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Abstract

Background: The evolutionary dynamics between interacting heterogeneous cell types are fundamental properties
of neoplastic progression but can be difficult to measure and quantify. Cancers are heterogeneous mixtures of
mutant clones but the direct effect of interactions between these clones is rarely documented. The implicit goal of
most preventive interventions is to bias competition in favor of normal cells over neoplastic cells. However, this is
rarely explicitly tested. Here we have developed a cell culture competition model to allow for direct observation of
the effect of chemopreventive or therapeutic agents on two interacting cell types. We have examined competition
between normal and Barrett's esophagus cell lines, in the hopes of identifying a system that could screen for
potential chemopreventive agents.

Methods: One fluorescently-labeled normal squamous esophageal cell line (EPC2-hTERT) was grown in
competition with one of four Barrett's esophagus cell lines (CP-A, CP-B, CP-C, CP-D) under varying conditions and
the outcome of competition measured over 14 days by flow cytometry.

Results: We demonstrate that ascorbic acid (vitamin C) can help squamous cells outcompete Barrett's cells in this
system. We are also able to show that ascorbic acid's boost to the relative fitness of squamous cells was increased
in most cases by mimicking the pH conditions of gastrointestinal reflux in the lower esophagus.

Conclusions: This model is able to integrate differential fitness effects on various cell types, allowing us to
simultaneously capture effects on interacting cell types without having to perform separate experiments. This
model system may be used to screen for new classes of cancer prevention agents designed to modulate the
competition between normal and neoplastic cells.

Background dynamics of competition in one of two ways, either
Cancer progression is an evolutionary process by which

heterogeneous populations of neoplastic clones compete 1) neoplastic cells may be negatively affected by a
with each other and normal cells for space and therapy or intervention, thus reducing the competi-
resources [1]. All interventions, whether preventive or tive advantage of these cells relative to normal cells.
therapeutic, are attempts to perturb this process of clo- Most traditional interventions employ this strategy
nal evolution. Ultimately, if a treatment kills or disrupts of reducing the fitness of neoplastic cells by killing
neoplastic cells, some cell type must grow back in their or preventing proliferation. Alternatively,

place. Our interventions are implicit attempts to bias 2) the “normal” cells may gain a competitive advan-
this competition in favor of normal cells. Successful pre- tage from a mitogen or survival factor added to the
vention and therapeutic interventions can modulate the neoplastic environment that differentially affects cell

fitness, allowing the normal cells to outcompete the
neoplastic cells, a strategy we refer to as “benign cell
* Correspondence: Imfmerlo@gmail.com boosters” [2]. Computational models suggest this
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Clear documented examples of clonal expansion [3-6]
demonstrate that there is interaction and competition
between heterogeneous clones within a neoplasm and
those clones may displace normal cells in a tissue.
Although competition between heterogeneous cell types
is a fundamental property of progression and therapeu-
tic intervention [7-9], the mechanism of competition is
incompletely understood and only a few studies [10-12]
have attempted to directly quantify the dynamics of
competition between normal and neoplastic cells [13].
Here, we define competition as interaction between two
cell types such that the cell types exhibit behavior or
dynamics when together that is not present when each
cell type is grown alone. This is based on an ecological
definition of competition, where the fitness of one popu-
lation negatively affects the fitness of another, and can
be the result of both changes in proliferative or death
processes. Early work by Heppner and Miller demon-
strated that subpopulations of mouse mammary tumor
cells could affect each other’s growth when reinjected
into mice [14]. More recent studies of cell competition
in cancer have found that cells containing a mutant
tumor suppressor /gl or a mutant /g/-binding protein,
mahj, can be competitively eliminated [15]. Indirect
measures from human neoplasms suggest that onco-
genic mutations may only increase clone relative fitness
by 0.5% in clonal competition [16]. Transformed cells
have also been found to exhibit different behavior when
surrounded by normal cells compared to other trans-
formed cells [17-19]. In Drosophila, cells containing
extra copies of the myc proto-oncogene can outcompete
wild-type cells [20]. While there is certainly extensive
interest in competition in cancer [13,21,22], cell compe-
tition plays an important role in other cellular systems,
such as the developmental programme of Drosophila
melanogaster [23-25]. In cancer studies, most standard
in vitro systems do not include normal cells or multiple
neoplastic cell types and thus fail to model the process
of competition that is the true target of our interven-
tions. Here, we have developed a cell culture model sys-
tem in which competition dynamics can be directly
measured.

