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Abstract

Background: Long-term gene silencing throughout cell division is generally achieved by DNA methylation and
other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and
other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the
epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines.

Methods: To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human
erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then
PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding
site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using
5-aza-2’-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene
expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell
lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with
CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays.

Results: We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression
and a progressive gain of DNA methylation.

Conclusions: This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal
chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of
DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the
proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes
in cancer cells to acquire DNA methylation and epigenetic silencing.

Background
DNA methylation and histone post-translational modifi-
cations have been considered as the main processes
involved in conferring plasticity to transcriptional pro-
grams, and for allowing the transmission of epigenetic
traits, including those involved in certain diseases [1].
Aberrant DNA methylation remains a central compo-
nent of tumor suppressor gene epigenetic silencing in
cancer, but the causes of abnormal methylation remain
unclear [2]. Potential clarification is emerging from

genome-wide surveys that determine different features
of promoters known to contain CpG-islands, which are
classified according to their high, intermediate and low
CpG content [3,4]. Different degrees of DNA methyla-
tion cause diverse effects depending on the sub-class of
CpG-island present. More recently, these studies have
been complemented by a novel concept: the “CpG-
island shores” [5]. A CpG-island shore refers to the way
in which a CpG-island incorporates DNA methylation.
Interestingly, this propagates from opposite ends, mov-
ing forward to the central region, which is frequently
composed of the highest CpG dinucleotide density [5].
This evidence suggests that DNA methylation does not
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initiate necessarily where the highest CpG density is
located, but instead, the abnormal methylation starts
from the “outside” towards the “inside” by unknown
mechanisms over promoter regions. Additional conse-
quences emerge from these observations: 1) It is difficult
to define where DNA methylation begins at a specific
CpG-island; and 2) It is probable, as anticipated, that a
critical density of methylated CpGs are needed for the
epigenetic silencing to occur.
Conversely, there is also evidence suggesting that pro-

moter regions associated with tumor suppressor genes,
corresponding to CpG-islands, are not necessarily
silenced by DNA methylation [6]. Indeed, the genomic
context and even larger genomic segments like “long
range epigenetic silencing” (LRES) regions can negatively
modify the chromatin structure of gene promoters
within these regions that are linked to cancer [7]. In
spite of all this evidence, the mechanisms of epigenetic
silencing by DNA methylation are not completely
understood.
We have previously analyzed the promoters of the

human retinoblastoma (Rb) and p53 tumor suppressor
genes, where these promoters correspond to high CpG
and low CpG islands, respectively [8,9]. We have found
that the Rb promoter is mainly silenced by DNA methyla-
tion [8]. In contrast, the p53 core promoter does not
acquire DNA methylation, and instead, it shows the incor-
poration of the repressive histone mark H3K27me3 in
glioblastoma cell lines [9]. In both cases, we demonstrated
that the multifunctional nuclear factor CTCF seems to
shield the promoters against epigenetic silencing. Interest-
ingly, these results are not restricted to the Rb and p53
genes, since similar observations have been reported for
the human BRCA1 and p16INK4a genes [10-12].
With the aim of better understanding the mechanisms

associated with Rb promoter epigenetic silencing, we
analyzed its DNA methylation status in detail in differ-
ent cell types [13-16]. We asked whether the absence of
CTCF binding to the Rb promoter is able to contribute,
firstly, to more rapid and extensive DNA methylation,
and secondly, to faster and robust epigenetic silencing.
Indeed, we found that the inability of CTCF to bind to
its recognition motif at the human Rb promoter causes
accelerated DNA methylation and epigenetic silencing
in transgenes and in glioma cells. Our results demon-
strate that CTCF is a key component of a sub-class of
gene promoters, and that its deregulation may be one of
the steps leading to cancer development.

