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Abstract

Background: The ability of gene profiling to predict treatment response and prognosis in breast cancers has been
demonstrated in many studies using DNA microarray analyses on RNA from fresh frozen tumor specimens. In
certain clinical and research situations, performing such analyses on archival formalin fixed paraffin-embedded
(FFPE) surgical specimens would be advantageous as large libraries of such specimens with long-term follow-up
data are widely available. However, FFPE tissue processing can cause fragmentation and chemical modifications of
the RNA. A number of recent technical advances have been reported to overcome these issues. Our current study
evaluates whether or not the technology is ready for clinical applications.

Methods: A modified RNA extraction method and a recent DNA microarray technique, cONA-mediated annealing,
selection, extension and ligation (DASL, lllumina Inc) were evaluated. The gene profiles generated from FFPE
specimens were compared to those obtained from paired fresh fine needle aspiration biopsies (FNAB) of 25 breast
cancers of different clinical subtypes (based on ER and Her2/neu status). Selected RNA levels were validated using
RT-gPCR, and two public databases were used to demonstrate the prognostic significance of the gene profiles
generated from FFPE specimens.

Results: Compared to FNAB, RNA isolated from FFPE samples was relatively more degraded, nonetheless, over 80%
of the RNA samples were deemed suitable for subsequent DASL assay. Despite a higher noise level, a set of genes
from FFPE specimens correlated very well with the gene profiles obtained from FNAB, and could differentiate
breast cancer subtypes. Expression levels of these genes were validated using RT-gPCR. Finally, for the first time we
correlated gene expression profiles from FFPE samples to survival using two independent microarray databases.
Specifically, over-expression of ANLN and KIF2C, and under-expression of MAPT strongly correlated with poor
outcomes in breast cancer patients.

Conclusion: We demonstrated that FFPE specimens retained important prognostic information that could be
identified using a recent gene profiling technology. Our study supports the use of FFPE specimens for the
development and refinement of prognostic gene signatures for breast cancer. Clinical applications of such
prognostic gene profiles await future large-scale validation studies.
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Background

Gene profiling is beginning to have an impact on perso-
nalized breast cancer care [1,2]. Gene expression profil-
ing of breast cancers using DNA microarray technology
is able to classify breast tumors into distinct biological
subgroups and has been shown to predict treatment
response and prognosis in several studies [3-9]. This
high-throughput molecular technique requires fresh bio-
specimens to allow extraction of RNA of sufficient
quantity and quality for analysis. There are however lim-
itations to the collection of fresh samples for prospective
studies including time-sensitive tissue processing,
lengthy patient accrual and follow-up; and bio-banks are
not always readily available as a source of fresh frozen
samples. Also, a requirement for fresh tissue to be used
inevitably leads to a bias towards only larger tumors
being studied. To overcome some of these critical short-
comings of prospective studies, the use of archival for-
malin-fixed paraffin-embedded (FFPE) samples offers a
potential solution as most hospitals worldwide have col-
lections of FFPE tumor specimens dating back many
years. FFPE is the most widely used standard of practice
for tissue fixation for the purpose of diagnostic histology
and long-term storage.

The FFPE tissue preserving process was developed
long before molecular biologists were concerned with
the preservation of RNA. FFPE samples have not been
considered a reliable source of RNA due to the tissue
processing-associated degradation and chemical modifi-
cations of RNA. Formalin fixation creates cross-linking
between nucleic acids and proteins and adds mono-
methylol to amino groups on all four RNA bases [10].
Thus, a number of recent studies have started to look
into the prospect of overcoming the RNA quality issues
in FFPE specimens. Several studies used modification of
standard RNA extraction methods to generate RNA of
sufficient quality and quantity for DNA microarray ana-
lysis [11-14]. Some innovations in DNA microarray
techniques were also reported [15,16]. A major break-
through has been a new microarray technique developed
by Illumina Inc. (San Diego, Ca), which involves cDNA-
mediated annealing, selection, extension, and ligation
(DASL), as well as random priming for detection of
degraded RNA from FFPE samples [16-22]. This DNA
microarray technique improved detection of fragmented
RNA compared with conventional techniques. If the
technique for gene profiling using FFPE specimens
becomes sufficiently reliable, we anticipate that prognos-
tic and predictive gene signatures can be identified
using the vast available libraries of archival FFPE speci-
mens with long-term treatment outcomes. In addition,
any biomarker developed from FFPE samples could be
more readily translated into clinical practice.
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In this study, we aimed 1) to explore the feasibility of
obtaining reliable microarray data from archival FFPE
samples; 2) to compare gene expression profiles of FFPE
samples with those of matched samples obtained from
the same patients by FNAB; 3) to test the reproducibility
of such experiments using quantitative real-time reverse
transcription-polymerase chain reaction (RT-qPCR); and
4) to correlate the gene profiling of FFPE specimens
with clinical outcome data using published microarray
data sets.

