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Abstract

Background: Smad interacting protein-1 is a transcription factor that is implicated in transforming growth factor-
/bone morphogenetic protein signaling and a repressor of E-cadherin and human telomerase reverse
transcriptase. It is also involved in epithelial-mesenchymal transition and tumorigenesis. However, genetic and
epigenetic alterations of SIPT have not been fully elucidated in cancers. In this study, we investigated mutations
and promoter hypermethylation of the SIPT gene in human hepatocellular carcinomas.

Methods: S/PT expression was analyzed in HCC cell lines and primary tumors in comparison to normal and non-
tumor liver tissues by using semi-quantitative RT-PCR, quantitative real-time RT-PCR and immunohistochemistry.
Mutation and deletion screening of the SIPT gene were performed by direct sequencing in HCC-derived cells.
Restoration of SIPT expression was sought by treating HCC cell lines with the DNA methyl transferase inhibitor, 5-
AzaC, and the histone deacetylase inhibitor, TSA. SIPT promoter methylation was analyzed by the combined
bisulfite restriction analysis assay in in silico-predicted putative promoter and CpG island regions.

Results: We found that the expression of SIPT was completely lost or reduced in five of 14 (36%) HCC cell lines
and 17 of 23 (74%) primary HCC tumors. Immunohistochemical analysis confirmed that S/PT mRNA downregulation
was associated with decreased expression of the SIP1 protein in HCC tissues (82.8%). No somatic mutation was
observed in SIPT exons in any of the 14 HCC cell lines. Combined treatment with DNA methy! transferase and
histone deacetylase inhibitors synergistically restored SIPT expression in SIP1-negative cell lines. Analysis of three
putative gene regulatory regions revealed tumor-specific methylation in more than half of the HCC cases.

Conclusions: Epigenetic mechanisms contribute significantly to the downregulation of SIPT expression in HCC. This
finding adds a new level of complexity to the role of SIP1 in hepatocarcinogenesis.

Background

Hepatocellular carcinoma (HCC) is one of the most
lethal cancer types worldwide and also the most com-
mon type of liver cancer [1-3]. The exact mechanisms
that drive hepatocarcinogenic processes are not yet
completely understood. Identification of genetic and epi-
genetic changes involved in hepatocellular carcinoma
development is of high interest for a better understand-
ing of this aggressive malignancy.

Smad interacting protein-1 (SIP1, also known as
ZEB2) is encoded by ZFHXIB at chromosome 2q22 and
is a two-handed zinc finger transcription factor that
contains a central homeodomain as well as CtBP-
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binding and Smad-interacting domains. SIP1 has been
shown to act predominantly as transcriptional repressor
but can also act as transcriptional activator in vivo [4-8].

SIP1 was originally identified in a transforming growth
factor-B/bone morphogenetic protein (TGF-B/BMP) sig-
naling pathway by its binding to the MH2 domain of
receptor-activated SMADs [9]. SIP1 has been thoroughly
studied for its role in repressing E-cadherin expression,
which is a central event in the epithelial-to-mesenchy-
mal transition (EMT) [5-7,10,11]. Accordingly, an ele-
vated SIP1/E-cadherin ratio was shown to correlate with
invasive disease and poor prognosis in gastric, pancrea-
tic, esophageal and ovarian carcinomas [12-15]. Overex-
pressed SIPI also caused resistance to DNA damage-
induced apoptosis and correlated with poor survival in
patients with bladder cancer [16]. In contrast, only a few
studies exist with regard to the role of SIP1 in
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suppressing tumorigenesis. For instance, repression of
human telomerase reverse transcriptase (#TERT) expres-
sion in breast and liver cancer cells was shown to be
partly mediated by SIP1 [17,18]. Also, by directly inhi-
biting cyclin D1, SIP1 caused G1 arrest in squamous
carcinoma cells [19].