Barrett’s esophagus (BE) provides an ideal model in
which to test the evolutionary dynamics of competition.
In an environment of chronic gastroesophageal reflux,
in some patients, BE cells (specialized intestinal meta-
plasia) replace normal squamous tissue in the distal eso-
phagus [26]. Acid suppression alone is not sufficient to
allow the squamous cells to outcompete Barrett’s cells
and cause regression, though the combination of
wounding, via biopsies or ablation, along with acid sup-
pression, can lead to regrowth of squamous tissue
[26-28]. BE is of clinical importance because it is the
only known precursor of esophageal adenocarcinoma
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(EA) and is associated with a relative risk of esophageal
adenocarcinoma of 30-125 compared to the general US
population of similar age [29]. However, the natural his-
tory of BE is typically nonprogressive, with the risk of
progression to EA approximately 0.6-0.7%/year [30,31].
Thus, there may be an extensive time period in which
to intervene in the process of progression to prevent EA
and a unique opportunity for chemoprevention given
that patients likely have BE for many years before EA
develops. BE lacks a physiologically realistic animal
model system for investigating potential chemopreven-
tive agents, the best known being a surgical anastomosis
model in the rat [32-36]. Therefore, there is a need for a
simple model system for screening compounds that may
affect the establishment and progression of BE.

We have developed a sensitive in vitro model of com-
petition between Barrett’s esophagus and squamous eso-
phageal cells that may be used to identify a new class of
interventions, explicitly designed to modulate competi-
tion in favor of normal cells. Co-cultures of an esopha-
geal squamous cell line with each of four BE cell lines
were evaluated over 14 days for changes in the propor-
tion of cells of each population under varying concen-
trations of the antioxidant vitamin C, as well as vitamin
E and epidermal growth factor [37,38]. In addition to
exposure under normal cell culture growth conditions,
we also examined the effect of daily acid pulses on vita-
min C competitions to better replicate the reflux condi-
tions of the lower esophagus in patients with BE.
Results demonstrate that vitamin C reduces growth of
BE cells relative to normal squamous cells, giving a
competitive advantage to normal squamous cells at phy-
siologically relevant concentrations of vitamin C. Under
acidic conditions, the advantage conferred to normal
cells by vitamin C is generally greater. This is consistent
with recent epidemiological data suggesting that vitamin
C may help prevent progression from Barrett’s esopha-
gus to esophageal adenocarcinoma [39,40].

Methods

Cell Lines

Four hTERT transformed Barrett’s esophagus (BE) cell
lines (gift of P. Rabinovitch, University of Washington,
Seattle WA) were used in competition experiments.
These cell lines, CP-A, CP-B, CP-C, and CP-D, were
established from BE cells isolated from 4 different
patients. The CP-A cell line (9p LOH, TP53"", 5q LOH)
was established from an area of nondysplastic metaplasia
and the CP-B (9p LOH, 17p LOH, TP53™"), CP-C (9p
LOH, 17p LOH, TP53™""), and CP-D (9p LOH, 17p
LOH, TP53™"Y cell lines were established from areas of
high-grade dysplasia. All 4 BE lines are aneuploid
[41,42]. Normal esophageal squamous cells that had
been hTERT transformed (EPC2-hTERT) were also
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used (gift from A. Rustgi, University of Pennsylvania,
Philadelphia PA). All BE cell lines were adapted to
serum-free conditions in keratinocyte serum-free (KSF)
medium supplemented with bovine pituitary extract and
epidermal growth factor (EGF) (Invitrogen Corp. Carls-
bad, CA) by serial passaging of cell lines into succes-
sively lower concentrations of serum until the cell lines
survived without serum present. BE cell line identities
were verified with the Identifiler PCR Amplification kit
(Applied Biosystems).