Methods

Case selection and sample size

From the clinical tissue archive stored on site in the
hospitals at University Health Network, a total of 50
FFPE blocks were evaluated by our breast pathologists
(BY, NM, SD). Thirty nine blocks were finally selected
for this study based on the following criteria: 1) suffi-
cient invasive carcinoma remained in the FFPE block for
RNA extraction and 2) > 70% malignant cells. In addi-
tion, 25 cases with FFPE blocks that also had available
pre-operative fresh FNAB specimens that had been col-
lected from an ongoing breast cancer gene profiling
study in our institution on an unselected cohort of sur-
gical patients. Clinically, the estrogen receptor (ER, also
known as ESRI) and Her2/neu (Her2, also known as
ERBB?2) levels were evaluated by immunohistochemistry
or by fluorescence in situ hybridization, according to the
standard clinical protocols. Based on ER and Her2
status, the 25 cases were divided into four distinct sub-
groups: 10 cases in ER+/Her2-, 4 in ER+/Her2+, 6 in
ER-/Her2+, and 5 in ER-/Her2- status for the next step
of the analyses. The clinical descriptors for these 25
cases are provided in Table 1. The study protocol was
approved by the Research Ethics Board at the University
Health Network.

Tissue sampling and RNA extraction

FNAB samples and RNA extractions were prepared as
previously described [23]. For FFPE samples, the selected
blocks were sectioned at 10 um thickness in an RNase-
free environment. Total RNA was isolated from FFPE
samples using a modified protocol described by Abramo-
vitz et al [24] with RecoverAll Total Nucleic Acid kit
(Ambion Austin, TX). In brief, the sections were deparaf-
finized with xylene and air dried tissue pellets were
homogenized by overnight incubation at 50°C with
Proteinase K in a lysis buffer. The Proteinase K was then
inactivated by incubating the sample at 80°C for 15 min-
utes the next day. RNA was purified and extracted after a
DNase I treatment using a spin column. Quantity of the
RNA was measured by ND-1000 Spectrophotometer
(Nanodrop Technologies, Wilmington, DE USA). To



Sadi et al. BMC Cancer 2011, 11:253 Page 3 of 13

http://www.biomedcentral.com/1471-2407/11/253

Table 1 The 25 patient and tumor characteristics.

Patient No. Group No. Patient Age Tumor' Size Tumor Grade Positive? Nodes ER PR Her2 FNABRIN  FFPE RIN

1 E(HHE-1 56 1.2 2 0(1) + + 7.5 1.7
2 E(+H)H()-2 47 22 2 1(12) + + 9.2 23
3 E(HHE)-3 63 24 2 0(1) + + 70 25
4 E(HHE)-4 76 2.8 3 0(3) + + 89 25
5 E(HHE)-5 58 10.6 2 6(24) + + 6.6 2.5
6 E(HHE)-6 50 37 2 0(2) + + 8.6 24
7 E(+HH()-7 55 1.9 2 2(15) + + 94 15
8 E(+H)H()-8 68 20 2 4(17) + + 7.2 2.7
9 E(HHE)-9 42 26 2 0(3) + + 7.8 23
10 E(+HHE)-10 64 1.5 2 0(4) + + 74 2.1
1 E(#H)HE)-1 61 2.2 3 2(18) + + 8.3 24
12 E(+HHH)-2 43 2.5 3 0(5) + + 79 24
13 E(+H)HH)-3 41 1.6 3 0B3) + + 93 22
14 E(H)HH+)-4 37 1.5 3 0(18) + + 9.0 2.1
15 EQHH)-1 44 32 3 0(1) + 6.7 2.7
16 ECQHH#)-2 56 14 3 0B3) + 6.9 19
17 ECHH)-3 76 23 3 2(20) + 56 23
18 EQHH)-4 64 23 3 5(21) + 338 22
19 EQHH)-5 73 1.6 3 02) + 6.5 24
20 ECQHH)-6 54 29 3 0(12) + 80 2.5
21 EGOHE)-1 51 1.6 3 1(23) 83 1.7
22 EGHE)-2 54 36 2 0(11) - - - 6.9 24
23 E(HE)-3 62 1.6 3 1(21) 6.6 24
24 EQHC-4 47 15 3 04) - - - 56 23
25 ECHE)-5 57 29 2 0(4) - - - 89 2.2