SIP1 was strongly expressed in, and with another
transcriptional repressor, SNAIL, increased invasion of
HCC cells [20]. We recently reported an immunohisto-
chemistry study on tissue arrays and described
decreased SIP1 levels in a group of tumors, including
HCC [21]. In mature hepatocytes in vitro, TGF-§
induces EMT by downregulation of Claudin-1, which is
also associated with upregulation of SIPI and SNAIL
and downregulation of E-cadherin [22]. Our recent
observations also implicated SIPI as a candidate regula-
tor of replicative senescence in HCC cells [18]. Taken
together, these findings indicate that SIPI may play a
role in hepatocarcinogenesis.

Epigenetic regulation of SIPI expression by miRNAs
[23-26] and a natural antisense transcript (NAT) [27]
were recently described. Studies on the promoter
methylation of SIPI were also reported. The SIPI gene
was found to be hypermethylated and silenced in a
poorly metastatic breast cancer cell line [28]. In a more
recent study, SIP1 downregulation in pancreatic cancer
was shown to be mediated through promoter hyper-
methylation [29]. However, genetic and epigenetic
mechanisms regulating SIPI expression have never been
studied in HCC.

In the present study, we investigated the expression of
SIPI at genetic, epigenetic and protein levels in a series
of HCC cell lines and primary tumors. Downregulation
of SIPI in HCC cell lines and tumors was found to be
mediated by aberrant promoter methylation. Therefore,
epigenetic inactivation of SIP1 may play a critical role in
hepatocarcinogenesis.

Methods

Cell lines and patient samples

DNA samples from 39 pairs of HCCs and tumor-adja-
cent normal tissues were used; these archival materials
have previously been described [30]. HCC-derived
SNU449, SNU475, Mahlavu, SNU423, SNU398, SK-
Hepl, Focus, SNU387, SNU182, Hep40, Huh7, PLC/
PRF5, Hep3B and hepatoblastoma-derived HepG2 cell
lines were studied.

TissueScan Liver Cancer Tissue qPCR Panel I was
purchased from Origene Technologies (Rockville, MD).
Each plate consisted of pre-normalized cDNAs derived
from 48 liver samples covering eight tumor-adjacent
normal, 23 HCC (grade I, II, IIIA, IV), three cholangio-
carcinoma, one adenoma and 13 non-tumor lesions of
the liver. (Additional file 1).
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Fifteen formalin-fixed and paraffin-embedded liver tis-
sues deriving from two normal, one HBV carrier, three
chronic hepatitis B, three chronic hepatitis C, three cir-
rhosis and three HCC cases were obtained from the
Department of Pathology of Gulhane Military Medical
Academy in Ankara, Turkey, upon the favourable deci-
sion of ethics committee of Gulhane Military Medical
Academy. An HCC tissue array consisting of 61 tumors
and five normal cases was purchased from Biochain
(Hayward, CA). A total cell lysate of a normal liver tis-
sue was kindly provided by Dr KC Akcali.

Multiplex semi-quantitative RT-PCR

Total RNA was isolated from cell lines using NucleoS-
pin RNA II (Macherey-Nagel, Germany) as indicated
by the manufacturer. Reverse transcription was per-
formed with Revert Aid First Strand cDNA Synthesis
kit (Fermentas, Lithuania) according to the manufac-
turer’s instructions. Multiplex semi-quantitative RT-
PCR was performed by using SIPI-specific primers
(SIP1-RTF and SIP1-RTR) and GAPDH-specific pri-
mers (GAPDH-RTF and GAPDH-RTR). Primer
sequences are given in the supplementary information
section (Additional file 2).

Quantitative RT-PCR

Quantitative analysis of SIPI transcripts was performed
by real-time RT-PCR on ¢cDNAs from the TissueScan
liver cancer tissue qPCR panel I (OriGene, Rockville,
MD) according to the manufacturer’s instructions and
as previously described [31]. Finnzymes DyNAmo™ HS
SYBR Green qPCR kit (Finnzymes, Finland) was used
and samples were run on a Stratagene MX3005P™ real-
time PCR system (Stratagene, La Jolla, CA). The TBP
gene was used as an internal control [32,33] and relative
levels of SIPI transcripts were measured by a modified
AACt formula [31,34]. Statistical analyses were per-
formed by the Student’s t test.