Cell Labeling

Esophageal squamous cells (EPC2-hTERT) were trans-
duced with an eGFP-expressing lentivirus (gift of M.
Herlyn, Wistar Institute, Philadelphia, PA). Transduced
cells were sorted twice by flow cytometry to purify
eGFP expressing cells. The stability of the fluorescent
tag was monitored throughout each experiment, and it
was maintained at 100% of the original fluorescence for
14 days, the duration of competition experiments.
Labeled EPC2 cell lines were tested for evolutionary
neutrality of the fluorescent label by competition
between labeled and unlabeled populations of the EPC2
cells to confirm that the labeled cells do not generate a
differential response to the mitogen of interest. We veri-
fied that there is no interaction between ascorbic acid
and the eGFP fluorescent label (Additional File 1, Figure
S1).

Co-culture of squamous and BE cells without acid

Competitions consisted of one unlabeled (non-fluores-
cent) BE cell line and one eGFP-labeled squamous cell
line. These were seeded with a total of 2 x 10° cells
(50% from each cell line) into a 60 mm plate (Greiner,
USA Scientific). Initial seeding ratios were measured by
flow cytometry. Cells were cultured in KSF medium
(Invitrogen) with 50 U/mL penicillin and 50 ug/mL
streptomycin supplemented with the agent of interest
for 14 days, with media changes every 2-3 days. Vitamin
C (ascorbic acid, Fisher Scientific) stocks were made
every 5 days at 1000X the final concentration in PBS
and filter sterilized (0.22 pum filter). Competitions were
performed at 0, 50, 150, and 500 pM concentrations of
ascorbic acid to approximate physiologically relevant
conditions based on plasma and mucosal concentrations
of this compound [43,44]. The effect of two other com-
pounds, a-tocopherol (Sigma) and EGF (Gibco), was
measured using an identical protocol (For methods, see
Additional File 1, Figures S2, S3). Competitions were
passaged by complete trypsinization every 3-4 days.
0.25% Trypsin (Gibco) was inhibited with addition of
250 mg/L soybean trypsin inhibitor (Gibco) in PBS.
Trypsinized plates were examined by light microscopy
to verify that no cells still adhered to the plate. For each
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experiment, there were 4 sampling points, starting 3-4
days after initial seeding. Competitions were reseeded
with 20% of the cells after trypsinization. Flow cyto-
metric analysis (Beckman Coulter EPICS XL flow cyt-
ometer) was performed on days 3, 7, 10 and 14 after
seeding to discriminate between the fluorescent normal
squamous cells and the non-fluorescent BE cells.

Acid Pulsing of co-cultured squamous and BE cells
Co-culture methods are as described above with the
exception that for acid pulsed cells, competitions were
pulsed for 6 minutes daily with pH 3.5 PBS at 37°C,
rinsed twice with neutral pH PBS and fresh media was
replaced in each plate. These competitions were
reseeded with 15% of the cells after trypsinization and
flow cytometric analysis (Beckman Coulter EPICS XL
flow cytometer) performed on days 3, 7, 10 and 14 after
seeding.

Growth of Cell Lines in Monoculture

For each of the 4 BE cell lines (CP-A, CP-B, CP-C, CP-
D) and 1 esophageal squamous cell line (EPC2), 10,000
cells were seeded into a 6-well plate containing KSF
media (Invitrogen) with or without 100 uM ascorbic
acid. After 6 days of growth, cells were trypsinized and
counted (Nucleocounter, New Brunswick Scientific).

Immunofluorescence of Proliferation and Apoptosis
Fixation of cells

Cells from competition experiments were fixed with 2%
PFA in PBS for 20 minutes at room temperature, centri-
fuged at 485 x g for 5 minutes, and washed twice with
PBS. PFA was made from a 16% stock solution (Electron
Microscopy Sciences, Hatfield, PA) once per month and
stored at 4°C in the dark. Fixed cells were stored in the
dark at 4°C in PBS until analysis.

