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Aurora kinases are expressed in medullary
thyroid carcinoma (MTC) and their inhibition
suppresses in vitro growth and tumorigenicity of
the MTC derived cell line TT
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Abstract

Background: The Aurora kinase family members, Aurora-A, -B and -C, are involved in the regulation of mitosis, and
alterations in their expression are associated with cell malignant transformation. To date no information on the
expression of these proteins in medullary thyroid carcinoma (MTC) are available. We here investigated the
expression of the Aurora kinases in human MTC tissues and their potential use as therapeutic targets.

Methods: The expression of the Aurora kinases in 26 MTC tissues at different TNM stages was analyzed at the
mRNA level by quantitative RT-PCR. We then evaluated the effects of the Aurora kinase inhibitor MK-0457 on the
MTC derived TT cell line proliferation, apoptosis, soft agar colony formation, cell cycle and ploidy.

Results: The results showed the absence of correlation between tumor tissue levels of any Aurora kinase and
tumor stage indicating the lack of prognostic value for these proteins. Treatment with MK-0457 inhibited TT cell
proliferation in a time- and dose-dependent manner with IC50 = 49.8 ± 6.6 nM, as well as Aurora kinases
phosphorylation of substrates relevant to the mitotic progression. Time-lapse experiments demonstrated that MK-
0457-treated cells entered mitosis but were unable to complete it. Cytofluorimetric analysis confirmed that MK-
0457 induced accumulation of cells with ≥ 4N DNA content without inducing apoptosis. Finally, MK-0457
prevented the capability of the TT cells to form colonies in soft agar.

Conclusions: We demonstrate that Aurora kinases inhibition hampered growth and tumorigenicity of TT cells,
suggesting its potential therapeutic value for MTC treatment.

Background
Human cancer progression is associated to the acquisi-
tion by malignant cells of novel functional capabilities,
which include self-sufficiency in growth signals, insensi-
tivity to anti-growth signals, evasion of apoptosis, limit-
less replicative potential, sustained angiogenesis and
tissue invasion and metastasis [1]. Genomic instability,
an hallmark of solid tumors including the medullary
thyroid carcinoma (MTC), represents the mean by

which premalignant cells may acquire the above men-
tioned capabilities [1-4]. The increasing knowledge
about the molecular processes controlling cell division
has led to the identification of a number of proteins
held responsible for the genetic instability. Among these
are the three Aurora kinase family members, Aurora-A,
-B and -C, implicated in the regulation of multiple
aspects of the mitotic process including centrosome
maturation and function, chromosome segregation and
cytokinesis [5-9]. In particular, Aurora-A is associated
with centrosomes in G2 and mitotic cells, where it regu-
lates centrosome maturation and mitotic spindle forma-
tion. Aurora-B is localized to the chromosomes during
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prophase, and as chromosome condensation occurs,
Aurora-B forms a complex, called chromosomal passen-
ger complex (CPC), with INCENP (INner CENtromere
Protein), survivin and borealin/dasra-B, leading to the
phosphorylation of histone H3. In metaphase, the com-
plex accumulates on the centromeres and participates to
the correction of erroneous connections between cineto-
cores and spindle’s microtubules. Successively, during
the transition from anaphase to telophase, the complex
dissociates from chromosomes and relocates in the spin-
dle midzone, where Aurora-B is required for the phos-
phorylation of several proteins involved in spindle
dynamics and contractile ring formation. Of the three
kinases Aurora-C is the less known; its role appears to
be similar, at least in part, to that of Aurora-B, since it
exhibits analogous subcellular localization, interaction
with CPC components and phosphorylation of sub-
strates [10-12]. The expression and activity of Aurora
kinases are precisely regulated during the cell cycle,
since their levels are low in G1/S phase and enhanced
in the G2/M phase to be decreased after mitosis. This
reduction has been shown to involve the ubiquitin-pro-
teasome pathway [9].
Alterations in Aurora kinases expression are linked to