Methods
Cell cultures
HeLa cells were cultured in DMEM medium; K562 cells
were cultured in ISCOVE medium; human glioblastoma-
astrocytoma U87MG and U373MG cells, neuroblastoma

SHSY-5Y cells, and human glioblastoma T98G cells were
cultured in RPMI-1640 medium; all media contained
10% (v/v) fetal bovine serum (FBS) and 1% penicillin/
streptomycin. Culture media were purchased from Invi-
trogen. Cells were maintained at 37°C in a humidified 5%
CO2-containing atmosphere.

Plasmids
The Rb promoter genomic DNA (positions 1634-2020,
GenBank accession number L11910) was subcloned into
the XhoI/HindIII sites of pGL3-Basic plasmid (Promega)
to generate the pGLRb plasmid. The pERb and pERb-
mutE plasmids containing the GFP reporter gene under
the control of the Rb wild-type and mutated promoters,
respectively, were previously generated and described by
De La Rosa-Velazquez et al., 2007 [8]. The integrity of
all plasmid constructs was verified by DNA sequencing.

Stable transfection of K562 cells and reactivation assay
Linearized pERb and pERbmutE were used to generate
stable cell lines. After selection, neomycin-resistant
clones were isolated and analyzed by fluorescence-acti-
vated cell sorting (FACS). Clones were subsequently
cultured in the absence of neomycin in medium for up
to 23 weeks. The integrity of the transgene was tested
by Southern blotting. For reactivation experiments,
stable cell lines were treated for 3 days with 5-aza-2’-
deoxycytidine (30 μmol/ml), Trichostatin-A (15 ng/ml),
or both. After treatment, the cells were harvested in
FACS flow (BD Science) and analyzed by FACS. The
percentage of reactivated cells was plotted in the cor-
responding graph.

Sodium bisulfite treatment and methylation analysis
Bisulfite analysis was performed as described previously
[9]. The PCR primers for stable cell lines were designed
specifically against the plasmid sequences to avoid
amplification of the endogenous promoter. Nested PCR
was done with the EGFPbis1-EGFPbis2 primer pair, and
the second round of PCR amplification was done with
the EGFPbis3-EGFPbis4 primer pair. The product from
the second PCR was gel-purified, and a third PCR was
done with A3res-A4res primers specific for the Rb pro-
moter (see below). PCR products were cloned in the
pGEM-11zf vector (Promega) and sequenced using the
T7 primer. Primers used were EGFPbis1: 5’-TTTGGT
TTTTTGTTGGTT TTTTGT-3’ and EGFPbis2: 5’-
AAATAAACCAAAACACCAACAAC-3’; EGFPbis3: 5’-
CG GGATCCTTTTTTTTGTGTTATTTTTTG-3’ and
EGFPbis4: 5’-CGGGATCCAAATCAACT TACCCTAA
ATAAC-3’; A3res: 5’-CGGGATCCTTAGGTTTTT-
TAGTTTAATTTTTTATGA T-3’; A4res: 5’-CGGGATC
CAACTATAAAAAAACCCCAAAAAAAAC-3’; GFPRb-
Fw: 5’-GGGATTTAGATTTTTTGTATAGTT-3’ and
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GFPRb-Rev: 5’-CAAATAAACTTCAAAA TCAACT-
TAC-3’.

Reagents and antibodies
The following antibodies were used in this study: acH3,
acH4 antibodies, CTCF (N-17), MBD2 (N-18), MeCP2
(07-013) and Kaiso (clone 6F) from Millipore (Milli-
pore); H3K27me3 antibody was kindly provided by Dr.
Thomas Jenuwein (Max-Planck Institute of Immuno-
biology and Epigenetics, Freiburg, Germany). The rabbit
anti-Rb (C-15) antibody (sc 12370) was purchased from
Santa Cruz Biotechnology and horseradish peroxidase
(HRP) linked to anti-rabbit immunoglobulin (81-6120)
from Zymed. Mouse anti-human actin antibody was
kindly provided by Dr. Alejandro Zentella Dehesa (Insti-
tuto de Investigaciones Biomédicas, UNAM, México).

