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Abstract

Background: We hypothesized that race/ethnic group, sex, age, and/or calendar period variation in adult glioma
incidence differs between the two broad subtypes of glioblastoma (GBM) and non-GBM. Primary GBM, which
constitute 90-95% of GBM, differ from non-GBM with respect to a number of molecular characteristics, providing a
molecular rationale for these two broad glioma subtypes.

Methods: We utilized data from the Surveillance, Epidemiology, and End Results Program for 1992-2007, ages 30-
69 years. We compared 15,088 GBM cases with 9,252 non-GBM cases. We used Poisson regression to calculate
adjusted rate ratios and 95% confidence intervals.

Results: The GBM incidence rate increased proportionally with the 4th power of age, whereas the non-GBM rate
increased proportionally with the square root of age. For each subtype, compared to non-Hispanic Whites, the
incidence rate among Blacks, Asians/Pacific Islanders, and American Indians/Alaskan Natives was substantially lower
(one-fourth to one-half for GBM; about two-fifths for non-GBM). Secondary to this primary effect, race/ethnic group
variation in incidence was significantly less for non-GBM than for GBM. For each subtype, the incidence rate was
higher for males than for females, with the male/female rate ratio being significantly higher for GBM (1.6) than for
non-GBM (1.4). We observed significant calendar period trends of increasing incidence for GBM and decreasing
incidence for non-GBM. For the two subtypes combined, we observed a 3% decrease in incidence between 1992-
1995 and 2004-2007.

Conclusions: The substantial difference in age effect between GBM and non-GBM suggests a fundamental
difference in the genesis of primary GBM (the driver of GBM incidence) versus non-GBM. However, the
commonalities between GBM and non-GBM with respect to race/ethnic group and sex variation, more notable
than the somewhat subtle, albeit statistically significant, differences, suggest that within the context of a
fundamental difference, some aspects of the complex process of gliomagenesis are shared by these subtypes as
well. The increasing calendar period trend of GBM incidence coupled with the decreasing trend of non-GBM
incidence may at least partly be due to a secular trend in diagnostic fashion, as opposed to real changes in
incidence of these subtypes.

Background
In a previous descriptive study of international variation
in the incidence of adult primary brain cancer, we found
that: 1) White populations had the highest incidence
rates, North American Blacks had intermediate rates,
and populations of eastern and southeastern Asian ori-
gin had the lowest rates; 2) incidence rates increased
less steeply with age in the latter populations; 3) the
male/female incidence rate ratio was between 1.4 and

1.5 among populations throughout the world; and 4) the
male/female rate ratio was higher for peri- and post-
menopausal ages than for pre-menopausal ages [1]. The
lower incidence rate among non-Whites and the male
excess had previously been noted by other investigators
[2-6].
Although we examined brain cancer as a whole (due

to limitations of the data we were unable to examine
variation by morphologic type), our results were most
likely driven by variation in the incidence of glioma, the
predominant morphologic type of adult primary malig-
nant brain tumors [2,6]. However, because gliomas
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themselves are heterogeneous, we now hypothesize that
race/ethnic group, sex, and/or age variation in adult
glioma incidence differs by morphologic subtype. To
test these hypotheses, we utilized data from the popula-
tion-based cancer registries of the National Cancer Insti-
tute’s Surveillance, Epidemiology, and End Results
(SEER) Program. We also tested the hypothesis that
calendar period trends in adult glioma incidence varied
by subtype.
The three main categories of adult glioma according

to traditional pathological classification are astrocytoma,
oligodendroglioma, and mixed oligoastrocytoma [7-9].
Each of these categories is further sub-classified by
grade (grade II, grade III, or grade IV, the latter grade
reserved for glioblastoma [GBM], which is grade IV
astrocytoma) [8,9]. Secondary GBM develops through
progression from a lower grade astrocytoma, whereas
primary GBM appears to arise de novo, with no evi-
dence of a lower-grade precursor [9].
There is considerable variability in the diagnosis of the

traditional glioma categories and grades among patholo-
gists, across geographic regions, and over time [10].
Nevertheless, epidemiologists and neuropathologists
have reached a consensus that a pathology report of
GBM is likely to be valid (although a small proportion
of GBMs may be incorrectly classified as grade III [ana-
plastic] astrocytomas), whereas valid classification of
non-GBM subtypes requires centralized pathologic
review [10]. Thus, adult gliomas can validly be categor-
ized broadly as GBM versus non-GBM based on pathol-
ogy report diagnoses (which are utilized by SEER cancer
registries), but non-GBM cannot be sub-divided further
without compromising validity. Primary GBM, which
constitute 90-95% of GBM [9], differ from non-GBM
with respect to DNA copy number [11], gene expression
[11], DNA methylation [12-14], and isocitrate dehydro-
genase (IDH) 1 or 2 gene mutation status [11-16], pro-
viding a molecular rationale for the two broad glioma
subtypes of GBM and non-GBM.