tumor progression [13-22]. The genes encoding the
Aurora kinases map, in fact, into chromosomal regions
that are frequently amplified in different cancer types,
and overexpression of each kinase has been detected in
tumor cell lines [13-22]. Moreover, it has been demon-
strated that the upregulation of Aurora-A or -B causes
defects in chromosome segregation and consequent
aneuploidy, and induces cell malignant transformation
[21-23]. In addition, tumor tissue expression of Aurora-
A or Aurora-B has been shown to be a significant prog-
nostic factor in several human malignancies, including
the non-small-cell lung, breast, liver, colorectal, ovarian,
and head and neck squamous cell carcinomas [24-29].
These evidences suggest an important role for Aurora
kinases in cancer progression, and structure-based drug
design has led to the identification of new putative
drugs which efficiently inhibit Aurora kinases [16,30-32].
This may be of relevance in those cancers which do not
respond well to the available antimitotic agents, includ-
ing a subset of medullary thyroid cancers (MTC)
[16,30]. The latter arise from the calcitonin-producing
parafollicular C cells of the thyroid and accounts for
about 5-8% of all thyroid cancers [33]. It develops
mostly as a sporadic tumor, being hereditary in 20-30%
of cases which include the familial MTC (FMTC) and
the multiple endocrine neoplasia type 2 (MEN2)
[34-37]. All the hereditary MTC and approximately 50%
of the sporadic tumors are caused by dominant autoso-
mal activating mutations of the RET proto-oncogene
[34-37]. Over the last decades, surgery has remained the

only curative therapy, and the overall survival rate of
unselected patients ten years after the primary surgery is
about 70%, while treatments of recurrent or persistent
disease with conventional radiotherapy or chemotherapy
are generally of limited value and with no benefit in
terms of survival [33-35,38]. This implies that patients
classification, initial surgical treatment and lack of ade-
quate post-surgical therapy are still major problems in
the management of these patients [39-41].
In the present study, we investigated the expression of

the three Aurora kinases in 26 human MTC and ana-
lyzed the effects of the Aurora inhibitor MK-0457 on
growth and tumorigenicity of the MTC derived cell line
TT.

Methods
Cell line and Materials
Thyroid medullary carcinoma derived cell line TT was
purchased from Interlab Cell Line Collection (Genova,
Italy). Mouse monoclonal and rabbit polyclonal antibodies
against b-tubulin and b-actin were from Sigma Aldrich
Co. (St-Louis, MO). Rabbit polyclonal anti-Aurora-C anti-
body was generated against a 16 amino acid peptide of the
C-terminal part of Aurora-C (aa 259-275) by Eurogentec
(Seraing, Belgium). Mouse monoclonal antibodies against
Aurora-A (31C1) and Aurora-B (AIM-1) were from
Abcam (Cambridge, UK). The mouse monoclonal anti-
body anti-phospho-histone H3 (Ser10) was from Millipore
(Milano, Italy). The secondary anti-rabbit and anti-mouse
antibodies TRITC- and FITC-conjugated were from Jack-
son Laboratories (Maine, USA). The VECTASHIELD®

Mounting Medium with DAPI was from Vector Labora-
tories (Burlingame, KS). The Cell Proliferation Reagent
WST-1 was acquired from Roche Diagnostics (Mannheim,
Germany). The Isol-RNA lysis reagent was from Eppen-
dorf (Milan, Italy). The Aurora kinases inhibitor MK-0457
was provided by Merck & Co. (Rahway, NJ) and Vertex
Pharmaceuticals Inc. (Cambridge, MA). DNeasy Blood
and Tissue kit was from Qiagen (Milan, Italy).

Patients
The case study consists of 26 medullary thyroid cancer
(MTC) patients (16 males and 10 females, mean age 52.6
yr, range 23-73 yr). All patients underwent total thyroi-
dectomy and central neck compartment dissection. The
histological diagnoses were made independently by two
different histopathologists according to the World Health
Organization classification [42]. Of the 26 patients 21
were assumed to have a sporadic cancer because no
germline RET mutations were found, their family history
was negative, and no other endocrine neoplasia was iden-
tified. The remaining 5 cases were familial MTC. Follow-
ing TNM staging 5 patients were at stage I, 4 at stage II,
5 at stage III, 7 at stage IVA and 5 at stage IVC. All the
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patients gave their informed consent and study
approved by the local ethical committee.