Western blotting

Western blotting was performed as previously
described [21]. Briefly, total cell lysates from SNU398,
Huh7, Hep40 and SNU182 cell lines were prepared in
NP-40 lysis buffer [50 mM Tris-HCI pH 8.0, 150 mM
NaCl, 1% Non-idet P40 (v/v) and a cocktail of EDTA-
free protease inhibitors (Roche Diagnostics, Mannheim,
Germany)]. Protein content was measured with the
Bradford assay. Equalized lysates were run on 8% SDS-
PAGE and then transferred onto polyvinylidene fluor-
ide (PVDF) membranes using a wet transfer apparatus
(Bio-Rad, Hercules, CA). 6E5 hybridoma supernatant
was used as the primary antibody. Horseradish peroxi-
dase (HRP)-conjugated donkey anti-mouse IgG (sc-
2318; Santa Cruz, CA) was used as the secondary
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antibody at 1:2000 dilution. Protein bands were visua-
lized using SuperSignal West Femto chemiluminescent
substrate (Pierce, Rockford, IL).

Immunohistochemistry

Following a pathologist’s review, immunohistochemistry
(IHC) was performed on human liver tissues to deter-
mine the expression of SIP1, as previously described
[21]. In brief, tissue sections were deparaffinized and
treated with 10 mM citrate buffer for antigen retrieval.
Then, samples were incubated first with a homemade
SIP1 monoclonal antibody (clone 6E5), and after wash-
ing, with a universal staining kit secondary reagent (Lab-
Vision, Fremont, CA). An IgG2a isotype antibody was
used as the control (R&D Systems, MN). Diaminobenzi-
dine (DAB) was used as the chromogen, and the slides
were counterstained using Mayer’s hematoxylin. Immu-
noreactivity was registered semi-quantitatively, and the
immunostaining in each section was assessed indepen-
dently by two observers (EO and TY). The staining
intensity was graded relatively as: no staining (0), weak
(+), moderate (++) or strong (+++) [35].

Mutation screening

Except UTR, all exons of SIPI were amplified in 14
HCC cell lines using 13 sets of primers (Additional file
2). PCR products were purified with the PCRyg Cleanup
Kit (Millipore, Billerica, MA) and directly sequenced by
the sequencing service company lontek (Istanbul, Tur-
key). Mutation screening was performed using the
Mutation Surveyor software package (v 3.10, SoftGe-
netics, LLC, State College, PA).

5-azacytidine and trichostatin A treatment of HCC cell
lines

5-azacytidine (5-AzaC) and Trichostatin A (TSA) treat-
ments were performed as described previously [36-38].
Briefly, cells were seeded in six-well plates at a density
of 3 x 10° cells/well and treated after 24 h with 2.5 uM
5-AzaC (Sigma-Aldrich, St. Louis, MO) for 96 h. In the
last 24 h, they were treated with 300 nM or 1 uM TSA
(Sigma-Aldrich, St. Louis, MO) either alone or com-
bined with 5-AzaC. The medium and 5-AzaC were
refreshed every 24 h. Control cultures were left
untreated or received a mock treatment with adequate
volumes of DMSO (Sigma-Aldrich, St. Louis, MO) in
the case of TSA treatment. At the end of the treatment,
cells were harvested for DNA and RNA isolation.

CpG island search in SIP1 promoter

The sequence of the human SIP1 gene was retrieved
from the NCBI gene database and putative SIPI promo-
ters were predicted by Promoter2.0 software [39]. The
genomic region containing the SIPI gene, starting from
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the third exon to 20 kb upstream of the first exon, was
analyzed for CpG islands by MethPrimer software [40].