Methods
Study population
We utilized publicly-available data from the SEER popu-
lation-based cancer registries (SEER Research Data
[1973-2007], released April 2010, based on the Novem-
ber 2009 submission) and associated SEER U.S. popula-
tion data (SEER Program Populations [1969-2007]
http://www.seer.cancer.gov/popdata, released November
2009) [17]. We included in our analyses adult glioma
cases diagnosed between 1992 and 2007. Cases diag-
nosed between 1992 and 1999 were from the SEER 13
Registries Database (Alaska Native, Atlanta, Connecticut,
Detroit, Hawaii, Iowa, Los Angeles, New Mexico, Rural
Georgia, San Francisco-Oakland, San Jose-Monterey,

Seattle-Puget Sound, and Utah). Cases diagnosed
between 2000 and 2007 were from the SEER 17 Regis-
tries Database (SEER 13 plus Greater California, Ken-
tucky, Louisiana, and New Jersey). The SEER 13
registries cover about 14% and the SEER 17 registries
cover about 26% of the total U.S. population.
We restricted our analyses to adult glioma because

different morphologic types of glioma predominate in
adults compared to children [2,5,6]. We defined glioma
as a malignant brain neoplasm (International Classifica-
tion of Diseases for Oncology, third edition [ICD-O-3]
topography codes C710-C719 and behavior code 3) with
an ICD-O-3 morphology code of 9380 (glioma, malig-
nant; glioma, not otherwise specified [NOS]), 9382
(mixed glioma), 9400 (astrocytoma, NOS), 9401 (astro-
cytoma, anaplastic), 9410 (protoplasmic astrocytoma),
9411 (gemistocytic astrocytoma), 9420 (fibrillary astrocy-
toma), 9440 (glioblastoma, NOS), 9441 (giant cell glio-
blastoma), 9442 (gliosarcoma), 9450 (oligodendroglioma,
NOS), 9451 (oligodendroglioma, anaplastic), or 9460
(oligodendroblastoma) [18]. We defined GBM as ICD-
O-3 morphology codes 9440, 9441, and 9442. We
defined non-GBM as all other codes except 9380
(glioma, malignant; glioma, NOS).
For valid classification of adult glioma as GBM versus

non-GBM, we made two necessary exclusions. First, we
excluded cases with the non-specific code 9380 because
such cases could not be classified as GBM versus non-
GBM. Second, we excluded cases that were not microscopi-
cally confirmed because valid distinction between GBM and
non-GBM requires microscopic examination of tumor tis-
sue and cannot be accomplished by imaging alone [19-21].
Given these exclusions, we sought to minimize selec-

tion bias due to differences in the proportion of cases
excluded according to age, calendar period, sex, or race/
ethnic group. First, we required that the proportion of
cases that were both microscopically confirmed and had
a specific morphology code (a code other than 9380) be
greater than 90% in each included 5-year age group,
resulting in restriction of the age range to 30-69 years
(Table 1). Overall, in this age range 92.3% of cases were
both microscopically confirmed and had a specific mor-
phology code. Then, we examined this proportion
within this age range according to period, sex, and race/
ethnic group and found that the proportion did not vary
meaningfully by these characteristics, although it was
slightly lower among Blacks (89.8%) and Asians/Pacific
Islanders (89.9%) than among other race/ethnic groups
(Table 1). Overall, in the age range 30-69 years, 4.6% of
cases were excluded due to having morphology code
9380 and 3.1% were excluded due to lack of microscopic
confirmation (3.8% of GBM cases and 2.4% of non-GBM
cases). We included a total of 15,088 GBM cases and
9,252 non-GBM cases in our analyses.
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Data analysis and statistical methods
We downloaded sex-, age-, race-, Hispanic-ethnicity-,
and calendar-year-specific numbers of cases and person-
years at risk from the SEER website. We classified age
into eight five-year age groups ranging from 30-34 to
65-69. We divided calendar-years into four four-year
periods (1992-1995, 1996-1999, 2000-2003, and 2004-
2007). Our race/ethnic group categories were non-His-
panic White, Hispanic White, Black, Asian/Pacific Islan-
der, and American Indian/Alaskan Native.