E, ER; H, Her2; FNAB, fine needle aspiration biopsy; FFPE, formalin-fixed, paraffin-embedded tissue; RIN, RNA integrity number. 'Tumor size in cm, *Total number

of nodes removed shown in parenthesis.

assess the quality and level of degradation of RNA, RIN
(RNA integrity number) was assigned by the Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA).

lllumina whole genome direct hybridization and DASL
assays

All Hlumina related services were provided by The
Centre for Applied Genomics at the Hospital for Sick
Children (Toronto, ON). Illumina Human-Ref8 Bead-
Chip V3 24 K whole genome gene chips (Illumina Inc.,
San Diego, CA, USA) were used for both direct hybridi-
zation and DASL assays. A direct hybridization assay
was used for FNAB specimens by using Illumina’s stan-
dard protocol http://www.illumina.com. DASL assays
were used for FFPE specimens according to Illumina’s
standard protocol. In brief, the input amount of RNA
for the DASL assays was 400 ng of total RNA obtained
from FFPE blocks. The RNA was first converted to
¢DNA through a reverse transcription reaction with bio-
tinylated primers. The biotinylated cDNA was then
annealed to assay oligonucleotides, and bound to strep-
tadivin conjugated paramagnetic particles. After the

oligonucleotide hybridization, mishybridized and non-
hybridized oligonucleotides were washed away. The
hybridized oligonucleotides were then extended and
ligated. These products formed a synthetic template that
was transferred to a PCR reaction containing a fluores-
cently labelled primer. The labelled PCR product strand
was then isolated, and the fluorescent products hybri-
dized to a BeadChip. The BeadChip was then washed
and imaged on the BeadArray Reader.

Quantitative real-time reverse transcription-PCR (RT-qPCR)
The RNA expression level of the 14 most differentially
expressed genes (Table 2) was assayed using RT-qPCR
with TagMan gene expression assays in a 7900 sequence
detector (Applied Biosystems, Foster City, CA). One pg
of total RNA from a FFPE specimen was reverse tran-
scribed in a 20 pL final reaction volume, using Super-
Script VILO ¢DNA synthesis kit. The amount of cDNA
corresponding to 10 ng of RNA was used in 10 pL reac-
tions with the TagMan Universal PCR Master Mix and
corresponding sequence-specific primers assay mix
(Applied Biosystems). Human HeLa cell RNA was used
as the calibration sample, and the housekeeping gene
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Table 2 14 selected differential expression genes.
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Gene Symbol The 25 breast cancers NKI-295 dataset GIS-251 dataset

FNAB array FFPE array FFPE qPCR FFPE vs. FNAB FFPE vs. qPCR  Array [0 DMFS Array OS RFS