Sodium bisulfite treatment and combined bisulfite
restriction analysis (COBRA)

Genomic DNA was extracted from the cell lines using
the Qiagen DNeasy Tissue kit (Hilden, Germany) and
bisulfite treated with the Epigentek Methylamp™ DNA
Modification kit (Brooklyn, NY) according to the manu-
facturers’ instructions. Nested primer pairs targeted to
SIP1 CpG islands were used to amplify bisulfite-treated
DNAs (the list of primers is given in Additional file 2)
and PCR products were restriction digested by BstUI or
Taql (New England BioLabs, Ipswich, MA) to detect
methylation status, as previously described [41].

Results

Differential SIP1 expression in HCC cell lines

We first identified the mRNA expression of SIPI in 14
HCC cell lines by multiplex semi-quantitative RT-PCR
(Figure 1A). In our experimental settings, the SIPI
transcript was absent in the Hep3B and HepG2, very
low in the PLC/PRF/5 and weak in the Hep40 and
Huh?7 cell lines. The other nine cell lines, SNU449,
SNU475, Mahlavu, SNU423, SNU398, SK-Hepl, Focus,
SNU387 and SNU182, displayed much stronger SIPI
mRNA expression. These results suggested a negative
regulation of SIPI in some HCC cells by as yet uniden-
tified mechanisms.

SIP1 expression is reduced in human HCCs

We expanded our analysis to clinical samples in order to
detect the expression of SIPI transcripts in a panel of
human HCCs by quantitative real-time RT-PCR (Figure
1B). SIPI expression was found to be significantly
reduced in 17 of 23 (73.91%) HCC tumors, compared to
eight normal liver tissues from the same panel (p =
0.01). Three of the remaining HCC samples displayed
normal and the other three showed high SIP1 transcript
levels. Decreased SIPI expression was also observed in
the majority of the non-HCC liver lesions - the cholan-
giocarcinomas and adenomas (data not shown).

SIP1 protein is missed or downregulated in HCCs

A previously described, an anti-SIP1 monoclonal anti-
body, clone 6E5, was used in the IHC experiments [21].
The specificity of the antibody was first assessed by
Western blotting in HCC cell lines and a control liver
tissue (Figure 2). Except for cells from the poorly differ-
entiated SNU398 cell line and the normal liver, none of
the HCC cells displayed SIP1 protein expression. Next,
IHC was performed on liver tissue array and archival
human liver tissue sections, including non-HCC (normal
liver, chronic hepatitis, cirrhosis) and HCC samples
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Figure 1 Expression of SIPT in HCC cell lines and tumors. (A) SIP1 expression is detected in 14 HCC cell lines by multiplex semi-quantitative
RT-PCR. GAPDH is used as an internal control. Amplicons corresponding to SIP1 and GAPDH are 132 bp and 611 bp, respectively. A negative
control without a DNA template is included. Bands lower than 100 bp in most of the cell lines and negative control sample are primer dimers.
M: marker. (B) SIPT mRNA expression in HCC tumors relative to tumor-adjacent and normal tissues is analyzed by quantitative RT-PCR. Relative
mMRNA levels of SIPT normalized to TBP are represented. Patients are grouped depending on tumor stage (GI-GIV). Clinicopathological
characteristics of patients (C9-E9) are given in Additional file 1. Standard deviations of two independent experiments are shown.
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(Figure 3). We observed decreased expression of SIP1 in
HCC cases compared to non-HCC tissues. Hepatocytes
from all 17 non-HCC tissues showed moderate and
strong SIP1 cytoplasmic expression. In sharp contrast,
no SIP1 protein expression was found in 53 of 64

— SIP1

M Calnexin

Figure 2 Endogenous expression of SIP1 protein in HCC cell
lines and normal liver. The specificity of 6E5 monoclonal antibody
is assessed by a Western blot experiment by using total cell lysates
from HCC cell lines (SNU398, Huh7, Hep40, SNU182) and a normal
liver. An SIP1 protein band at the expected size is observed only in

SNU398 and normal liver cells.