For each of our two glioma subtypes, we calculated
sex-and age-specific incidence rates (for each race/ethni-
city group) by dividing the number of cases by the num-
ber of person-years at risk. We calculated sex-specific,
age-standardized incidence rates (ASRs) and 95% confi-
dence intervals (CIs) (for each race/ethnicity group) by
direct standardization of the age-specific incidence rates
to the 2000 U.S. Standard Population (Census P25-
1130). We used Poisson regression to calculate adjusted
rate ratios (RRs) and 95% CIs. We modeled age as a

Table 1 Number and percent of glioma cases that were both microscopically confirmed and had specific ICD-O-3
morphology codes (not 9380), by demographic characteristic, SEER, 1992-2007

Characteristic Glioma Cases

Totala Microscopically confirmed with specific morphology

N N Percent

Age (years)

20-24 812 699 86.1%

25-29 1,308 1,171 89.5%

30-34 1,709 1,553 90.9%

35-39 2,194 2,038 92.9%

40-44 2,730 2,522 92.4%

45-49 3,224 3,003 93.1%

50-54 3,879 3,607 93.0%

55-59 4,133 3,835 92.8%

60-64 4,253 3,917 92.1%

65-69 4,252 3,865 90.9%

70-74 4,530 3,948 87.2%

75-79 4,081 3,353 82.2%

80-84 2,579 1,793 69.5%

85+ 1,448 663 45.8%

Total, age 30-69 years 26,374 24,340 92.3%

Period (age 30-69 years)

1992-1995 4,121 3,813 92.5%

1996-1999 4,345 4,006 92.2%

2000-2003 8,606 7,916 92.0%

2004-2007 9,302 8,605 92.5%

Sex (age 30-69 years)

Male 15,607 14,414 92.4%

Female 10,767 9,926 92.2%

Race/ethnic group (age 30-69 years)

Non-Hispanic White 20,860 19,354 92.8%

Hispanic White 2,735 2,487 90.9%

Black 1,444 1,297 89.8%

Asian/Pacific Islander 1,222 1,098 89.9%

American Indian/Alaskan Native

Native 113 104 92.0%
aGBM (codes 9440, 9441, 9442), non-GBM (codes 9382, 9400, 9401, 9410, 9411, 9420, 9450, 9451, 9460), and non-specific glioma, malignant (9380)
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categorical variable or as the natural logarithm of age
(loge(age)), where age was defined as the midpoint of the
five-year age group. We modeled calendar period as a
categorical or interval variable, the latter being used to
calculate the p-value for period trend. Results for models
with and without adjustment for cancer registry did not
meaningfully differ; we only present the unadjusted
results. To determine a p-value for heterogeneity, we
entered the appropriate cross-product term into the Pois-
son model and conducted a likelihood ratio test for its
addition, with the appropriate degrees of freedom. To
further explore the relationship between glioma subtype
incidence and age, we calculated adjusted RRs for 5-year
age groups using Poisson regression and used the calcu-
lated RRs to perform weighted linear least squares regres-
sion of log10(RR) versus log10(age). We also performed
weighted linear least squares regression of log10(age-spe-
cific incidence rate) versus log10(age). We performed
Poisson regressions using Proc Genmod of SAS version
9.1; statistical tests were two-sided with a = 0.05.

Results
Race/ethnic group
In Table 2, we tested the hypothesis that race/ethnic
group variation in incidence differs according to glioma
subtype. The reference group for the RRs was non-His-
panic Whites. Except for American Indians/Alaskan

Natives, 95% CIs for ASRs and RRs were relatively tight
due to large numbers of cases. For each subtype, ASRs
and RRs varied by race/ethnic group similarly for males
and females. For GBM, rates varied about three-to-four-
fold, with highest rates among non-Hispanic Whites,
followed by Hispanic Whites, Blacks, Asian/Pacific Islan-
ders, and American Indians/Alaskan Natives. As with
GBM, rates for non-GBM were highest among non-His-
panic Whites, followed by Hispanic Whites, with rates
among Blacks, Asian/Pacific Islanders, and American
Indians/Alaskan Natives each about 40% of the rates
among non-Hispanic Whites. The main differences in
race/ethnic variation between GBM and non-GBM were
that Blacks had lower RRs, and Asian/Pacific Islanders
and American Indians/Alaskan Natives had higher RRs,
for non-GBM than for GBM. Overall, race/ethnic group
variation was less for non-GBM than for GBM. The dif-
ference in race/ethnic variation between GBM and non-
GBM was highly significant among both males and
females (p-value for heterogeneity < 0.0001 in each sex).