Semiquantitative RT-PCR and Western blot analysis
For semiquantitative RT-PCR, total RNA was isolated
using Trizol reagent from Invitrogen Corporation
(GIBCO), and 5 μg RNA from each preparation was
used as an RT template in a reverse transcription system
(Promega). PCR was performed using the following spe-
cific primer pairs: Ex27RBF2: 5’-GGTATGTAACAGC-
GACCGTGTG-3’ and Ex27RBRev: 5’-CTCTTCCTTG
TTTGAGGTATCC-3’; b-actin: 5’-CGTACCACTGG-
CATCGTG-3’ and 5’-GGTAGTCAGTC AGGTCCC-3’.
Total protein concentration was determined using the
commercial Bradford reagent assay (Bio-Rad). 10 μg of
total protein was used for the detection of Rb. Samples
were first boiled in sample buffer (125 mM Tris-HCl
pH 6.8, 1% v/w SDS, 10% v/v glycerol, 0.1% bromophe-
nol blue, 2% v/v 2b-mercaptoethanol) for 5 min and
resolved by 10% SDS-PAGE. The proteins were trans-
ferred to PVDF membranes (Bio-Rad) using a Trans-
Blot Cell system (Bio-Rad) in transfer buffer (25 mM
Tris, 190 mM glycine, 10% methanol) at 40 V overnight.
The following day, the membrane was probed for 1 hr
with rabbit anti-Rb (C-15) antibody diluted 1:2000 in
TBS buffer (150 mM NaCl, 20 mM Tris, 0.1% Tween,
1% BSA, 5% non fat milk, pH 7.5). After extensive wash-
ing, the membrane was incubated for 1 hr with HRP
anti-rabbit immunoglobulin. The signals were detected
by enhanced chemiluminescence using the supersignal
system (Pierce) and quantified by densitometry. As a
control, actin was simultaneously detected using a
mouse anti-human actin antibody diluted 1:750, and
then developed using horseradish peroxidase linked to
anti-mouse immunoglobulin and the same chemilumi-
nescence system.

Chromatin immunoprecipitation assay
ChIP assays were performed as described previously [8].
Briefly, U87MG glioma cells (2 × l07 cells) were fixed

with 1% formaldehyde and then neutralized by adding
0.125 M glycine. Cells were collected and lysed in Cell
Lysis buffer (5 mM EDTA pH 8.0, 50 mM de TRIS-HCl
pH 8.1, 1% SDS, protease inhibitor cocktail). The nuclei
lysate was sonicated to obtain soluble chromatin with
an average length of 500 bp. After 1:10 dilution with
dilution buffer (20 mM Tris-Cl, pH 8.1, 2 mM EDTA,
150 mM NaCl, 1% Triton X-100), chromatin solutions
were precleared and then incubated with or without 4
μg anti-CTCF, anti-acH3, anti-acH4 and anti-
H3K27me3 antibodies, then the mixture was incubated
at 4°C overnight on a rotating platform. The same
immunocomplexes were recovered with protein A-
Sepharose beads. After extensive washing, the bound
DNA fragments were eluted, and the resulting DNA was
subjected to PCR reactions using the following primer
pairs: RbPromFw/RbPromRev for the endogenous Rb
promoter and RbPromFw/Hec02r for the stable trans-
gene. As a negative control primers RTRb-F/RTRB-R
were used to amplify exon 27 of the Rb gene. PCR pro-
ducts were separated by gel electrophoresis on a 2%
agarose gel and visualized. Primer used: RbPromFw: 5’-
CCAGACTCTTTGTATAGCC-3’; HEC02R: 5’-ACCAT
GGTGGCGACC-3’; RTRb-F: 5’-AAGTACCCATCTAG-
TACT-3’; RTRb-R: 5’-AAGTTACAGCATCTCTAAA-3’;
Igf2-CTCF-Fwd: 5’-CAGGCTCCCCCAAAATCTA-3’;
Igf2-CTCF-Rvs: 5’-GGGAACATAGAGAAAGAGG-3’;
Retinoblastoma Exon 27: RTRb-F 5’-AAGTACCCATC-
TAGTACT-3’ and RTRb-R: 5’-AAGTTACAGCATCTC-
TAAA-3’ [8].