Phospho-HistoneH3

PHH3 was probed as a marker of proliferation. Fixed
cells were blocked with 5% goat serum for 30 minutes
at room temperature. After 2 rinses with a wash buffer
of 0.1% saponin (Acros) in PBS, the primary antibody
(Sigma H0412) was added to each sample at a dilution
of 1:500 in the wash buffer. After 1 hour at room tem-
perature, 3 washes were performed. The secondary anti-
body (goat anti-rabbit Alexa Fluor 488) was added at
1:100 dilution in wash buffer. This was followed by 3
more washes. Samples were analyzed by flow cytometry
(Beckman Coulter EPICS XL flow cytometer). Post-
acquisition analysis was performed with Flowjo (Version
8.7.1).

Active Caspase-3

The cleaved, active form of Caspase-3 (Sigma C8487)
was probed as a marker for apoptosis at a single time
point at the end of the competition period. The protocol
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followed was the same as for PHH3, with a 1:500 dilu-
tion of the primary antibody and the same secondary
antibody used at 1:100dilution. Samples were run on the
flow cytometer (Beckman Coulter EPICS XL flow cyt-
ometer) and post-acquisition analysis was performed
with Flowjo (Version 8.7.1).

Ethidium Homodimer-1

To measure total cell death, time lapse imaging of cells
in monoculture and competition was performed using a
nonspecific marker for cell death, ethidium homodimer-
1 (Invitrogen). This assay has the advantage of measur-
ing all forms of cell death, not just apoptosis. Competi-
tions were established in 6-well plates using the
methodology described above and 2.5 pM ethidium
homodimer-1 added to the culture 24 hours following
cell seeding. Immediately following the addition of the
ethidium homodimer, plates were imaged using a Nikon
TE300 inverted microscope equipped with a motorized
XY stage and Environmental chamber (Temperature
and CO, control surrounding entire microscope). Image
Pro 6.2 was used for image acquisition and also controls
the motorized stage, filter wheels, shutters, and lamp
settings. Using the automated stage macro, twelve areas
selected, 2 fields per well, locations in any X, Y, or Z
direction saved. Two images from the same position in
each well were taken every 15 minutes for a total of 48
hours with a Q-imaging retiga EX digital camera. Per-
cent death statistics were calculated by manually tracing
cell fates in each time laps experiment for 240-455 cells
per condition.

Statistical Analysis

Statistical significance was evaluated using the R statis-
tics software by a series of t-tests comparing the differ-
ence in proportion of BE cells between day 0 and day
14 at 0 pM and 500 pM Vitamin C. Using a Bonferroni
correction for multiple testing, comparisons with a p-
value less than 0.00625 were considered significant.

Results

Competitions under varying levels of Vitamin C

Four unlabeled BE cell lines (CP-A, CP-B, CP-C, and
CP-D) were tested in co-culture competition (Figure 1)
against a stably-transduced eGFP-labeled normal eso-
phageal squamous cell line (EPC2). The effect of vitamin
C exposure varied between cell lines. There is a statisti-
cally significant reduction in BE cells at 500 uM ascorbic
acid relative to the 0 um treatment for CP-B and CP-C
cell lines (Figure 2B, C), demonstrating that the pre-
sence of Vitamin C gives the EPC2 squamous cells a
relative competitive advantage. This trend is also appar-
ent in the CP-A cell line (Figure 2A), although this is
not statistically significant under the conservative Bon-
ferroni multiple testing correction. While we find that
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Figure 1 Cell culture competition. Image of competition between
Barrett's esophagus cell line CP-D (green) and normal squamous
cell line EPC2 (red). Cells are grown until they begin to approach
confluency and are then passaged to maintain logarithmic growth.
Both cell lines are labeled here for imaging purposes, however, in
standard competitions BE cell lines are unlabeled. Note that the
green cells do not necessarily grow in contiguous patches, and so
there must either be cell migration or a process of detachment and
reattachment as those clones expand. The two cell types can
interact both by physical contact and via secreted factors.

squamous cells more rapidly outcompete BE cells in the
presence of vitamin C, this effect is often not dose-
dependent. The CP-B cell line shows a particularly note-
worthy saturation effect in both the no-acid and acid-
pulsed competitions (Figure 2B, 3B), with lower concen-
trations of ascorbic acid providing a greater competitive
advantage to the squamous cells.