RET analysis
All patients gave their informed consent to genetic test-
ing. All primary MTCs were collected after surgery,
immediately frozen in liquid nitrogen, and stored at -80°
C. DNA was extracted from primary cancers using the
DNeasy Blood and Tissue kit. RET exons 10, 11, 13, 14,
15 and 16 mutations were assessed by direct sequencing.
Activating RET mutations were found in 7 (33%) of the
21 sporadic cases and in all the 5 familial cases.

Extraction and analysis of mRNA by quantitative RT-PCR
Tissue samples were homogenized in Isol-RNA lysis
reagent with the ultra-turrax, and total RNA was
extracted by the acid guanidinium thiocyanate-phenol-
chloroform method [43]. The purity and integrity of the
RNA preparations were checked spectroscopically and
by agarose gel electrophoresis before carrying out the
analytical procedures. Five μg of total RNA were
reverse-transcribed and the obtained cDNAs were used
as template for the subsequent quantitative PCR amplifi-
cations of the Aurora-A, Aurora-B, Aurora-C and
GAPDH. Controls for DNA contamination were per-
formed omitting the reverse transcriptase during reverse
transcription. Real-time PCR were performed with the
LightCycler instrument (Roche Diagnostics), employing
the FastStart DNA Master SYBR Green I kit. The pri-
mers used are listed in table 1. Briefly, following poly-
merase activation (95°C for 2 min), 40 cycles were run
with 10 sec denaturation at 95°C, 10 sec annealing at
58°C and 25 sec extension at 72°C. Standard run curves
were generated for each gene using five-fold dilutions of
a cDNA mixture. The PCR products were visualized on
2% agarose gel, and the specificities of the different
amplicons were determined by automated DNA sequen-
cing (Primm, San Raffaele Biomedical Science Park,
Milano, Italy). The calculation of data was performed
with the LightCycler relative quantification software 1.0
(Roche Diagnostics).

Cell cultures
The medullary thyroid cancer cell line TT was estab-
lished from a 77 yr old Caucasian female [44]. These
cells harbours a MEN2A mutation of the RET gene
(C634W) [45] and are hypodiploid with a modal chro-
mosome number of 43 [46]. The cells have been cul-
tured in medium Ham’s F12 containing 10% FBS, 2 mM
L-glutamine at 37°C in 5% CO2 humidified atmosphere.
In all the experiments below described medium was
changed every 2 days with the sole vehicle (DMSO) or
fresh inhibitor (MK-0457) added.

Proliferation assay
TT cells were cultured in 96 well plates, and treated
with different concentrations of the inhibitor (5 to 1000
nM) for 6 days, or with the dose 200 nM for different
periods of time (1 to 8 days). The cell proliferating
reagent WST-1 was added to cells (10 μl/100 μl culture
medium) 4 h before the end of the incubation period,
and the cell viability was finally measured by colori-
metric assay using the CM sunrise ELISA reader (Tecan
Group Ltd., Switzerland).

Flow Cytometric analysis
TT cells were cultured in absence or in presence of 200
nM MK-0457 for 6 days. Then the culture medium was
collected, the cells were washed with PBS, harvested by
incubation for 5 min at 37°C in PBS with 0.1% EDTA
and centrifuged at 1200 rpm for 5 min together with
their medium. After a wash in PBS, the cells were resus-
pended in 70% ice-cold ethanol, labelled with propidium
iodide and analyzed for the DNA content as described
[47], using the FACScalibur Flow cytometer and Cell-
QUEST software (BD Biosciences, San Jose, CA).