Sex
In Table 2, we also tested the hypothesis that sex varia-
tion in incidence differs according to glioma subtype.
For each race/ethnic group and glioma subtype, males
had a higher incidence rate than females. For each race/
ethnic group, the male/female RR was higher for GBM

Table 2 Sex- specific, age-standardized incidence rates, age- and period-adjusted rate ratios, and age- and period-
adjusted male/female rate ratios, by race/ethnic group and glioma subtype, age 30 to 69 years, SEER, 1992-2007

Glioma

Subtype Race/ethnic group Males Females Male/Female

Cases ASRa (95% CIb) RRc (95% CIb) Cases ASRa (95% CIb) RRc (95% CIb) RRd (95% CIb)

GBM

Non-Hispanic White 7,458 5.20 (5.06, 5.32) 1.00 (reference) 4,745 3.16 (3.07, 3.25) 1.00 (reference) 1.64 (1.58, 1.70)

Hispanic White 769 3.08 (2.86, 3.31) 0.58 (0.54, 0.62) 625 2.34 (2.16, 2.53) 0.74 (0.68, 0.80) 1.31 (1.18, 1.45)

Black 470 2.51 (2.28, 2.74) 0.48 (0.44, 0.53) 352 1.56 (1.40, 1.73) 0.49 (0.44, 0.55) 1.61 (1.40, 1.85)

Asian/Pacific Islander 372 1.94 (1.75, 2.14) 0.38 (0.34, 0.42) 245 1.12 (0.98, 1.26) 0.35 (0.31, 0.40) 1.74 (1.48, 2.05)

American Indian/Alaskan Native 29 1.26 (0.79, 1.73) 0.25 (0.17, 0.36) 23 0.95 (0.56, 1.35) 0.30 (0.20, 0.45) 1.36 (0.78, 2.34)

Total 9,098 5,990 1.61e (1.56, 1.66)

Non-GBM

Non-Hispanic White 4,175 3.01 (2.91, 3.10) 1.00 (reference) 2,976 2.12 (2.04, 2.19) 1.00 (reference) 1.42 (1.36, 1.49)

Hispanic White 577 1.85 (1.69, 2.00) 0.59 (0.54, 0.65) 516 1.64 (1.49, 1.78) 0.76 (0.70, 0.84) 1.10 (0.98, 1.24)

Black 269 1.30 (1.14, 1.45) 0.43 (0.38, 0.49) 206 0.85 (0.74, 0.97) 0.40 (0.35, 0.46) 1.52 (1.26, 1.82)

Asian/Pacific Islander 264 1.29 (1.13, 1.45) 0.43 (0.38, 0.49) 217 0.95 (0.82, 1.08) 0.45 (0.39, 0.52) 1.35 (1.13, 1.62)

American Indian/Alaskan Native 31 1.24 (0.79, 1.69) 0.40 (0.28, 0.57) 21 0.77 (0.44, 1.11) 0.37 (0.24, 0.57) 1.54 (0.88, 2.67)

Total 5,316 3,936 1.38e (1.32, 1.44)
aAge-standardized rate (per 100,000 person-years; 2000 U.S. Standard Population (Census P25-1130))
bConfidence interval
cSex-specific, race/ethnic group rate ratio, adjusted for age and period by Poisson regression
dRace/ethnic group-specific male/female rate ratio, adjusted for age and period by Poisson regression
eMale/female rate ratio, adjusted for race/ethnic group, age, and period by Poisson regression
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than for non-GBM, except for American Indians/Alaska
Natives (for whom the 95% confidence intervals were
wide). The overall male/female RR, derived from a Pois-
son model with sex as the independent variable and age,
period, and race/ethnic group as covariates, was 1.61
(95% CI = 1.56, 1.66) for GBM versus 1.38 (95% CI =
1.32, 1.44) for non-GBM. This difference was highly sig-
nificant (p-value for heterogeneity < 0.0001).
The p-value for heterogeneity for the variation in

male/female RR by race/ethnic group was 0.0013 for
GBM and 0.0011 for non-GBM, indicating that the
male/female RR varied by race/ethnic group for each
glioma subtype. However, when we excluded Hispanic
Whites, among whom we observed the lowest male/
female RR for both GBM and non-GBM, the p-value for
heterogeneity was no longer significant (p = 0.76 for
GBM and p = 0.85 for non-GBM).
In Table 3 we tested the hypothesis that the male/