p’ p! p’ 2 3 p’ p* p* p’ p* p*
AKR7A3 0.001 0.000 0.000 0.701 0.653 0.000  0.000 0248 0000 0284 0.787
ANKRA2 0.001 0.009 0.021 0.522 0.390 0000  0.021 0.071 0000 0064 0.139
ANLN 0.000 0.002 0.007 0.731 0.543 0.000 0.002 0.010 0.000 0.009 0.004
CA12 0.000 0.000 0.000 0.607 0.710 0.000 0.010 0.299 0.000 0358 0.468
DNALI1 0.000 0.000 0.000 0.681 0.646 0.000 0.009 0.097 0.000 0565 0582
ERBB2 0.000 0.008 0.000 0.370 0.815 0.000 0.005 0.024 0.000  0.006 0.001
ESR1 0.000 0.000 0.000 0.787 0.862 0000  0.004 0030 0000 0698 0.742
FUT3 0.001 0.001 0.003 0.542 0444 0.000 0.061 0.009 0.000 0023 0287
GREB1 0.001 0.001 0.000 0.732 0.711 0.000 0.054 0.667 0.000 0.023 0487
KIAA1407 0.000 0.000 0.010 0.460 0.337 0.000 < 0.001 0.000 0.000 0006 0.197
KIF2C 0.000 0.001 0.020 0.710 0.647 0.000 < 0.001 0.000 0.000 0022 0.004
LONRF2 0.001 0.007 0.004 0.398 0.588 0000  0.001 0.168 0000 0294 0393
MAPT 0.000 0.000 0.000 0.740 0.677 0000  0.007 0023 0000 0001 0014
PGR 0.000 0.000 0.000 0.870 0.674 0.000 <0001 <0001 0000 0022 0206

FNAB, fine needle aspiration biopsy; FFPE, formalin-fixed, paraffin-embedded tissue; qPCR, Quantitative RT-PCR; OS, Overall survival; DMFS, Distant metastasis free
survival; RFS, Relapse free survival; 'P-value of ANOVA test among the 4 ER/Her2 groups; *Correlation coefficient, Pearson correlation test between FFPE array and
FNA array (value in boldface type is statistically significant, P < 0.05); *Correlation coefficient, Pearson correlation test between FFPE array and FFPE qPCR (value

in boldface type is statistically significant, P < 0.05); “P-value of Log-rank Test.

GAPDH served for the standardization of the individual
PCR reactions.

Data analysis

Scanned microarray image data were used to process
expression data by Illumina Gene Expression Module of
GenomeStudio Software. The microarray gene expres-
sion data was normalized using background subtraction
and Quantile methods. Sequence Detection Software
(Applied Biosystems) was used to obtain the RT-qPCR
amplification plots to quantify gene expression values
using the cycle threshold method. All data were repre-
sented as log, ratios for the expression analysis of gene
transcriptions. ANOVA and t-test were used to evaluate
the variant significance of gene expression in different
groups. Pearson correlation was used to measure the
expression similarities between FNAB and FFPE speci-
mens as well as between the microarray and RT-qPCR
levels. Hierarchical clustering analysis was used to pre-
sent gene expression patterns. Kaplan-Meier analysis
was used to compare patients’ survivals in differential
gene expression groups, and the differences were deter-
mined by the log-rank test. The microarray data have
been deposited in NCBI’s Gene Expression Omnibus
http://www.ncbi.nlm.nih.gov/geo and are accessible
through GEO series accession number GSE23386. Two
publicly available microarray datasets from 295 breast
cancers of the Netherlands Cancer Institute (NKI-295)
[7], and from 251 breast cancers of the Genome Insti-
tute of Singapore (GIS-251) [25] were used for valida-
tion analyses.

Results

Quality and quantity of FFPE RNA

Initially, as a pilot study, we extracted RNA from FFPE
specimens of eight human mammary reduction mammo-
plasty cases and generated DNA microarray data by using
the DASL assay and Illumina Genome Wide HumanRef-8
BeadChip. When we compared the gene expression signals
between the replicates, the average correlation coefficient
was as high as 0.96 + 0.02 (data not shown). In this study,
we evaluated 50 FFPE blocks from the clinical surgical
pathology, and total RNA was extracted from 39 FFPE
blocks. Eleven cases were excluded due to small tumor
size or unavailability of a suitable FFPE block. Average
total RNA yielded from FFPE samples was 4.3 pg (range
0.5 - 10 pg). Spectophotometric 260/280 ratio of extracted
RNA samples ranged from 1.5 - 2. As expected, the land-
mark ribosomal peaks (18S and 28S) were not well
detected in the FFPE samples using Agilent 2100 Bioanaly-
zer (Figure 1A). However, samples from 32 cases (82%)
had RIN values above 1.5 and were considered suitable for
subsequent DNA microarray analyses [17].