Results
Retinoblastoma promoter DNA methylation increases over
time in cell culture
With the aim of further understanding the DNA methy-
lation dynamics over the Rb promoter, we performed
sodium bisulfite genomic DNA transformation and
sequencing of the core promoter at 130 and 170 days of
continuous cell culture (Figure 1A). The DNA methyla-
tion status was analyzed over a transgene that was stably
integrated in HeLa cells [8]. Using the same cell line we
had previously demonstrated a modest gain of DNA
methylation (at 100 days in culture) with severe conse-
quences on gene expression [8]. Here we found that
after additional cell divisions there was a gradual but
not dramatic increase in DNA methylation (Figure 1B).
After 130 days, 14% DNA methylation was reached, and
after 170 days, 22%. At this last time point we found an
increase in the methylated CpG dinucleotides located
preferentially over the CTCF, RBF-1 and E2F binding
motifs (Figure 1B). These results suggest that after pro-
longed cell culture and many cell divisions there is a
gain of DNA methylation, which reinforces epigenetic
silencing.
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Faster epigenetic silencing of the Rb promoter with a
mutated CTCF binding site
To confirm the contribution of CTCF to the protection
of tumor suppressor gene promoters against epigenetic
silencing, we decided to generate a large set of indepen-
dent stably integrated constructs carrying the Rb promo-
ter fused to the GFP reporter gene, where the promoter
had a mutated CTCF site. The mutation (pERmutE) was
previously defined and confirmed by gel-shift assays
using probes carrying different mutations [8]. Nineteen
independent lines with the intact promoter and 18 inde-
pendent lines with the mutant version of the promoter
were generated in the erythroleukemic K562 cell line
(Figure 2A and 2B). Transgene copy-number and integ-
rity was confirmed by Southern blotting (Figure 2C).
For the transgene in which the CTCF binding site was
mutated, we found an approximately 2-fold increase in
the number of stable cell lines with extinguished

transgene expression after 100 days of continuous cell
culture (Figure 2). This transgene silencing was also
clearly seen in FACS profiles at different time points
(see Additional file 1, Figure S1). We conclude that
CTCF binding to the Rb promoter is critical for its epi-
genetic integrity and transcriptional activity. This is in
agreement with our previous CTCF knockdown experi-
ments, where CTCF depletion caused a loss of Rb gene
expression [9].