female RR is higher for peri- and post-menopausal ages
than for pre-menopausal ages. The male/female RR did
not significantly vary among these menopausal age
groups (p-value for heterogeneity = 0.38 for GBM and
0.087 for non-GBM). Because we observed in our pre-
vious study that the male/female RR was higher for
peri- and post-menopausal ages than for pre-menopau-
sal ages for adult brain cancer as a whole [1], most of
which is glioma, in the current study we also examined
GBM and non-GBM combined (data not shown) and
did observe a borderline-significantly higher male/female
RR for peri- and post-menopausal ages than for pre-
menopausal ages (p-value for heterogeneity = 0.047).

Age
In Poisson models including age (categorical variable
with 5-year age groups), sex, and a cross-product term

between age and sex, adjusted for period and race/eth-
nic group, the p-value for the cross-product term was
0.37 for GBM and 0.12 for non-GBM, indicating homo-
geneous age effects in males and females for GBM and
non-GBM, respectively. However, the difference in age
effect between GBM and non-GBM was highly signifi-
cant (p-value for heterogeneity < 0.0001).
To further explore the hypothesis that age variation in

incidence differs according to glioma subtype, for each
subtype we calculated adjusted RRs for age by 5-year
age group using Poisson regression, adjusting for period,
race/ethnic group, and sex. We then used these adjusted
RRs in weighted least squares regressions of log10(RR)
versus log10(age) and found reasonable fits, with the
GBM incidence rate increasing proportionally with
approximately the 4th power of age (slope = 4.17; 95%
CI: 3.80, 4.54; adjusted-R2 = 0.99), and the non-GBM
incidence rate increasing proportionally with approxi-
mately the square root of age (slope = 0.48; 95% CI =
0.25, 0.72; adjusted-R2 = 0.78), showing the marked dif-
ference in age effect between GBM and non-GBM. We
then calculated unadjusted RRs by 5-year age group and
subtype using Poisson regression and used the unad-
justed RRs in weighted least squares regression of log10
(RR) versus log10(age). We found slopes and adjusted-
R2s similar to those found when using adjusted RRs,
showing that it would be valid to plot log10(age-specific
incidence rate) versus log10(age) without adjustment,
which we show in Figure 1.
Finally, we modeled age as loge(age) in Poisson models

(Table 4) and found the period-, sex-, and race/ethnic-
group-adjusted regression coefficients (intersections of
“Total” row and “Total” column) to be identical to the
corresponding slopes observed in the weighted least
squares regression models that used the adjusted RRs
for 5-year age groups. The p-value for heterogeneity for
the sex difference in the loge(age) effect was 0.33 for
GBM and 0.18 for non-GBM, confirming the sex homo-
geneity; the p-value for heterogeneity for the difference
in loge(age) effect between GBM and non-GBM was
highly significant (p < 0.0001).
In Table 4, we also tested the hypothesis that the

loge(age) effect differs according to race/ethnic group
for each subtype. For GBM, the slope for loge(age) for
each race/ethnic group was approximately 4. However,
there was some evidence for heterogeneity (p-value for
heterogeneity = 0.021), with Asians/Pacific Islanders
and American Indians/Alaskan Natives having smaller
slopes than the other race/ethnic groups. For non-
GBM, the slopes by race/ethnic group ranged form
0.14 to 0.95, with a p-value for heterogeneity of
0.0005, with the smallest slopes again observed among
Asians/Pacific Islanders and American Indians/Alaskan
Natives.

Table 3 Age-, period-, and race/ethnic group-adjusted
male/female rate ratios by menopausal age group and
glioma subtype, age 30 to 69 years, SEER, 1992-2007

GBM Non-GBM

Age (years) N RRa (95% CIb) N RRa (95% CIb)

30-44 (pre-menopausal) 2,056 1.70 (1.56,
1.86)

4,057 1.33 (1.25,
1.41)

45-54 (peri-menopausal) 4,135 1.61 (1.51,
1.71)

2,475 1.36 (1.25,
1.47)

55-69 (post-menopausal) 8,897 1.59 (1.52,
1.66)

2,720 1.48 (1.37,
1.60)

p-value for
heterogeneityc

0.38 0.087

aAdjusted for age (5-year age categories), period, and race/ethnic group by
Poisson regression
bConfidence interval
cCalculated from the likelihood ratio test for the addition of the cross-product
term for sex by menopausal age group to the Poisson model
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Figure 1 Sex-specific log10-log10 plots of age-specific incidence rates versus age for GBM and non-GBM, respectively, age 30 to 69
years, SEER, 1992-2007. The logarithm10 of the age-specific incidence rate was plotted against the logarithm10 of the midpoint of each 5-year
age group. (A) Males; (B) Females.

