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Abstract

Background: Recent studies have reported associations of DNA repair pathway gene variants and risk of various
cancers and precancerous lesions, such as chronic atrophic gastritis (CAG).

Methods: A nested case-control study within the German population-based ESTHER cohort was conducted,
including 533 CAG cases and 1054 controls. Polymorphisms in eleven DNA repair genes (APEX1, ERCC1, ERCC2/XPD,
PARP1 and XRCC1), in CD3EAP/ASE-1 and PPP1R13L were analysed.

Results: No association was disclosed for any of the analysed polymorphisms. Nor did stratified analyses according
to ages < 65 and ≥ 65 years show any significant association with CAG risk.

Conclusions: The results of this large German case-control study do not reveal associations of DNA repair pathway
polymorphisms and risk of CAG. On the basis of a large number of CAG cases, they do not support associations of
DNA repair pathway SNPs with CAG risk, but suggest the need of larger studies to disclose or exclude potential
weak associations, or of studies with full coverage of candidate genes.

Background
Chronic atrophic gastritis (CAG) is a well-established
precursor lesion in the aetiology of intestinal gastric
cancer (GC), the most common type of GC [1]. Unlike
the diffuse type of gastric carcinoma, a recent steady
decline in incidence has been observed for the intestinal
type [1,2]. Several changes have been identified as pre-
cursors to the intestinal type of gastric carcinoma,
representing sequential steps in the precancerous pro-
cess: non-atrophic gastritis, CAG (gland loss), metaplasia
and dysplasia [1]. This progression usually takes dec-
ades, providing excellent options for timely detection
and intervention at precancerous stages [1,3]. The multi-
stage model of gastric carcinoma development assumes
that carcinogenesis is initiated by host-inflammatory
response following infection by the Gram-negative bac-
terium Helicobacter pylori (H. pylori), and by dietary
exposure to salt and nitrate, which cause DNA damage
[4-7]. To date, three molecular mechanisms, by which
H. pylori may provoke a loss of genomic integrity and

promote transformation, are postulated [6,7]. These
include a) mutations in mitochondrial DNA, b) the
induction of a transient mutator phenotype, resulting in
mutations in the nuclear genome, and c) increased
amounts of reactive oxygen species (ROS) in gastric
epithelial cells that induce oxidative damage in the DNA
coupled to the decrease of repair activity [6,7].
The consequences of DNA damage are manifold and

generally adverse. Thus, acute effects arise from a dis-
turbed DNA metabolism, inducing cell cycle arrest or
apoptosis, while long term effects from irreversible
mutations may contribute to carcinogenesis [8]. Four
major DNA repair pathways have been described: 1.)
base excision repair (BER), 2.) nucleotide excision repair
(NER), 3.) mismatch repair (MMR) and 4.) double-
strand break repair (DSBR) [8]. Recent epidemiologic
studies have essentially examined BER and NER pathway
gene variation and risk of cancer development, disclos-
ing associations with glioma, colorectal, prostate, lung
and gastric cancers [9-18] as well as with precancerous
lesions, such as colorectal adenomas or CAG [19,20].
Therefore, we sought to evaluate the relationships

between putative functional single nucleotide poly-
morphisms (SNPs) in APEX1 [19], ERCC1 [11,12,16],
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ERCC2/XPD [10,11,13,14,17,20], PARP1 [9-11,19] and
XRCC1 [15,18,19], and in CD3EAP/ASE-1 [12] and
PPP1R13L genes [12], which are components of a high-
risk locus between ERCC1 and 2 on chromosome
19q.13.3 [12], and the risk of CAG.

Methods
The present study comprised a subsample of the Ger-
man population-based ESTHER cohort study, including
533 serologically defined CAG cases without GC history
and a number of 1054 age- and sex-matched controls.
Details of the ESTHER study design have been described
previously [3,21]. Briefly, 9,953 women and men aged
50-75 years were recruited between July 2000 and
December 2002 by their general practitioners during a
general health check-up in Saarland, a federal state in
the south-west of Germany [3]. The study was approved
by the ethics committees of the medical faculty of the
University of Heidelberg and the medical board of the
state of Saarland.
According to the study protocol and informed con-

sent, serum and blood samples were obtained from all
participants. Serum concentrations of pepsinogen (PG) I
and II were measured by ELISA (Biohit, Helsinki, Fin-
land). CAG was defined by applying the most frequently
used serological definition, being PG I < 70 ng/ml and
PG I/PG II < 3 [3]. For sensitivity analyses, we used
alternative cut-points to delineate CAG [(PG I < 70 ng/
ml and PG I/PG II < 4.5) as well as (PG I < 70 ng/ml
and PG I/PG II < 2)].
In line with recent epidemiologic studies that have

revealed associations of BER and NER pathway gene
variants with risk of glioma, colorectal, prostate, lung
and gastric cancers and their precursors [9-20], selection
was focused on SNPs in DNA repair genes. Non-synon-
ymous and putative functional SNPs were of particular
interest. Therefore, we searched public literature
resources and databases (NCBI PubMed and dbSNP),
favouring genes and polymorphisms with previous find-
ings in view of susceptibility to precancerous lesions and
different types of cancers. SNP selection included four
BER gene variants (APEX1 D148E rs1130409, PARP1
-17G > C rs907187 and V762A rs1136410, XRCC1 -77T
> C rs3213245), five SNPs in NER genes (ERCC1
N118N rs11615, ERCC2/XPD K751Q rs13181, D312N
rs1799793, R156R rs238406 and -114C > G rs3810366),
and two SNPs in CD3EAP/ASE-1 (rs735482) and
PPP1R13L (rs6966) which, together with ERCC1 N118N
rs11615, represent the high-risk haplotype on chromo-
some 19q13.3 [12].
Genotyping was performed with iPLEX® single base

primer extension and matrix-assisted laser desorption
ionisation time-of-flight mass spectrometry (Sequenom,