Western blot
Control and MK-0457 (200 nM for 2 days) treated cells
were lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 1%
NP-40, 0.5% sodium deoxycholate, 150 mM sodium
chloride, 1 mM EDTA, protease inhibitor cocktail),
sonicated and then centrifuged at 13,000 rpm for

Table 1 Primer sequences, exon positions and amplicon size of the different members of the Aurora kinase family

Gene Primers Exon Size (bp)

Aurora-A Forward 5’-CTGCATTTCAGGACCTGTTAAGG-3’ 1 150

Reverse 5’-AACGCG CTGGGAAGAATTT-3’ 2

Aurora-B Forward 5’-AACTCCTACCCCTGGCCCTA-3’ 2 104

Reverse 5’-ACAAGTGCAGATGGGGTGAC-3’ 3

Aurora-C Forward 5’-CGCATCCTCAAGGTAGATGTG-3’ 6-7 217

Reverse 5’-GAACACACACAAAGGGAACAGAG-3’ 7

b2-Micr. Forward 5’-TGACTTTGTCACAGCCCAAGATA-3’ 2 75

Reverse 5’-CGGCATCTTCAAACCTCCA-3’ 3-4
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20 min. Protein concentrations were determined by the
Bradford assay. Aliquots of 30 μg of cell protein extracts
were electrophoresed on a 12.5% polyacrylamide gel and
transferred onto nitrocellulose membranes. The latter
were then washed with TBS-T (50 mM Tris-HCl pH
7.4, 150 mM NaCl, 0.05% Tween-20), saturated with 5%
low fat milk in TBS-T and then incubated at 4°C over-
night with antibodies against Aurora-A (1:500), Aurora-
B (1:500), Aurora-C (1:500) or b-actin (1:1000) in TBS-
T. After washing, the membranes were incubated with
appropriate horseradish peroxidase-conjugated second-
ary antibodies against mouse or rabbit IgG (1:20,000) in
TBS-T and developed using the chemiluminescence
Super Signal kit (Pierce).

Colony formation in soft agar
Petri dishes of 3.5 cm diameter were first prepared by
adding 3 ml of complete medium with 0.4% soft agar. TT
cells cultured in standard conditions were trypsinized,
centrifuged and resuspended in a single-cell suspension
of 75000 viable cells/ml. The latter was mixed with com-
plete medium containing 0.4% soft agar at a ratio 1:2
then divided in two aliquots, one of which was supple-
mented with 200 nM MK-0457. These suspensions were
seeded onto the Petri dishes containing the solidified
agar medium, 1 ml/dish, and incubated at 37°C and 5%
CO2. Control and treated cultures were observed under
microscope just after plating, to verify the absence of cell
aggregates, and next periodically checked for colonies
formation. After three weeks, the colonies were photo-
graphed and the acquired images were analyzed by the
MetaVue software (Universal Imaging Corp., Downing-
town, PA), scoring those larger than 50 μm in diameter.

Time-lapse analysis
TT cells were cultured in absence or in presence of
200 nM MK-0457 for 24 h under a microscope Leica
DM-IRBE equipped with an incubation chamber at
37°C and 5% CO2. Cell pictures were acquired every
5 min using the MetaVue software.

Immunofluorescence
TT cells cultured on glass coverslips were treated or not
with 200 nM MK-0457 for 6 h, then fixed in cold metha-
nol for 5 min, washed and preincubated with 3% bovine
serum albumin (BSA) in PBS for 1 h at room temperature.
After three washes with PBS, the cells were incubated with
the antibodies anti-Aurora-A (1:200), anti-Aurora-B
(1:500), anti-Aurora-C (1:200), anti-P-histone H3 (1:2000)
and/or anti-b-tubulin (1:2000) for 2 h at room tempera-
ture in PBS with 1.5% BSA. After washing, the secondary
TRITC- and FITC-conjugated anti-mouse and anti-rabbit
antibodies (1:200) were added in PBS with 1.5% BSA and
incubated for 1 h at room temperature. The coverslips

were then mounted in Vectashield mounting medium
containing 1 μg/ml DAPI and observed with a microscope
Leica-DMRXA. In parallel experiments cells have been
cultured for 6 days in the presence or absence of the MK-
0457 to assess ploidy. Cells were stained for b-tubulin and
DNA, and then 100 cells for each of three different cover-
slips for control and MK-0457 were counted.

Statistical analysis
The statistical significance of differences in the expres-
sion levels of the Aurora kinases and TNM stages was
assessed by the analysis of variance (One way ANOVA)
followed by the Tukey post ANOVA test. The results
obtained following TT cell incubation in the presence or
in the absence of MK-0457 were expressed as the mean
± SEM of three independent experiments. The statistical
significance of data was evaluated by the Student t-test
using the SPSS software (SPSS Inc., Chicago, Ill.). The
results were considered significantly different if the per-
taining p values were lower than 0.05.