Table 4 Race/ethnic group-specific, period-adjusted Poisson regression coefficients (slopes) for the natural logarithm
of age (loge(age)) by glioma subtype, age 30 to 69 years, SEER, 1992-2007

Glioma Malea Femalea Totalb

Subtype Race/ethnic group Slope (loge(age)) (95% CIc) Slope (loge(age)) (95% CIc) Slope (loge(age)) (95% CIc)

GBM

Totald 4.12 (4.01, 4.23) 4.24 (4.10, 4.38) 4.17 (4.08, 4.26)

Non-Hispanic White 4.09 (3.96, 4.21) 4.23 (4.07, 4.39) 4.14 (4.05, 4.24)

Hispanic White 4.51 (4.17, 4.86) 4.39 (3.99, 4.78) 4.46 (4.20, 4.72)

Black 4.29 (3.81, 4.76) 4.38 (3.83, 4.94) 4.33 (3.97, 4.69)

Asian/Pacific Islander 3.70 (3.19, 4.21) 3.83 (3.19, 4.47) 3.75 (3.35, 4.15)

American Indian/Alaskan Native 3.03 (1.28, 4.77) 4.39 (2.21, 6.56) 3.59 (2.23, 4.94)

p-value for heterogeneitye 0.044 0.68 0.021

Non-GBM

Totald 0.52 (0.40, 0.64) 0.43 (0.29, 0.56) 0.48 (0.39, 0.57)

Non-Hispanic White 0.43 (0.29, 0.56) 0.38 (0.22, 0.54) 0.41 (0.30, 0.51)

Hispanic White 1.13 (0.77, 1.49) 0.76 (0.38, 1.14) 0.95 (0.69, 1.21)

Black 0.88 (0.34, 1.41) 0.68 (0.07, 1.29) 0.79 (0.39, 1.19)

Asian/Pacific Islander 0.38 (-0.15, 0.91) 0.08 (-0.51, 0.66) 0.24 (-0.15, 0.63)

American Indian/Alaskan Native 0.46 (-1.13, 2.05) 0.01 (-2.29, 1.61) 0.14 (-1.09, 1.38)

p-value for heterogeneitye 0.0053 0.22 0.0005
aLoge(age) coefficient adjusted for period by Poisson regression
bLoge(age) coefficient adjusted for period and sex by Poisson regression
cConfidence interval
dLoge(age) coefficient additionally adjusted for race/ethnic group.
eCalculated from the likelihood ratio test for the addition of the cross-product term for race/ethnic group by loge(age) to the Poisson model
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Calendar period
In Table 5 we tested the hypothesis that calendar period
variation in incidence differed according to glioma sub-
type. For GBM, we observed a significant trend of
increasing RR with more recent period; however, the
magnitude of the increase in incidence rate was not
large (6% increase between 1992-1995 and 2004-2007).
For non-GBM, we observed a significant trend of
decreasing RR with more recent period, with a 16%
decrease in incidence rate between 1992-1995 and 2004-
2007. The difference in period effect between GBM and
non-GBM was highly significant (p-value for heteroge-
neity < 0.0001). Overall, for GBM and non-GBM com-
bined, we observed a slight trend of decreasing
incidence rate with more recent period (3% decrease
between 1992-1995 and 2004-2007).

Discussion
Although we observed statistically significant differences
between GBM and non-GBM in the variation of inci-
dence rates according to age, race/ethnic group, and sex
(we will discuss period separately), only the difference in
age effect, which has been observed by others [2,5,22],
was sizeable, with the incidence rate of GBM rising stee-
ply with age and the incidence rate of non-GBM rising
comparatively slightly with age. In spite of the statisti-
cally significant differences, the commonalities between
GBM and non-GBM with respect to race/ethnic group
variation and sex were more notable than the somewhat
subtle differences.