San Diego, USA) [21], and a random sample of > 5%
was analysed twice for quality control.
Genotypes of participants were used to estimate allele

frequencies, and departure from Hardy-Weinberg equili-
brium (HWE) in controls (P ≤ 0.01) was assessed using
Pearson’s chi-squared test. SNP associations were evalu-
ated using unconditional logistic regression models to
estimate sex- and age-adjusted odds ratios (ORs) and
95% confidence intervals (CIs). As CAG strongly
increases with age [3], subgroup analyses included strati-
fications according to ages < 65 and ≥ 65 years.
For reasons of statistical power, we restricted our ana-

lyses to SNPs with minor allele frequencies (MAFs) >
10%, according to dbSNPs HapMapCEU data http://
www.ncbi.nlm.nih.gov/snp/. MAFs of the chosen SNPs
ranged from 13% - 49%. The statistical tests were imple-
mented with SAS (SAS Institute Inc., Cary, USA), and
power calculations were employed with the power and
sample size software PS [22], applying the observed gen-
otype frequencies, respectively. Two-sided Fisher’s exact
tests were used to compare carrier frequencies between
CAG cases and controls with a type I error probability
of a = 0.05.

Results
Of 9,444 ESTHER participants with available PG con-
centrations (94.9%), 533 met the serological definition of
CAG and were selected for this study together with
1054 controls [3,21]. Among the analysed individuals,
the majority (58.2%) were females, and median ages
were 65 and 66 years for women and men, respectively.
Smoking was evenly distributed among cases and con-
trols, while alcohol consumption was more prevalent
among controls. The proportion of individuals with a
GC family history or H. pylori infection, however, was
more common among cases [3].
Genotype distributions for controls were consistent

with HWE, and the average call rate for the analysed
SNPs was 97.5% (range: 95.6% to 98.7%).
We observed no evidence for significant associations

of the eleven SNPs and CAG risk (Additional file 1). For
each SNP, similar ORs were obtained with modified ser-
ological definitions in sensitivity analyses (data not
shown). Neither did the analyses stratified by the age
groups < and ≥ 65 years show statistically significant
association between any SNP and CAG (Additional file
2).

Discussion
To our knowledge, the present investigation, nested
within the population-based German ESTHER cohort, is
the largest study addressing genetic susceptibility to
CAG [3,21].
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Despite both sample size and rationales, we did not
find consistent associations between DNA repair SNPs
and risk of CAG, the well-established precursor of
intestinal GC (Additional files 1 and 2). In contrast,
Capellá et al. found associations of ERCC2/XPD D312N
and K751Q with an increased risk of severe CAG [20].
The discrepant findings may be due to different serolo-
gical definitions of CAG in the studies [3,20]. Another
possible reason to be considered is random variation,
having in mind the much smaller number of cases (n =
246) in the study by Capellá et al. [20].
Remarkably, XRCC1 -77T > C was identified as func-

tional polymorphism, diminishing promoter activity and
thus increasing the risk of non-small cell lung cancer
(NSCLC), while the three non-synonymous XRCC1
SNPs R194W, R280H and R399Q, whose functional
characteristics are not determined yet, showed no asso-
ciation with NSCLC risk [15]. As demonstrated by
Capellá et al., R399Q in XRCC1 showed an association
with an increased risk of severe chronic atrophic gastri-
tis [20]. Contrariwise, a recent meta-analysis indicated
R194W to be XRCC1 susceptibility variant for GC [23].
After extensive studies of DNA repair polymorphisms in
various cancer sites and ethnic populations, the results
still remain inconsistent [17], which may be attributed
to both different aetiologies of cancers, and ethnic or
geographical disparities [11].
The present study has both strengths and limitations.

Strengths include the well-defined and homogeneous
study population. In addition, we analysed SNPs for
which associations with CAG (and/or GC and other
cancers) are biologically plausible and for which associa-
tions have been previously reported [9-20]. We had a
power of 80% at a significance level of 0.05 to detect
ORs ≥ 1.44/≤ 0.69 (ranges 1.37-1.44/0.73-0.69) for all
SNPs [22]. Admittedly, the presented data need to be
interpreted within caution as the best serological defini-
tion of CAG is difficult to accomplish. Thus, Miki et al.
suggested to use the PG I/PG II ratio for the definition
of CAG and reported PG I alone to be specific, yet
insufficiently sensitive [24], and a series of studies
agreed to the necessity to include the PG I/PG II ratio
in the definition [25,26].
Although the eleven investigated SNPs are strong can-

didates for susceptibility to cancers and their precursor
lesions [5-16], this study did not indicate any major
association with CAG risk. A possible explanation for
the lack of significance may be that a real risk altering
SNP (within one of the selected or another DNA repair
pathway gene) was not analysed and missed.

Conclusions
Our findings, based on a large number of CAG cases, do
not support associations of DNA repair pathway gene

SNPs with the risk of CAG. Much larger studies are
needed to reveal potential weak associations. Moreover,
full coverage of candidate DNA repair genes, i.e. tagging
SNP approaches should be aimed for in future studies.

Additional material

Additional file 1: Table S1. DNA repair pathway single nucleotide
polymorphisms (SNPs) and risk of chronic atrophic gastritis.

Additional file 2: Table S2. Associations of DNA repair pathway single
nucleotide polymorphisms (SNPs) with the risk of chronic atrophic
gastritis among individuals < and ≥ 65 years of age.
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