Results
Correlation of Aurora kinases expression with tumor
stage and RET mutation
To investigate the Aurora kinases expression in medul-
lary thyroid cancer (MTC) we determined their relative
mRNA tissue levels in 26 MTC and correlated them
with TNM stages. As shown in figure 1 (panel A), no
statistically significant variations were observed in the
expression of Aurora-A, -B or -C among the different
TNM stages. We then sought to verify whether the pre-
sence of activating RET mutations would affect the
expression of the 3 Aurora kinases. As reported in figure
1, (panel B) no differences were found in the Aurora
kinases mRNA levels between RET negative and RET
positive tissues.

Effect of MK-0457 on TT cell proliferation
The effect of the functional inhibition of the Aurora
kinases on TT cell proliferation was evaluated on cells cul-
tured from 1 to 8 days in presence of 200 nM MK-0457 or
of the vehicle alone as control. The dose of 200 nM was
used in these initial experiments since it was shown to eli-
cit maximal response on different tumor cell types in vitro
[30]. The results demonstrated a cytostatic effect of the
MK-0457 on TT cell proliferation, which became evident
as soon as 24 h (figure 2, panel A). We then evaluated the
dose-dependent effects of MK-0457 on the TT cells prolif-
eration by treating the cells for 6 days in presence of
increasing concentrations of the inhibitor (5 nM to 1000
nM). The results of three independent experiments
showed a dose-dependent inhibition of TT cells growth
with half-maximal inhibitory concentration (IC50) of 49.8
± 6.6 nM (figure 2B).
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Figure 1 Correlation of Aurora kinases expression with the TNM stage and RET status. (A) The Aurora kinase mRNAs level in MTC tissues
was quantified as described in the Materials and Methods section. The statistical analysis of differences in the expression level of the three
kinases in MTC tissues at different TNM stages was assessed by the analysis of variance (ANOVA) followed by the Tukey post ANOVA test. (B)
Aurora kinases mRNA level in MTC tissues harboring the wild type (WT) or the mutated (Mut) RET protein. The bars in the graphs indicate the
median values.
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Effect of MK-0457 on TT cell ploidy
The effect of MK-0457 on TT cell cycle was evaluated
by FACS analysis. Cell cultures exposed to 200 nM MK-
0457 for 6 days displayed a significant reduction of cells
in G0/G1 and S phases (p < 0.01) with a concomitant
accumulation of cells in G2/M phase (p < 0.05). A dras-
tic increase of polyploidy cells (p < 0.01) was also
observed following MK-0457 treatment (figure 3 and
table 2). On the opposite, the percentage of cells with

sub-G1 nuclei was not varied. Analogous results were
obtained after 3 days of treatment with the inhibitor
(data not shown). These findings were confirmed by
immunofluorescence experiments showing a significant
(p < 0.01) increase of multinucleate cells after MK-0457
treatment, from 8.3 ± 2.4% to 67.4 ± 6.1%, (see inserts
of figure 3). The time-lapse monitoring the cell cycle
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Figure 2 Time- and dose-dependent effects of the MK-0457 on
TT cell proliferation. The TT cells were cultured in absence (DMSO)
or in presence of 200 nM MK-0457 for different periods of time (A)
or with different concentrations of MK-0457 (5 nM - 1000 nM) for 6
days (B). Data reported are representative of one out of three
similar experiments. Statistical significance of data was assessed by
the Student t-test. * p < 0.01.

ControlControl

MK0457MK0457

Figure 3 Effects of the MK-0457 on TT cell ploidy. Cells were
incubated for 6 days with 200 nM MK-0457 or the vehicle (DMSO).
At the end of the incubation time cells were fixed and analyzed by
FACS. See also table 2. For the immunofluorescence experiments
(insert) TT cells were exposed or not for 6 days to 200 nM MK-0457,
then fixed and stained with DAPI and b-tubulin. Scale bar, 20 μm.