Age
The GBM incidence rate increased in proportion to
approximately the 4th power of age, similar to what was
found in an analysis of SEER data among Whites in
1973-1982 [22]. Because secondary GBM cases are
known to have a younger age distribution than primary
GBM cases [9], the increase in primary GBM incidence
with age (after removing secondary GBM) must be

somewhat steeper, rising toward the 5th power, which
would make the age-incidence curve for primary GBM
similar to that of many carcinomas, which typically
increase in incidence approximately in proportion to
between the 4th and 6th power of age [23]. On the other
hand, the non-GBM incidence rate increased in propor-
tion to approximately the square root of age, an age-
incidence pattern that is quite unusual [23]. The pre-
vious SEER analysis among Whites in 1973-1982 found
slopes of 1.7 for astrocytomas and 1.0 for oligodendro-
gliomas [22].
The pronounced difference in age-incidence curves

between GBM (mainly primary GBM) and non-GBM
suggests a fundamental difference in the genesis of these
glioma subtypes, as has been suggested previously [22].
Mathematical models of carcinogenesis suggest that
development of cancer types with steep log(incidence)-
log(age) slopes, such as primary GBM, involve a large
number of stable genetic or epigenetic changes (slope
plus one; thus 5-6 changes for primary GBM) [24,25] or
rapid expansion of a premalignant clone [26], whereas
development of cancer types with shallow log(inci-
dence)-log(age) slopes, such as non-GBM, involve a
small number of stable genetic or epigenetic changes (as
few as one or two) or slow expansion of a premalignant
clone.
Indeed, GBM exhibits greater molecular complexity

than non-GBM, with the implication that the path to
GBM involves a greater number of molecular alterations
[7]. Furthermore, the steeper age-incidence curve for
GBM may indicate a greater role for age-related pro-
cesses such as immunosenescence [27] or reduced effi-
ciency of DNA repair mechanisms [28]. Given that
among malignancies (brain or otherwise), non-GBM (as
well as secondary GBM) are unique in exhibiting a high
frequency (as high as 80%) of IDH mutations
[15,16,29,30], which appear to be early events in non-
GBM development [16], one can speculate that these
mutations drive an atypical path to malignancy.

Table 5 Age-, sex-, and race/ethnic group-adjusted rate ratios for period by glioma subtype, age 30 to 69 years, SEER,
1992-2007

GBM Non-GBM Totala

Period N RRb (95% CIc) N RRb (95% CIc) N RRb (95% CIc)

1992-1995 2,181 1.00 (reference) 1,632 1.00 (reference) 3,813 1.00 (reference)

1996-1999 2,351 1.03 (0.97, 1.09) 1,655 0.97 (0.91, 1.04) 4,006 1.00 (0.96, 1.05)

2000-2003 4,930 1.02 (0.97, 1.07) 2,986 0.87 (0.82, 0.92) 7,916 0.95 (0.92, 0.99)

2004-2007 5,626 1.06 (1.01, 1.12) 2,979 0.84 (0.79, 0.89) 8,605 0.97 (0.93, 1.01)

p-value, trendd 0.012 < 0.0001 0.037
aGBM and non-GBM combined
bAdjusted for age, sex, and race/ethnic group by Poisson regression
cConfidence interval
dCalculated from the likelihood ratio test for the addition of period (as an interval variable) to the model
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For both GBM and non-GBM, the log(age) slope was
similar for males and females. However, within the con-
text of the large difference in age-incidence curves
between GBM and non-GBM, we observed subtle, but
statistically significant, variation in age-incidence curves
among race/ethnic groups. For both subtypes, Asians/
Pacific Islanders and American Indians/Alaskan Natives
had the smallest slopes. We observed a similar result for
Asians/Pacific Islanders in our previous work on brain
cancer as a whole [1].

Race/ethnic group
For race/ethnic group variation, we observed an impor-
tant commonality between GBM and non-GBM. For
each subtype, compared to non-Hispanic Whites, the
incidence rate among Blacks, Asian/Pacific Islanders,
and American Indians/Alaskan Natives was substantially
lower (one-fourth to one-half for GBM; about two-fifths
for non-GBM). However, secondary to this primary
effect, race/ethnic group variation in incidence was less
for non-GBM than for GBM, a difference that was
highly statistically significant but only moderate in
magnitude.
There is evidence for race/ethnic group differences in

genetic pathways to glioma [31-33]. Furthermore, gen-
ome-wide association studies have identified several
genetic susceptibility regions for glioma [34,35]. Given
the genotype variability across race/ethnic groups [36],
it is possible that variation in the frequency of suscept-
ibility alleles across race/ethnic groups explains at least
some of the race/ethnic group variation in glioma inci-
dence, including the race/ethnic group heterogeneity in
the relationship between glioma incidence and age. The
commonality between GBM and non-GBM in race/eth-
nic group variation suggests that at least some of the
susceptibility loci that may help explain race/ethnic
group variation in glioma incidence would be the same
for GBM and non-GBM, although some susceptibility
loci appear to show specificity with respect to glioma
subtype [37-39].