Mutant CTCF-Rb promoter transgenes are differentially
reactivated
Taking advantage of the K562 stable cell lines carrying a
mutated Rb promoter (pERbmutE: lines 1109, 1112,
2102 and 2111), we performed reactivation experiments
using the histone deacetylase inhibitor Trichostatin-A
(TSA), the DNA methylation inhibitor 5-aza-2’-deoxycy-
tidine (5-azadC), and their combination (Figure 3A).
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Figure 1 Progressive gain of DNA methylation over the human retinoblastoma promoter. A, Scheme of the transgene reporter carrying
the core Rb promoter. The reporter gene (black rectangle) corresponds to the GFP gene, and locations of the relevant transcription factor
binding sites including that of CTCF are shown. The vertical lanes correspond to the CpG dinucleotides. Locations of primers for PCR
amplification of the bisulfite modified genome are shown as horizontal arrows. The probe used for Southern blots to validate the integrity of the
transgenes and to determine copy number is also shown. B, DNA methylation status of a HeLa cell line in which the transgene shown in A is
integrated as a single-copy. The individual and global percentages of methylation are shown at 130 and 170 days of continuous cell culture (left
panel). As shown in a previous study [8], at 100 days in culture there is no expression of the transgene, but here we clearly observe a
progressive increase in DNA methylation over the Rb promoter. At the center, the flow cytometry profile of the clone is shown at the same
days, where 10,000 cells were analyzed. The intensity of fluorescence was plotted; M1, corresponds to the non-fluorescent cell population, and
M2, the fluorescent detectable part of the graph. The plot summarizing the percentage of DNA methylation is shown (right panel).
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Reactivation conditions were previously established (Addi-
tional file 2, Figure S2) and transgene activity was followed
at 30 and 100 days of continuous cell culture. Interest-
ingly, we found that a significant reactivation was observed
at early time points of cell culture (30 days) using each of
the inhibitors or their combination. A more pronounced
reactivation was observed when the 5-azadC inhibitor was
tested compared to TSA treatment (Figure 3B). Of note,
single-copy integrants were more efficiently reactivated in
comparison to multi-copy integrants (Figure 3B). This
observation may be related to evidence demonstrating that
multi-copy integrants can be recognized as repetitive
sequences that induce the formation of heterochromatin
[17-19]. Unexpectedly, at 100 days in cell culture the reac-
tivation became modest. The DNA methylation status of
the reactivated cell line 1112 and 2111, and a new and
independent cell line 2102, were assessed (Additional file
3, Figure S3). Thus, in these series of reactivation experi-
ments, using the 5-azadC inhibitor, DNA methylation was
partially lost indirectly demonstrating that DNA methyla-
tion is one of the causes of silencing.

These results could appear contradictory to our pre-
vious observations where we observed 60% reactivation
using 5-azadC in a HeLa cell line [8], but this seems
not to be the case since that cell line, which carried an
intact CTCF sequence, was previously sorted from a
clone that was partially silenced after 100 days in con-
tinuous cell culture [8]. Additionally in the same pre-
vious work, we found similar reactivation levels at
early time points, as observed here in the context of
the mutant CTCF sites, which are more rapidly and
robustly silenced. These results exemplify two different
processes leading to the establishment of an epigenetic
silencing conformation over the Rb core promoter. We
believe that at early time points (30 days), DNA
methylation is progressively and actively incorporated
without reaching critical densities or resulting in the
methylation of specifically located CpG dinucleotides.
This is likely because this sort of intermediate state of
DNA methylation can be efficiently reverted. In con-
trast, at later times of cell culture (100 days or more),
histone deacetylation appears to be irreversible, but
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DNA methylation is partially erased suggesting that
other repressive histone marks and nuclear factor com-
plexes have been established. One attractive possibility
is the gain of the histone H3K27me3 mark, a repres-
sive mark incorporated by members of the Polycomb
group repressor proteins.

DNA hypermethylation of the Rb promoter in a transgene
with a mutated CTCF binding site
Next, we assessed the DNA methylation status of two
of the stable cell lines generated with the mutated
CTCF binding site. These cell lines were previously
tested in the reactivation experiments (Figure 4; cell
lines 1112 and 2111). For comparison we evaluated
the DNA methylation over a transgene in a K562
stable line in which the Rb promoter was intact