Acid-pulsed competitions under varying levels of Vitamin
C

To better simulate the phenomenon of acid reflux asso-
ciated with BE (a potential cause of the condition), com-
petitions were exposed to pH 3.5 PBS for 6 minutes
daily. With daily acid pulses, the difference between the
0 and 500 uM ascorbic acid treatments is generally mag-
nified, with CP-A, CP-C, and CP-D cell lines all showing
a decrease in BE cell lines with Vitamin C present (Fig-
ure 3). This effect occurred in a dose-dependent man-
ner. No systematic effect of vitamin C on the CP-B cell
line can be detected under acidic conditions. Again, it
appears that high levels of vitamin C ameliorate the
competitive advantage of the EPC2 cells compared with
the BE cells as lower levels of vitamin C do show a sub-
stantial effect on competitions between EPC2 and CP-B
cells (Figure 3B). Generally, the addition of acid alone
favors the BE cells, but the combination of acid and
vitamin C results in conditions less favorable for BE
cells and more favorable for squamous cells.
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Figure 2 Competition results. All four BE cell lines show a trend towards reduced proliferation with 500 uM Vitamin C compared to 0 uM
controls, but the effect is only statistically significant for CP-B and CP-C cell lines when adjusted for multiple testing using a Bonferroni
correction (p < 0.05/8 = 0.00625 required for significance). Mean (n = 3) + standard error of the mean is shown.

Growth of cell lines in monoculture

Monoculture experiments (Figure 4) demonstrate that
vitamin C reduces the net growth for both the squa-
mous and Barrett’s cell lines. It is important to note that
the monoculture results alone do not explain the results
of the competition. In monoculture, for example, the
CP-C cell line grows as well or better than the EPC2
squamous line, but in competition the squamous cells
quickly outcompete the CP-C cells. It is clear from
examination of the monoculture data that the cell lines
described here are not acting independently when
grown in competition, therefore monoculture data does
not accurately describe the co-culture environment. Cell
culture competition models are able to capture interac-
tions between different cell types in a way that a mono-
culture model cannot. This provides direct evidence that
competition dynamics are present in the co-culture
environment.

Competitions under varying levels of Vitamin E and EGF
Competitions were also performed with varying levels of
Vitamin E and EGF (Additional File 1, Figures S2-S3).
EGF did not have a significant effect on the outcome of
competition. In the case of vitamin E, very high levels of
o-tocopherol strongly suppressed growth of both cell
lines. Unexpectedly, the fitness of the squamous cells
was more strongly suppressed by vitamin E than the BE
cells with the end result that BE cells out-compete squa-
mous cells at high concentrations of Vitamin E (Addi-
tional File 1, Figure S2). Lower levels of Vitamin E did
not affect the outcome of competition.

Apoptosis and Proliferation Assays on Vitamin C
Competitions

Cell culture competitions provide a window into the
net growth of the cells under the conditions defined by
the investigator, but they do not identify the
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Figure 3 Acid-pulsed competition results. Competition experiments were subjected to daily acid pulsing to model gastric reflux in Barrett's
esophagus. Under acid pulsing, CP-A, CP-C, and CP-D BE cell lines show a statistically significant reduction relative to normal squamous cells
with 500 pM Vitamin C compared to 0 uM controls when adjusted for multiple testing using a Bonferroni correction (p < 0.05/8 = 0.00625
required for significance). CP-B cells show a reduction at lower concentrations of vitamin C but not at 500 uM. Mean (n = 3) + standard error of
the mean is shown.

mechanism of the fitness effect. While it is clear that
vitamin C increases the overall proportion of squa-
mous cells relative to Barrett’s cells, it is not clear if
this is due to an increase in proliferation/survival of
the squamous cells or a reduction in proliferation/sur-
vival in BE cell lines.