Sex
As with race/ethnic group variation, we observed an
important commonality between GBM and non-GBM
for sex. For each subtype, the incidence rate was higher
for males than for females; this male excess of glioma is
well known [2,3,5,6]. However, we did find the male/
female RR to be somewhat higher for GBM (1.6) than
for non-GBM (1.4), a result that was highly statistically
significant. We previously suggested that the male/
female difference in brain cancer incidence is biologi-
cally based [1], and that an explanation should be
sought in genetic differences between males and
females, sex hormones, and/or female reproductive

factors [40]. Now we would add that any explanation
should take into account the difference in the male/
female RR between glioma subtypes.
For GBM and non-GBM, respectively, we observed

similar male/female RRs among race/ethnic groups, with
the exception of Hispanic Whites, among whom the
male/female RR was anomalously low. Further work is
required to determine whether the latter result has a
biological basis or stems from an unidentified bias. It is
noteworthy that the quality of the SEER Hispanic ethni-
city variable was found to be moderate to substantial,
but not excellent [41].
In our previous work, we found that for adult brain

cancer as a whole (most of which are glioma), the male/
female RR was higher in the peri- and post-menopausal
age range than in the pre-menopausal age range [1].
However, in the current study, we found no evidence
for an association between male/female RR and age for
GBM and only suggestive evidence (p = 0.09) for a
higher RR in the post-menopausal age range for non-
GBM. We also found that the result for all glioma
appeared to have been confounded by glioma subtype,
with non-GBM both having a lower male/female RR
and occurring at younger ages compared to GBM,
which would explain the result from our previous work.

Calendar period
We observed trends of increasing GBM incidence rate
and decreasing non-GBM incidence rate with more
recent period, with an overall trend for GBM and non-
GBM combined of slightly decreasing rate. Although the
latter trend was statistically significant (p = 0.037), we
do not conclude that the overall incidence of glioma
decreased over the 16 year period of observation
because the small 3% decrease between 1992-1995 and
2004-2007 could easily be explained by an unrecognized
bias. Furthermore, given the well-known inter-observer
variability in glioma diagnosis [10,42-45], the increasing
trend of GBM incidence coupled with the decreasing
trend of non-GBM incidence may at least partly be due
to a secular trend in diagnostic fashion, as opposed to
real changes in incidence of these two subtypes.

Limitations
Due to the known inter-observer variability in the
detailed morphologic classification of non-GBM in parti-
cular [10], we did not attempt to sub-classify these
tumors into the traditional categories of astrocytoma,
oligodendroglioma, and mixed oligoastrocytoma or by
grade. Furthermore, we were unable to distinguish pri-
mary from secondary GBM and were unable to take
into account known molecular heterogeneity within the
two broad categories of GBM [46] and non-GBM [47].
Another limitation was possible selection bias due to
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differential diagnosis of microscopically confirmed
glioma that had a specific morphology code (not the
nonspecific code 9380), according to demographic fac-
tors. However, our restriction to ages 30-69 years, an
age range with a high proportion of cases both micro-
scopically confirmed and with a specific morphology
code, tended to minimize the potential for any such bias
appreciably distorting the results. This restriction was at
the expense of generalizability to a broader age range.

Conclusions
We found statistically significant differences between
GBM and non-GBM in the variation of incidence rates
according to age, race/ethnic group, sex, and period.
The difference in age effect, which was substantial, sug-
gests a fundamental difference in the genesis of primary
GBM (the driver of GBM incidence) versus non-GBM.
However, the commonalities between GBM and non-
GBM with respect to race/ethnic group and sex varia-
tion were more notable than the somewhat subtle, albeit
statistically significant, differences. For each subtype, the
incidence rate among Blacks, Asian/Pacific Islanders,
and American Indians/Alaskan Natives was substantially
lower (one-fourth to one-half for GBM; about two-fifths
for non-GBM) than the rate among non-Hispanic
Whites, and the rate among females was about two-
thirds the rate among males. These similarities suggest
that within the context of a fundamental difference in
the genesis of these subtypes, some aspects of the com-
plex process of gliomagenesis are shared by these sub-
types as well. The increasing calendar time trend of
GBM incidence coupled with the decreasing calendar
time trend of non-GBM incidence may at least partly be
due to a secular trend in diagnostic fashion, as opposed
to real changes in incidence of these two subtypes.
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