Comparison of RNA and array signal between FFPE and
FNAB

Out of the 32 FFPE samples, 25 had corresponding
FNAB specimens. We performed DASL assay and subse-
quent DNA microarray hybridization on the 25 paired
FFPE samples. The 25 paired FNAB RNAs were used for
direct hybridization assays to the same Illumina Human-
Ref-8 V3 platform. As expected, RNA from FFPE samples
had lower RIN values than that of RNA extracted from
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fresh FNAB (Table 1 and Figure 1A). In all 25 breast can-
cers, when we compared between the two different speci-
men types, gene expression status from FFPE specimens
tended to have higher noise levels defined by a higher
number of gene probes not detectable during the DNA
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microarray analyses (Figure 1B). When compared within
the two specimen types, the expression signals within
both FFPE samples and FNAB had similarly high average
correlation coefficients (0.87 + 0.04 and 0.86 * 0.08,
respectively) supporting the reproducibility of the DNA
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Figure 1 Comparison of total RNA and microarray signals between FNAB and FFPE specimens. (A) Comparison of Agilent 2100
Bioanalyzer analysis of total RNA between FNAB and FFPE from a breast cancer sample E(+)H(-)-2. (B) Noise levels of the microarray signals. The
average numbers of under-detectable probes from lllumina Human-Ref8 24 K BeadChip are 7906.8 + 27.9 in 25 FNAB arrays and 95314 + 743 in
25 FFPE arrays, respectively. (C) Reproducibility of microarray signal. The averages of Correlation Coefficients are 0.87 £ 0.04 within 25 FNAB
arrays, 0.87 + 0.08 within 25 FFPE arrays, 045 + 0.02 between the 25 FNAB arrays and 25 FFPE arrays, and 047 + 0.02 between the 25 paired
FNAB and FFPE arrays, respectively.
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microarray data generated within each specimen type.
They were less similar between specimen types with the
average correlation coefficients of 0.45, which was likely
due to the dominant effects on the RNA related to the
tissue processing for FFPE specimens and/or the different
hybridization techniques during DNA microarray
analyses (Figure 1C).

Comparison of ER and Her2 expression between FFPE
samples and FNAB

To determine whether FFPE samples could yield the
same biologically and clinically relevant information as
the FNAB, ER and Her2 clinical status detected by
immunohistochemistry or fluorescence in situ hybridiza-
tion were compared to the expression levels of ESRI and
ERBB2 in microarray expression and RT-qPCR analyses
(Figure 2). The two clinical receptors’ status remained
reproducible as illustrated by a very strong correlation
within the two specimen types FFPE (P = 0.0005) and
ENAB (P < 0.0001) in the microarray expression level. As
well, the two clinical receptors were also validated by
using RT-qPCR in FFPE specimens (P = 0.0002).

Comparison of gene profiling between

FFPE samples and FNAB

To further demonstrate whether gene profiles generated
by FFPE and FNAB arrays can differentiate tumors into
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their different ER/Her2 subtypes, we performed an
ANOVA test to determine the genes that were most dif-
ferentially expressed among the four distinct subtypes.
As a result, 485 differentially expressed probes from
FNAB arrays (P < 0.001) and 258 probes from FFPE
arrays (P < 0.01) were obtained, of which 39 probes
(representing 38 genes) overlapped between the two
specimen types. The fact that all these 38 overlapped
genes were differentially expressed in the same manner
in both specimen types allowed us to directly compare
the expression patterns between the two. A hierarchical
clustering analysis using the 39 overlapped probes (data
not shown) and a subset of 18 genes for both array and
RT-qPCR analyses (see the section below for details)
showed an identical expression pattern differentiating
the four subtypes using FNAB arrays (Figure 3A) and
FFPE arrays (Figure 3B).