(Figure 4A). In agreement with previous observations,
we found that there was no significant DNA methyla-
tion at day 30 of continuous cell culture even though
transgene expression started to decay (see Figure 4B).
Instead, after 100 days in culture the 1112 and 2111
cell lines became DNA hypermethylated (Figure 4C).
This result is consistent with the inability of CTCF to
bind to the transgene Rb promoter. This was further
confirmed by bisulfite sequencing of the K562 endo-
genous Rb promoter, where we found less than a 2-
fold gain of DNA methylation (Additional file 4, Fig-
ure S4). Taken together, these results demonstrate
that CTCF is a critical factor that contributes to the
epigenetic protection of the Rb core promoter, which
in the absence of CTCF binding, is prone to DNA
hypermethylation.
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Figure 3 The CTCF binding site mutant at the Rb promoter is differentially reactivated. A, Flow cytometry profiles of four K562 stable cell
lines expressing the transgene described in 2A after 0, 30 and 100 days of continuous cell culture. These lines were isolated and selected from
two independent experiments; sc, single-copy integrant, and mc, multi-copy integrants. B, Reactivation experiments of the corresponding cell
lines performed at 30 days and 100 days of continuous cell culture. Reactivation assays were performed using 5-aza-2’-deoxycytidine (AZA),
trichostatin-A (TSA) and mock cells (STx). The plot represents the average of fluorescent cells, where the black bar corresponds to the inactive
cell population and the white bar to the fluorescent cell population. The results correspond to the average of three independent reactivation
experiments for each cell line, and the standard error is shown.

Dávalos-Salas et al. BMC Cancer 2011, 11:232
http://www.biomedcentral.com/1471-2407/11/232

Page 6 of 11



CTCF absence correlates with Rb promoter epigenetic
silencing in glioma cells
To further assess the contribution of CTCF to the pro-
tection of the Rb promoter against DNA methylation,
we analyzed a series of glioma cell lines (Figure 5).
Based on our previous observations in which CTCF was
not bound to the p53 promoter in vivo, we asked if in
glioma cells the lack of Rb gene expression could corre-
late with CTCF absence at the Rb promoter [9]. We
first evaluated the relative concentration of Rb by Wes-
tern blotting in four different glioma cell lines (SHSY-
5Y, T98G, U87MG and U373MG) compared to human
K562 cells (Figure 5A). In this experiment we noticed
that T98G and U87MG cells had the lowest amount of
Rb protein compared to the other transformed cell lines.
Next, we determined Rb mRNA levels by semi-quantita-
tive duplex-PCR (Figure 5B). Rb transcription was signif-
icantly diminished in the U87MG glioma cell line. Based
on these results we performed sodium bisulfite

sequencing and sequencing of the endogenous Rb core
promoter in the U87MG cell line (Figure 5C). In agree-
ment with the Rb gene expression levels, we found that
the Rb promoter reached 29% DNA methylation in
U87MG cells. Subsequently, we performed a chromatin
immunoprecipitation assay employing primers to
amplify the Rb core promoter and a set of antibodies
against different histone marks, CTCF and methyl-CpG-
binding proteins. The results revealed no decrease in
histone acetylation, gain of the H3K27me3 histone
repressive mark, incorporation of the methyl-CpG-bind-
ing proteins MBD2 and MeCP2, and importantly, we
confirmed the absence of CTCF bound to the Rb pro-
moter in U87MG cells (Figure 5D). As a positive control
for the in vivo binding of CTCF, we performed a ChIP
assay in U87MG glioma cells using primers from the
Imprinting Control Region of the human Igf2/H19
imprinted locus, which is known to have several CTCF
binding sites [20,21]. In summary, these results support
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our in vitro data and demonstrate that in a tumoral cell
line, the lack of CTCF binding to the Rb promoter is, in
part, responsible for its epigenetic silencing.

Discussion
The methylation of DNA is considered to be one of the
most relevant processes in epigenetics and is tightly
associated with cancer. Several aspects have evolved
concerning the CpG-island features and the chromatin