Table 2 Effects of MK-0457 on TT cell ploidy

Cell cycle phase Control MK-0457 t-test

Sub G0/G1 0.53 ± 0.13 0.33 ± 0.12 p = 0.12

Go/G1 51.35 ± 4.84 3.32 ± 0.09 p < 0.01

S 4.94 ± 0.94 0.72 ± 0.02 p < 0.01

G2/M 15.03 ± 0.05 22.37 ± 2.84 p < 0.05

Polyploid 16.57 ± 3.25 60.59 ± 2.66 p < 0.01
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revealed that control cells accomplished their mitosis in
about 3 h (figure 4). In contrast, MK-0457 treated cells
entered mitosis but were unable to complete the cyto-
kinesis, and finally returned to the interphasic feature
(figure 4).

Effects of the MK-0457 on Aurora kinases expression,
subcellular localization, spindle formation and histone H3
phosphorylation in TT cells
We next investigated the alterations induced by MK-
0457 on TT mitotic structures and proteins. To ascer-
tain that MK-0457 effects were due to the inhibition of
Aurora kinases activities and not to changes in their
protein levels, we performed western blot experiments
on cell protein extracts from cells treated or not with

200 nM MK-0457 for 48 h. The results showed no dif-
ferences in the three protein levels between control
and treated cells (figure 5, panel A). The immunofluor-
escence experiments showed that centrosomal localiza-
tion of Aurora-A was maintained in cells exposed to
MK-0457 (200 nM) for 6 h (figure 5, panel B). How-
ever, the mitotic cells had aberrant spindles character-
ized by shorter microtubules. In treated cells, Aurora-B
localization on the condensing chromatin during pro-
phase was also maintained, but the histone H3 phos-
phorylation was no longer detectable (figure 5, panel
C). In control cells, Aurora-C was solely observed on
the midbody of cytokinetic cells (figure 4, panel D),
but following MK-0457 treatment no cells in telophase
could be identified.
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Figure 4 Time-lapse analysis of control and MK-0457 treated TT cells. Pictures of cells cultured in the absence or in the presence of 200
nM MK-0457 were recorded every 5 min during 24 h using the MetaVue software. Data reported are representative of one out of three similar
experiments. Numbers in the inserts represent the minutes. Scale bar, 10 μm.
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Effects of MK-0457 on TT cell colony formation in soft
agar
We evaluated the effects of the Aurora kinases inhibitor
on the ability of the TT cells to form colonies in soft
agar. In these experiments the cells were cultured either
in the absence or in the presence of 200 nM MK-0457
for three weeks. Control cells started to form noticeable
colonies after 10 days of culture, and three weeks later
3.86 ± 0.76 colonies per mm2, with a mean area of 4796
± 705 μm2, were scored (figure 6). Treatment with MK-
0457 significantly reduced (p < 0.001) the ability of TT
cells to form colonies in soft agar to 0.20 ± 0.15 colonies
per mm2, with a mean area of 2324 ± 72 μm2.

Discussion
Over the last decade, the three members of the Aurora
kinase family, Aurora-A, -B and -C, involved in the regu-
lation of multiple aspects of the mitotic process, have
been identified as new oncogenes [6-8]. Their overex-
pression, in fact, may cause cell malignant transformation
and correlates with a poor prognosis in several types of
human malignancies, including lung, breast, liver, color-
ectal, ovarian, and head and neck squamous cell carcino-
mas, thus documenting their role in tumor formation
and progression [13-32]. An association study, aimed to
identify low-penetrance genes involved in sporadic MTC
etiology, identified Aurora-A among 6 genes consistently
associated with sporadic MTC risk in two-case control
study [37]. However, no other information are available
on the expression of the Aurora kinases in MTC. There-
fore, in the present study we analyzed the possible clini-
cal relevance of Aurora kinases in the prognosis and
therapy of MTC patients. In particular, we first investi-
gated the expression levels of all Aurora kinases in MTC
tissues and attempted to correlate them with TNM stage,
strongly associated with the cure and survival rates [39].
The results, obtained on a case study of 26 MTC patients,
differently from what observed in other types of malig-
nancy, indicate the absence of correlation between the
expression of the three Aurora kinases and TNM stages
[24-32]. Moreover, the expression level of all kinases was
not varied by the presence of RET mutations, known to
associate with a poor prognosis. These findings, however,
remain to be corroborated on larger case studies.
Over the last few years, a number of different inhibitors

