-34 cells (Figure 5C). When the
inhibitor was washed off MCF-7hygro14 cells after a 1
h exposure followed by addition of medium containing
serum, there was a rapid hyper-phosphorylation of
ERK1/2 followed by a slow decline. Addition of 100
nM Triptorelin at the time of inhibitor wash-off did
not significantly alter the intensity or dynamics of
ERK1/2 phosphorylation (Figure 5D). The effects of
IGFR-IR inhibitor II on p-ERK1/2 levels were similar
in HEK293[SCL60] cells, with the exception that rapid
hyper-phosphorylation of ERK1/2 did not occur when
inhibitor was washed off unless Triptorelin was added
(Figure 5D).

Discussion
In this study, GnRH receptor immunostaining was
found to be expressed over a wide dynamic range in
breast cancer cases and its expression was significantly
higher in patients with triple-negative disease, consistent
with previous data [5,7]. High levels of expression were
also observed in subgroups of luminal and HER2 breast
cancers.
To investigate GnRH receptor function in breast cells,

an immortalized human breast epithelial cell line
(SVCT) and four well defined human breast cancer cell
lines (MCF-7, MDA-MB-231, ZR-75-1 and T47D) were
examined. None of the native cell lines possessed func-
tional cell surface GnRH receptor detectable by binding
assay or by induction of inositol phosphate production.
Cell clones expressing high levels of GnRH receptor
compared to other model systems could be isolated fol-
lowing transfection with GnRH receptor cDNA. In
selected clones, treatment with GnRH agonist elicited
high levels of inositol phosphate production, indicating
that the receptor was functionally intact.
Despite the expression of high levels of GnRH recep-

tor in SVCT-2, MCF-7hygro14 and MDA-MB-231-4,
their growth was only marginally inhibited (SVCT-2) or
was unaffected by treatment with the GnRH super-ago-
nist Triptorelin in contrast to other model systems. By
contrast, the growth of all cells was sensitive to IGF-IR
or EGFR inhibitors (Figure 4). Analyses of receptor sig-
naling indicated that Triptorelin significantly affected

levels of phosphorylated ERK1/2 (p-ERK1/2) only in
serum-starved transfected MCF-7 cells and GnRH
receptor activation was unable to impinge on levels of
p-ERK1/2 in MDA-MB-231-34 cells (Figure 5). In con-
trast, transient alterations in the levels of p-ERK1/2 do
occur in cells which are growth-inhibited by GnRH
receptor activation, even in the presence of growth fac-
tors (HEK293[SCL60] B35-2 neuroblastoma and prostate
WPE-1-NB26-3) [8,9].
The lack of effect of GnRH agonist treatment on the

growth of breast cell lines, and its limited effect on p-
ERK1/2, may be explained by features of the growth-
associated intracellular signaling apparatus within each
breast cell line [31-39].
Growth of SVCT-2 cells was inhibited by IGF-IR inhi-

bitor II, an inhibitor of ligand-induced IGF receptor
auto-phosphorylation. Combined treatment with Trip-
torelin increased growth inhibition marginally (Figure
4). Thus the IGF-I signaling pathway is a candidate
which may block anti-proliferative signaling by GnRH
agonists in SVCT-2, consistent with transformation by
SV40 [31,32].
Growth of MCF-7hygro14 was inhibited with IGF-IR

inhibitor (Figure 4, IC50 was ~17 μM for these cells),
consistent with the established growth-stimulatory
effects of IGF-I in MCF-7 cells [33-36]. Furthermore,
significant growth-inhibition over 4 days could be eli-
cited by a brief exposure to IGF-IR inhibitor (2 hours).
In MCF-7hygro14, the IGF-IR inhibitor caused a rapid
decrease in the levels of p-ERK1/2, within 30 minutes
(Figure 5) but it did not affect levels of p-ERK1/2 in
MDA-MB-231-34 cells despite inhibiting their growth
also. This is consistent with differences in signaling
between the two cell lines [38] and the occurrence of
mutationally activated k-Ras and B-Raf in MDA-MB-
231-34 cells [37].
When IGF-IR inhibitor was washed off MCF-7hygro14

cells there was a rapid hyper-phosphorylation of ERK1/
2, followed by a slow decline to basal levels, which was
not influenced by GnRH receptor activation. Growth
factors in the medium probably stimulate resurgence in
ERK phosphorylation.
In comparison to MCF-7hygro14 cells, growth of