remodeling activities linked to tumor suppressor gene
epigenetic silencing, but up until now, selective predis-
position to abnormal DNA methylation has been poorly
understood. Based on the hypothesis that genomic
boundaries may contribute to the shielding of CpG-
island promoters against silencing, we investigated the
contribution of CTCF and DNA methylation to the epi-
genetic regulation of the human retinoblastoma gene
promoter. Indeed, we demonstrated that the dissociation
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Figure 5 Epigenetic silencing of the Rb promoter in glioma cells. A, Western blot of the Rb protein in four different glioma cell lines and
erythroleukemic K562 cells. The blot was re-incubated with a human b-actin antibody for normalization and the resulting data were plotted
(right panel). B, RT-PCR assay using radioactive duplex-PCR for semi-quantitative transcription level determination was performed. The results of
four independent experiments are plotted and standard errors are shown. C, DNA methylation status of the U87MG glioma cells was determined
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of CTCF from its recognition sequence causes an
increase in DNA methylation and the rapid gain of a
repressive chromatin configuration over the Rb
promoter.
The concept of genomic boundaries and the propaga-

tion of repressive chromatin structures from nucleation
sites has been suggested previously [22]. Data from our
research group supports this view on the basis of the
multifunctional activity of the 11-zinc-finger nuclear fac-
tor CTCF [11,23]. The involvement of CTCF in cancer
and in particular, in the epigenetic regulation of tumor
suppressor genes, is further supported by recent data
from other laboratories studying the BRCA1 and
p16INK4a tumor suppressor genes, or even the apoptotic
gene PUMA [8-10,12,24]. In addition, CTCF has been
proposed to participate in genome organization through
lamin and cohesin interactions, and in delineating tran-
sitions between open and repressive chromatin regions
at the genome-wide scale [25,26]. Thus, several lines of
evidence, both at the local and genome-wide scales, sup-
port the contribution of CTCF to the optimal regulation
of a significant number of genes.
Coincident with other studies, the mechanisms asso-

ciated with gene silencing and reactivation assays remain
controversial. An interesting result shown here is the
capacity to partially reactivate silenced stable cell lines
at early culture times, and the incapacity to achieve
reactivation at later time points (Figure 3). These results
are similar to those observed by Baylin and collabora-
tors, where they concluded that DNA methylation inhi-
bition does not reverse a repressive chromatin
conformation and a silenced state in cancer cells
[27,28]. In colorectal cancer cells the histone H3K27me3
repressive mark seems to be the preferential source of
epigenetic silencing of the hMLH1 gene promoter [27].
Another possibility that can be independent of DNA
methylation is the formation of higher order chromatin
structures that can participate in gene repression [28].
The complexity of these processes is exemplified by the
depletion of the Polycomb protein EZH2, which is
responsible for the trimethylation of histone H3 lysine
27 and the persistence of DNA methylation. The variety
of epigenetic silencing mechanisms appears to depend
on the affected genes and the type of tumoral cell ana-
lyzed [29,30].
It is worth mentioning that we observe variations in the

capacity to inhibit DNA methylation when we compare
different stable lines after 30 days of continuous cell cul-
ture. For example, transgene expression of the 2111 cell
line was rapidly silenced but no significant gain of DNA
methylation was detected at 30 days of culture (Figure 3
and 4). In contrast, for the 1112 cell line a reactivation of
the transgene was observed corresponding to around
10% de-methylation after 30 days in culture (Figure 3 and

Additional file 3, Figure S3). These data suggest that
DNA methylation may not always be the initial silencing
event. Several interpretations can be considered, among
them, variations from line to line due to chromosomal
position effects caused by different transgene integration
sites. Extrapolating these findings to the endogenous
context, one possibility is that more distal genomic
sequences may possibly gain DNA methylation that
causes, either directly or indirectly, Rb gene silencing in
the absence of CTCF binding [31]. We also cannot dis-
card the possibility that DNA methylation is affecting the
expression of a co-regulator of CTCF, such as the poly-
ADP-ribosyl polymerase 1, among others [32].
However, DNA methylation does not seem to be the