of the Aurora kinases have been developed and some of
them were reported to enter in Phase I clinical trials [48].
These include MK-0457, a functional pan-Aurora kinases
inhibitor with inhibition constant (Ki) ranging between 0.6
and 18 nM and showing more than 100 fold selectivity
with respect to other kinases tested [30]. It inhibits tumor
growth in a variety of in vivo xenograft models, inducing
regression of leukemia, colon and pancreatic tumors at
well-tolerated doses [30]. We first demonstrated that

treatment of the MTC derived cell line TT with MK-0457
leads to time- and dose-dependent inhibition of prolifera-
tion, with IC50 of about 50 nM, in agreement with what
reported on other cancer cell types [24-26].
In previous works, we and others demonstrated that

Aurora-A kinase activity is required for the phosphoryla-
tion and localization of the TACC3 protein on the spin-
dle microtubules. TACC3, in complex with the Ch-Tog
protein, is essential in spindle microtubule growth and
stability [14,49]; hence, alteration of TACC3 localization
following MK-0457 treatment could explain, at least in
part, the aberrant spindle formation in TT cells. Histone
H3 is also a well recognized target of Aurora-B kinase
and its phosphorylation is thought to mediate chromo-
some condensation during prophase [50]. In the present
study, in agreement with other reports [24-26,30], we
showed that MK-0457 treatment of TT cells inhibits his-
tone H3 phosphorylation. Thus, the anti-proliferative
effect of MK-0457 on TT cells is consistent with the inhi-
bition of Aurora kinases leading to major alterations in
centrosome functions, abnormal spindle formation char-
acterized by the presence of short microtubules and
mitotic arrest [24-26]. Inhibition of Aurora kinase activity
has been demonstrated to generate polyploid cells as a
result of multiple rounds of DNA synthesis in the
absence of cytokinesis [51]. The final response to the
MK-0457 is thought to be conditioned by the p53-p21-
dependent post-mitotic checkpoint: cells with intact
checkpoint function arrest with 4N DNA content, while
those with compromised p53-dependent pathway
undergo endoreduplication and apoptosis [52]. The TT
cells employed in the present study possess a wild-type
p53 gene and, in agreement with the above findings, we
observed that MK-0457 causes abortive mitosis with
accumulation of TT cells with 4N DNA content without
apoptosis [53]. As a consequence, the MK-0457 treat-
ment significantly reduces the ability of the TT cells to
form colonies in soft agar [24-26]. It has to be mentioned
that Merck suspended the enrollment in clinical trials of
the MK-0457 due to QTc prolongation observed in one
patient. However, a number of small molecule inhibitors
of Aurora kinases are currently under investigation, some
of which have entered clinical trials [54].

Conclusions
In conclusion, we demonstrated that human MTC tis-
sues express the three Aurora kinases and that their
functional inhibition prevent proliferation and in vitro
tumorogenicity of the MTC derived cells TT. These
findings warrant further investigations to exploit the
potential therapeutic value of Aurora kinases inhibition
in the treatment of MTC patients with recurrent or per-
sistent disease for which no effective therapies are
available.

Baldini et al. BMC Cancer 2011, 11:411
http://www.biomedcentral.com/1471-2407/11/411

Page 9 of 12



Control MK0457A

B

*

*

Figure 6 Effects of the MK-0457 on TT cell colony formation in soft agar. (A) TT cells were plated in soft agar onto 3.5 cm Petri dishes in
the absence or in the presence of MK-0457 (200 nM). Treated and non-treated plates were photographed after three weeks of incubation. The
colony size was determined using the MetaVue software and those larger than 50 μm in diameter were scored. Photographs reported in the
figure are representative of one out of three similar experiments each performed in triplicate. Scale bar, 100 μm. (B) Effects of MK-0457 on the
number and size of TT colonies in soft agar. Data reported represent the mean ± SEM of three independent experiments. *p < 0.001
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