Validation of gene profiling

Since most of the publicly available microarray data
were generated using fresh tumor specimens, we tested
the 38 genes that were reproducible between fresh and
FFPE specimens to see if their expression pattern could
be correlated with long-term clinical outcome data avail-
able in these public databases. Out of the 38 genes, 28
genes were reported in the two public databases NKI-
295 [7] and GIS-251 [25]. Interestingly, these genes

ESR1 in FNAB-array ESR1 in FFPE-array ESR1in FFPE-gPCR
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Figure 2 Comparison of ER and Her2 clinical status to array and RT-qPCR. The clinical status of ER and Her2 reported by
immunohistochemistry or fluorescence in situ hybridization were compared with ESRT and ERBB2 levels from expression microarrays. From top
to bottom: FNAB specimens (FNAB-arrays), FFPE samples (FFPE-arrays) of the 25 paired breast cancers, and RT-qPCR expression in FFPE samples
(FFPE-gPCR) of the 22 available breast cancers in scatter dots plots. The P values were calculated by t-Test.
J
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were differentially expressed in a similar fashion when
we divided the tumors into the same four tumor sub-
types (ANOVA test, P < 0.001). In addition, out of 28
genes, 21 were significantly correlated to patients’ survi-
vals (Log-rank test, P < 0.05). Consequently, the 21
genes were chosen for further RT-qPCR analysis for
validation of the array expression on FFPE specimens.
Unfortunately, by using the commercial RT-qPCR reac-
tions (TagMan, Applied Biosystems), three RT-qPCR
reactions out of the 21 genes did not produce any

readable signals, and three samples out of 25 tumors
failed to amplify in most of the RT-qPCR reactions. As
the result, the remaining 18 genes and 22 FFPE speci-
mens that were successful in RT-qPCR were used for
subsequent analyses. When comparing the differential
expression of the 18 genes, we found a near-identical
gene expression pattern in FNAB arrays (Figure 3A),
FFPE arrays (Figure 3B) and FFPE RT-qPCR (Figure
3C), as well as NKI-295 arrays (Figure 3D) and GIS-251
dataset (Figure 3E). Out of the 18 genes detected by
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RT-qPCR in the 22 FFPE specimens, 14 genes were
significantly differentially expressed among the four clin-
ical subtypes (ANOVA test, P < 0.05) as well as their
array expression by using both FNAB and FFPE speci-
mens, and in the two validation datasets. The final 14
genes are listed in Table 2.

The biomarkers for prognosis of breast cancers

When we divided the tumors into the four clinical sub-
types, all 14 genes were differentially expressed in a
similar fashion in all three tests analyses (FNAB, FFPE
and RT-qPCR) in the training sets and the two indepen-
dent published microarray datasets, served as validation
sets. When looking at the survival data from the two
validation datasets, these 14 genes showed a significant
association between their expression levels in the breast
cancers and the clinical outcome of the patients: overall
survival and distant metastasis free survival in 295
patients from the NKI dataset, and overall survival and
relapse free survival in 251 patients from the GIS data-
set (Table 2). These genes could be used as potential
biomarkers for predicting the clinical outcomes in breast
cancer patients, in both fresh FNAB specimens and
archival FFPE specimens. Specifically, two genes, ANLN
(anillin, actin binding protein) and KIF2C (kinesin family
member 2C) were under-expressed in ER+ tumors and
over-expressed in Her2+ and ER-/Her2- tumors;
whereas MAPT (microtubule-associated protein tau) was
over-expressed in ER+ tumors and under-expressed in
Her2+ or ER-/Her2- tumors (Figure 4). The over-
expression of ANLN and KIF2C, and the under-expres-
sion of MAPT consistently showed a strong correlation
with poor survival in the breast cancer patients from
both validation datasets (Figure 5). These findings
demonstrated that we can generate informative microar-
ray data from FFPE specimens, and the expression levels
of a subset of genes are reproducible and informative
when compared to FNAB specimens. The prognostic
information of these genes is preserved in FFPE
specimens.