To determine if the effects of vitamin C in the compe-
tition between EPC2 squamous cells and CP-C cells was
due to changes in proliferation, differences in levels of
phosphorylated serine 10 on histone H3 (PHH3) were
measured by flow cytometry. Phosphorylated serine 10
on histone H3 is a marker of mitotic cells. Although the
proportion of PHH3+ cells was extremely low, we were
able to show reduced proliferation of the CP-C cells
under 500 uM ascorbic acid conditions for two separate
experiments (Table 1). We did not find a systematic

change in proliferation of EPC2 cells with ascorbic acid
(data not shown). Several apoptosis assays (cleaved cas-
pase-3, annexin-V+7AAD, TUNEL) were also per-
formed; however, little apoptosis was detected in this
system. Because the media which overlays the cells in
the competitions is changed every 2-3 days, many apop-
totic cells are likely lost as the competition progresses.
The caspase-3 assays do hint at an increased apoptosis
level for both EPC2 and CP-C cell lines but the total
amount of apoptotic cells is very low (< 0.1%, Additional
File 1, Figure S4). To overcome the limitation incurred
by extrusion of apoptotic cells into the surrounding
media, time lapse imaging of cells in competition in the
presence of ethidium homodimer-1 was performed. No
systematic differences in cell death in the presence of
500 uM vitamin C were detected, nor were there
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Figure 4 Effect of Vitamin C Exposure on Cell Number. The
squamous and Barrett's cell lines all show a reduction in average

cell number with Vitamin C exposure compared to control
conditions. Mean of n > 6 + standard error of the mean is shown.

differences in total cell death between monoculture and
competition (Additional File 1, Figure S5).

We also confirmed that the effect was not due simply
to serial passaging of the cells. We were initially con-
cerned that if cell lines adhere to cell culture dishes at
varying rates during reseeding, there might be differ-
ences in the lag time before exponential growth could
resume that might account for differences seen between
cell lines in competition. This was of particular concern
with vitamin C, which can affect extracellular matrix
components [45]. We found no significant differences in
“lag time”, the time between trypsinization and resump-
tion of exponential growth, between the different cell
lines following trypsinization and replating (data not
shown).

Discussion

We have developed a sensitive and robust in vitro model
of the process of cellular competition, which is thought
to drive the evolution of malignancy [1]. The utility of
our assay is demonstrated in proof of principle experi-
ments with ascorbic acid, where we find that vitamin C
increases the fitness of esophageal squamous cells rela-
tive to Barrett’s esophagus cells.

Table 1 CP-C Unlabeled BE cells vs. EPC2 DsRed-labeled
Squamous Cells

Experiment Concentration Vitamin C  Average CP-C % PHH3"*
(n=2)
1 0 uM 264
500 uM 231
2 0 pM 1.32
500 uM 091
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The methodology for cell competition is based on bac-
terial batch culture competition models [46], in which
cells are maintained in logarithmic growth and serially
passaged. Human cell culture is more complicated than
a simple bacterial batch culture system due to the sub-
stantially greater potential for interactions between cell
lines via mechanisms such as diffusible growth factors,
ECM interactions and contact inhibition, although these
phenomena are certainly possible in bacterial systems as
well [47,48].