HEK293[SCL60] cells was also inhibited by IGF-IR inhibi-
tor but levels of p-ERK1/2 were relatively low in these
cells compared to the breast cancer cells. Furthermore,
hyper-phosphorylation of ERK1/2 did not occur in
HEK293[SCL60] cells following removal of IGF-IR inhibi-
tor. However, activation of GnRH receptor with Triptor-
elin following IGF-IR inhibitor wash-off did intensely
elevate p-ERK1/2 levels (Figure 5). Intense transient
activation of ERK-1/2 correlates with cell growth inhibi-
tion in HEK293[SCL60] cells [8,9]. This may not be the
case in MCF-7 cells.
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Figure 5 The level of p-ERK1/2 is influenced by integration of signaling from multiple cell surface receptors, blocking the response to
activated GnRH receptor. A. Triptorelin did not affect levels of p-ERK1/2 in serum-starved MCF-7-30 or MDA-MB-231-34 cells. B. Treatment of
stably transfected cells with 100 nM Triptorelin transiently elevated levels of phosphorylated ERK1/2 (p-ERK1/2) in serum-starved MCF-7-30-
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Perhaps these differences in the modulation of p-ERK
1/2 levels indicate that the IGF-IR-Ras-PI3K complex
(which rapidly reforms when the IGF-IR inhibitor is
washed off) is much more active in MCF-7 cells than in
HEK293 cells. In MDA-MB231-34 cells, the activating
c-Kirsten Ras and B-Raf mutations may be important
for maintaining p-ERK1/2 levels independent of the
effects of IGF-IR inhibitor on cell growth [37-39].
Estrogen receptor a influences IGF-IR, EGFR, Akt and

MAPK activity by recruiting PI3K and Src to a microtu-
bule-based protein scaffold [40]. Although ERa is pre-
sent in MCF-7 cells and estrogen promotes MCF-7
growth, it is not endogenously expressed in MDA-MB-
231 or HEK293 cells [40]. Hence, ERa may influence
the signaling response to GnRH in MCF-7hygro14 rela-
tive to the other cells.
Differential signaling responses in MCF-7 and MDA-

MB-231 cells (Figure 5) may reflect, at least in part, the
activating mutations in PI3KCA and c-Kirsten Ras
respectively [37,38] which impact upon MAPK-ERK1/2
activity. Other features of MDA-MB-231 cells [39] may
contribute to the elevated basal phospholipase C activity
in MDA-MB-231-34 (Figure 2C), where altered PKC
activity may affect MAPK-ERK1/2 status in these cells.
Downstream from receptor-proximal interactions

involving PI3K, Akt and PKC compete at the level of
Raf-1 to exert opposite effects on the MAPK pathway
(inhibitory and stimulatory, respectively) [41-44]. Per-
haps constitutive activation of PI3K in MCF-7 cells
abolishes the ability of GnRH-mediated PKC activation
to impact upon Raf-1 in MCF-7-hygro14 cells. Interest-
ingly, PKCa-mediated inhibition of Akt activity has
been proposed as a mechanism for GnRH-mediated
growth-inhibition in a mouse pituitary gonadotrope cell
line immortalized with Sv40 T antigen [10].
Understanding how activating mutations in c-Kirsten

Ras and B-Raf in MDA-MB-231 cells impact on GnRH
receptor signaling to the MAPK cascade requires further
investigation. In the presence of serum, levels of p-
ERK1/2 are influenced by integration of signaling from
multiple cell surface receptors (including FGF receptor
in MDA-MB-231) [36], and this combined signaling
probably prevents GnRH-mediated cell growth inhibi-
tion. The lack of effect of PI3K inhibitor on MCF-
7hygro14 cell growth (Figure 4) suggests that simulta-
neous inhibition of both Akt and Ras signaling may be
required to inhibit the growth of GnRH receptor posi-
tive cells [45,46].

Conclusions
We discovered that GnRH receptor protein expression
is often associated with triple negative breast cancer;
however functional cell surface GnRH receptor levels
are rare in cultured breast cell lines. The demonstration

that a GnRH analog is ineffective in inhibiting growth of
breast cancer cell lines expressing high levels of the
GnRH receptor, despite eliciting robust signalling, pro-
vides a valuable tool for determining the intracellular
context which does (eg HEK 293 and WPE-1-NB26-8)
or does not (breast cancer cell lines) facilitate anti-pro-
liferative effects of GnRH signalling. Creation and study
of GnRH receptor positive models indicated that mito-
genic signaling sensitive to IGF-IR inhibitor outweighs
the potential growth-inhibitory effects of GnRH receptor
activation in stably transfected breast cell lines. These
results suggest that combinatorial strategies with growth
factor inhibitors will be needed to enhance GnRH anti-
proliferative effects in breast cancer.
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