Discussion

Since Rupp and Locker [26] reported their first success-
ful RNA extraction from FFPE specimens in 1988, sig-
nificant strides have been made to enable RNA profiling
from FFPE tissues, including efforts to standardize tissue
handling and fixation procedures and improving RNA
extraction methodologies [27,28]. Very few technologies
have emerged despite these advancements that are
capable of whole transcriptome profiling from archived
FFPE material [24,29,30]. Initial attempts at DNA micro-
array analyses using FFPE samples yielded poor repro-
ducibility [31], or loss of detection of gene signatures
when compared with matched fresh samples [32].
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Several commercial and academic endeavours have
recently become more successful in their ability to
retrieve meaningful biological information from
degraded FFPE-derived RNAs [15,21,22,24,33-36].

The DASL assay incorporates random priming during
cDNA synthesis, and therefore does not depend solely
on the polyA/oligo-dT based priming process used in
conventional DNA microarray methods. In addition, the
assay requires a relatively short target sequence of about
50 nucleotides to query oligonucleotide annealing;
which improved its ability to quantify fragmented RNA
species [37]. Using these technologies, we evaluated the
feasibility of using FFPE samples for DNA microarray
analyses. Initially, as a pilot study, RNA from FFPE
blocks of human mammary reduction mammoplasty tis-
sues were extracted and used to generate DNA microar-
ray data using DASL assay and Illumina HumanRef8
BeadChip, a genome-wide gene panel that contained
over 24 thousands genes. Within eight replicates of the
same type of specimens, the average correlation coeftfi-
cient of array expression signals was very high at 0.96 +
0.02 which showed an impressive technological reprodu-
cibility. This is similar to a recent study by Ton et al
who reported a high correlation (r = 0.98) among 12
technical replicates by using the DASL technology [21].

We carried out our current study using human breast
cancer specimens to test the feasibility of performing
such experiments with a future plan to extend the tech-
nology to a large clinical library of breast cancers. Using
RNA extraction methods described recently [23], we
found that over 80% of the RNA extracted from archival
FFPE tumor samples could be used for subsequent
DASL analyses and produced DNA microarray data that
were informative and could be validated and compared
to that obtained from fresh FNAB specimens collected
from the same patients.

In this study, we demonstrated a high reproducibility
of the DNA microarray data when comparing the array
signals within the FNAB or FFPE tumor specimens
(r = 0.87). The comparison between the two specimen
types yielded lower correlation coefficients (r = 0.45),
which was likely due to dominant effects on the RNA
related to the tissue processing for FFPE specimens and
the different hybridization techniques in DNA microar-
ray protocols (Figure 1C). Nevertheless, some clinically
relevant microarray data remained reproducible as illu-
strated by a very strong correlation between the micro-
array expression levels of ESRI and ERBB2 to the
clinical status of ER and Her2 respectively in both FFPE
and FNAB samples, which were also validated with RT-
qPCR in FFPE specimens. This result was consistent
with two recent studies by Ton et al [21] and Mulligan
et al [22]. The gene profiling of FFPE samples suffered
from a higher ratio of noise-to-signal (Figure 1B) and
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Figure 4 Differential expression of the biomarkers. The histograms show the comparison of the average expression values of the three
prognostic genes ANLN, KIF2C and MAPT from left to right respectively, which were shown to be significantly different among the four ER/Her2

clinical status groups [ER+/Her2- (E+H-), ER+/Her2+ (E+H+), ER-/Her2+ (E-H+), and ER-/Her2- (E-H-)], but reproducible among the microarray data
from FNAB (FNAB-array) and FFPE samples (FFPE-array) of the 25 paired breast cancers, and RT-qPCR expression in FFPE samples (FFPE-qPCR) of
the 22 available breast cancers. The P values were calculated by ANOVA test.
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Figure 5 Kaplan-Meier survival curves. The association between the gene expression of ANLN, KIF2C and MAPT, from left to right respectively,
and the clinical outcomes in patients’ overall survival (OS) or distant metastasis free survival (DMFS) from the 295 patients in the NKI validation
dataset (NKI295), and OS or relapse free survival (RFS) from the 251 patients in the GIS validation dataset (GIS251), from top to bottom
respectively. P values were calculated by log-rank test.

thus detected a smaller number of differentially
expressed genes compared to FNAB samples (258 vs.
485). Therefore, we anticipate that the identification of
subtle changes in expression levels in FFPE samples will
remain challenging using current technologies.