The cell culture competition model allows us to cap-
ture the relative effect of a compound on 2 cell lines of
interest simultaneously. It is this effect, rather than the
absolute growth rate, that is most important physiologi-
cally as different cell types likely interact with one
another. This phenomenon is of particular relevance in
Barrett’s esophagus, where there is a clear junction
between Barrett’s cells and normal squamous esophageal
cells. It is important to note that in the experiments
described here, the normal squamous esophageal cells
outcompete the BE cells under almost all concentrations
of vitamin C. Therefore, we are comparing the relative
rate at which the squamous cells outcompete the BE
cells under different concentrations of vitamin C. This
baseline advantage of the squamous lines in this system
is likely an artifact of the cell culture conditions used.
Here, all cells are grown in the serum-free media most
suitable for the growth of the normal esophageal squa-
mous cells. The addition of serum in the media leads to
increased relative fitness of BE cells compared to no-
serum controls in all cell lines tested. In 2 out of 3 cell
lines, this increase is such that the BE cells outcompete
the squamous cells as would be expected under in vivo
conditions (Additional File 1, Figure S6). Future models
of competition might be developed with a more realistic
microenvironment using three-dimensional organotypic
cultures that include both extracellular matrix and stro-
mal cells [49-51].

The mechanism of the cancer preventive effect of vita-
min C is thought to be via a reduction of reactive oxy-
gen species (ROS). BE is associated with chronic
inflammation, which can generate ROS, thought to con-
tribute to the development of a variety of cancers. A
meta-analysis and other recent studies have reported
that intake of antioxidants such as vitamin C, E, and
beta-carotene are inversely associated with risk of eso-
phageal adenocarcinoma [39,40]. While it is clear that
there is some relationship between the concentration of
antioxidants and BE [e.g. [43]], substantial further
experimentation would be required to fully characterize
vitamin C as a preventive agent. In general, patients
with EA have been found to have lower intakes of anti-
oxidants compared to control populations [52]. Recent
studies have shown that BE patients have significantly
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lower plasma levels of vitamin C (ascorbic acid), xantho-
phylls and other antioxidants [43]. In addition to lower
plasma levels, BE mucosa was found to contain signifi-
cantly lower levels of vitamin C compared with matched
normal squamous mucosa [44]. This reduced presence
of exogenous antioxidants may enhance the effects of
DNA-damaging oxygen radicals.

Reduction of vitamin C in patients with BE may come
from both a diet low in antioxidants as well as a
reduced absorption of vitamin C from the stomach [39].
Vitamin C is unstable at non-acidic pH and patients on
proton pump inhibitors, such as omeprazole, have more
basic gastric fluid. In one study [53], individuals given
40 mg/day for 28 days of omeprazole had a 12.3%
decrease in plasma vitamin C levels independent of diet-
ary vitamin C intake, suggesting that there may be low-
ered bioavailability of vitamin C in patients currently
prescribed proton pump inhibitors (PPI). It warrants
further investigation whether the current standard of
care for individuals with BE, PPI medication (with regu-
lar endoscopic surveillance), is promoting reduced levels
of vitamin C and whether this may, in turn, promote
expansion of the Barrett’s segment.

We view these cell culture competition models as par-
ticularly useful for early screens of chemoprevention
agents, particularly when there are few model systems
available, as in the case of BE. Many drugs have subtle
effects and this system allows for longitudinal measure-
ment of the effects of various compounds on cell com-
petition. Our model is able to integrate differential
fitness effects on both normal and neoplastic cells,
regardless of whether they act through decreasing the
fitness of neoplastic cells or increasing the fitness of
normal cells, and so may be useful for the discovery of
new classes of drugs, such as benign cell boosters [2]. In
order to screen any large number of therapeutic agents,
our model would have to be downscaled to run in 96-
or 384-well plates. This is a simple assay designed for
an initial screen, performed on plastic in 2D culture, but
it can provide preliminary data for more complex ani-
mal model testing and for exploration of epidemiologic
results.

Conclusions

We established a cell culture model that can capture the
dynamics of competition between two interacting cell
lines. Because it is this interaction between normal and
neoplastic cells that is the basis for our cancer preven-
tion and therapy interventions, this model can provide
an initial screen of potential compounds. We show that
ascorbic acid is a modulator of competition between
esophageal squamous cells and Barrett’s esophagus cells.
The advantage of squamous cells relative to Barrett’s
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cells is enhanced by the addition of acid pulses mimick-
ing the reflux conditions of the distal esophagus.

Additional material
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