only source of silencing. We postulate that the features
of the CpG-island associated with each promoter can
dictate its mechanism of silencing and that CTCF pro-
tects those promoters in the absence of DNA methyla-
tion, like in the case of the human p53 gene promoter
[9]. Another aspect that remains unexplored is the rea-
son for aberrant CTCF function. One scenario could be
related to the post-translational modifications that
CTCF is subject to, like phosphorylation and poly(ADP-
ribosyl)ation [32]. Interestingly, it has been recently
demonstrated that CTCF and PARP-1-dependent poly
(ADP-ribosyl)ation can induce DNA hypomethylation by
inhibiting the DNA methyltransferase Dnmt1 [33]. Thus,
in cancer a deregulation of CTCF-PARP-1 poly(ADP-
ribosyl)ation levels may cause the activation of Dnmt1
and the local hypermethylation of the Rb promoter.
Our results show that over long periods of time, other

repressive mechanisms in addition to DNA methylation
can participate in Rb promoter epigenetic silencing. We
postulate that non-coding RNAs can perform such role,
acting in cis or trans, like the long non-coding RNAs
HOTAIR and lincRNA-p21 [34,35].

Conclusion
CTCF plays an important role in maintaining regulatory
regions of certain genes in optimal chromatin configura-
tions. On the basis of the data accumulated by our
group and other laboratories, it is now critical to begin
addressing mechanistic questions concerning the aber-
rant performance of CTCF in cancer cells. Moreover, it
is time to go forward and consider CTCF as a potential
tumor suppressor gene or molecular marker for differ-
ent types of tumors.

Additional material

Additional file 1: Figure S1. Flow cytometry profiles of stably
transfected K562 cells expressing the GFP reporter gene under the
control of the Rb promoter with a wild-type and mutated CTCF
binding site. Individual lines carrying the pERb transgene (left panel)
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that includes the intact Rb promoter (as shown in Figure 1A and 2A),
and the same transgene with the CTCF binding site mutated, pERbmutE,
are shown (right panel). Each individual cell line was isolated in soft-agar
in the presence of drug-selection and the integrity of the transgene for
each cell line was confirmed by Southern blotting, as described in the
legend for Figure 2C. Single-copy and multi-copy integrants were
determined in this way. Note that for the intact Rb promoter the great
majority of established cell lines are robustly active even after 100 days
of continuous cell culture. Few exceptions are found, like line 012 in
which the transgene is probably subject to a strong repressive effect due
to its genomic integration site, but in general we consider the Rb
promoter to be a “strong” promoter. When the CTCF binding sequence
is mutated (pERbmutE), a rapid expression extinction of the transgene is
observed with, in addition, more variable levels of expression, suggesting
that the transgene is more prone to chromosomal position effects under
these conditions.

Additional file 2: Figure S2. Standardization of the DNA methylation
and histone deacetylation inhibitor concentrations. Representative
FACS profiles are shown with the corresponding inhibitor concentrations.
Graphs summarizing the percentage of GFP expression reactivation are
shown.

Additional file 3: Figure S3. DNA methylation status of the human
Rb promoter after 5-azadC inhibitor treatment. To analyze the degree
of de-methylation, we analyzed the stably transformed K562 cell line
2102 (mc; single-copy) and line 1112 (sc; single-copy), which were
maintained in continuous cell culture for 100 days. We isolated genomic
DNA from each cell line and performed sodium bisulfite sequencing.

Additional file 4: Figure S4. DNA methylation analysis of the
endogenous human Rb promoter. A, For comparison purposes we
used a wild-type Rb promoter-GFP transgene in K562 cells that is
transcriptionally active after 100 days of cell culture. B, Endogenous DNA
methylation status of the Rb promoter in the K562 cell lines 1112 and
2111 at 30 days of cell culture. C, This panel is similar to B and
corresponds to both cell lines at 100 days of cell culture. Individual (for
each CpG) and global DNA methylation percentages are indicated.

Abbreviations
The abbreviations used are: CTCT: CCCTC-binding factor; ChIP: Chromatin
immunoprecipitation; Rb: retinoblastoma gene; GFP: Green Fluorescent
Protein.
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