To date, high-throughput gene expression profiling
has demonstrated the potential uses of gene profiling as

molecular subtype classifiers [6], prognostic indicators
[7,8], and treatment predictors [9] by using fresh breast
cancer specimens. If gene profiling becomes a standard
part of the pathological assessment of a tumor in the
future, the use of FFPE material would be advantageous,
as it obviates the need for fresh bio-specimens that can
be very time sensitive and often impractical to collect in
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routine clinical settings. In certain clinical situations,
including recurrent diseases and evaluation of long-term
endocrine therapy, when there is no fresh bio-specimen
from the original primary tumors; gene profiling using
FFPE may provide an alternative to allow evaluation of
the prognostic or predictive gene profiles.

The use of FFPE samples for gene profiling studies has
been considered suboptimal in the past due to concerns
about RNA degradation and less than 5% of all microar-
ray studies to date have been reported using archival
tumor tissues that were formalin-fixed and paraffin-
embedded. Very few microarray studies have been con-
ducted to investigate the gene profiling of FFPE samples
and compared the results with their matched fresh frozen
tissue. Some data is available in carcinomas of colon, liver
and breast [4,5,15,35]. In breast cancer, Da Silva et al [20]
used FFPE samples from invasive lobular carcinoma only
to check the expression profile of E-cadherin. Ravo et al.
[17] used RNA from cultured cell lines, cryopreserved
tumors and FFPE samples from breast cancers. Waddell
et al. [19] and Bibikova et al. [16] included both fresh fro-
zen and FFPE samples in their studies to compare the
gene profiling of breast cancers in both type of tissues.
However, their studies focused only on the technical
aspect without any clinical correlations. We have corre-
lated our gene profiling results to clinical receptor status,
and demonstrated the ability to use gene expression pro-
filing from FFPE to differentiate tumors from 4 distinct
tumor subtypes. We identified a set of 38 genes that were
reproducibly able to identify the different clinical groups
in both FFPE and FNAB specimens. These findings sug-
gested that there are subsets of genes in FFPE specimens
that could maintain their clinical relevance despite the
tissue processing effects. Interestingly, subsets of these
genes were correlated to clinical outcomes as demon-
strated in our study using publicly available microarray
validation databases.

Although we are the first to show that the over-
expression of ANLN and KIF2C, and the under-expres-
sion of MAPT predict for poor survival in patients with
breast cancer (Figures 4 and 5), there is some evidence
that supports the correlation of these three genes with
prognosis and carcinogenesis in other cancers, and
treatment in breast cancers. The over-expression of
ANLN has been reported to be a biomarker for pancrea-
tic carcinoma [38], and predicted for poor survival in
early lung cancers [39]. Shimo et al reported that the
over-expression of KIF2C might be involved in breast
carcinogenesis and is a therapeutic target for breast can-
cers [40]. The expression of MATP has been correlated
to the sensitivity to chemotherapies in breast cancer
[41,42]. These results strongly support that ANLN,
KIF2C, and MAPT could play a role in the carcinogen-
esis, treatment and prognosis of breast cancers.
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FEPE samples are widely available and can be linked
to clinical outcome information, often available through
institutional or provincial cancer registries. The avail-
ability of large libraries of archival FFPE tissue samples
could potentially solve some of the most critical chal-
lenges that investigators face when using prospectively
collected specimens, namely, patient recruitment and
expensive long-term follow-up. Validation studies can
also be done fairly quickly by selecting an independent
patient population annotated with critical long-term
clinical outcome data. Once the technology for gene
profiling using FFPE matures, it will likely play an
important role in the clinical management of breast can-
cer patients.

Conclusion

There is tremendous potential in using FFPE specimens
for gene profiling, especially in breast cancer, in which
there are existing data to support the prognostic and pre-
dictive implications of tumor gene profiles. Based on the
comparison of gene profiling on FFPE breast cancer spe-
cimens and matched fresh specimens, we can conclude
that important clinically relevant information can be
identified using FFPE specimens and we even demon-
strated the potential for using the microarray data to be
used as a prognostic tool. Further improvements in cur-
rent DNA microarray technologies will likely to bring
gene profiling of breast cancer into routine clinical prac-
tice as we move towards personalized breast cancer care.
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