(82.8%) HCC cases. In addition, tumors in the remaining
11 cases (17.2%) displayed only weak immunoreactivity.
The THC results of the liver tissues are summarized in
Table 1.

Absence of SIP1T mutations in HCCs

To investigate whether SIPI is inactivated by allelic
deletions and/or somatic mutations, we performed
direct sequence analysis using genomic DNA from 14
HCC cell lines. Genomic PCR was carried out using 13
sets of primers that amplify the entire coding region,
including splice acceptor and donor sites (exons 2-10)
of SIP1. No somatic mutations leading to amino acid
substitutions or frameshifts were found, indicating that
mutational alterations of SIPI are not main genetic
events in hepatocarcinogenesis (data not shown).

Restoration of SIPT mRNA expression by 5-AzaC and TSA

treatments

The absence of SIPI mutations in HCC cell lines
prompted us to explore the role of DNA methylation
and/or histone deacetylation as mechanisms that operate
on SIPI downregulation in HCC. To this end, we exam-
ined rescued SIP1 expression in three cell lines with
decreased SIPI transcripts upon treatment with DNA
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Figure 3 SIP1 protein expression in human liver tissues. Photographs are representative of SIP1 immunohistochemistry in human liver
tissues. (A) Normal tissue shows strong, diffuse cytoplasmic staining. (B) Heterogenous expression of SIPT in HCC. Tumor section displays faint
immunostaining, except for a few cells with strong immunoreactivity. (C) A tissue array sample includes both tumor and non-tumor cells that
differentially express SIP1. (D) Adenocarcinoma metastasis to liver. While metastatic cells are negatively stained, hepatocytes strongly express
SIP1. N: Normal hepatocytes; T: HCC cells; MT: Metastatic adenocarcinoma cells (Scale Bars: 50 pm).

methyltransferase inhibitor 5-AzaC and histone deacety-
lase inhibitor TSA, either alone or in combination.
When treated with 5-AzaC and TSA alone, SIPI expres-
sion was found to be restored in the HepG2 cell line,
and combined treatment substantially increased SIPI
transcript compared to cells treated with either agent
alone (Figure 4A). Similar treatment conditions also

Table 1 Immunostaining of human liver tissues with SIP1
antibody

SIP1 Expression (staining intensity)

Pathological Diagnosis No staining (+) (++/+++)
HCC (n = 64) 53 (82.8%) 11 (17.2%)
Normal Liver (n = 7) 7 (100%)
Cirrhosis (n = 3) 3 (100%)
HBV Carrier (n = 1) 1 (100%)
Chronic Hepatitis
HBV (n = 3) 3(100%)
HCV (n = 3) 3 (100%)

restored the expression of SIPI in Hep3B and PLC cells
(Figure 4B).

Frequent methylation of SIP17 promoter in primary HCC
samples

The restoration of SIPI expression with the demethylating
agent 5-AzaC is an indicator of promoter hypermethyla-
tion; we next aimed at analyzing the methylation status of
the SIPI1 promoter region. First, we sought out CpG
islands by an in silico search in a ~100 kb region, from the
third exon to 20 kb upstream of the first exon of SIPI, by
using MethPrimer software [40]. Found CpG islands that
accumulate in three distinct zones of the analyzed 5’ site
of the SIPI gene are represented in Figure 5. Analysis of
the same region by a promoter prediction program, Pro-
moter 2.0 [39], revealed three previously described promo-
ter candidates [42,43]. We noticed that putative promoters
overlapped with some of the aforementioned CpG islands
and we restricted our methylation analyses to these three
gene regulatory regions (Figure 5).
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Figure 4 Treatment with 5-AzaC and TSA rescues SIP1 expression in HCC cell lines. The restoration of SIPT expression is analyzed by
multiplex semi-quantitative RT-PCR. (A) Treatment of HepG2 cells with 5-AzaC (2.5 pM) and TSA. Mahlavu cells are included as a positive control
of SIP1 expression. DMSO is used as a control of TSA treatment and a DNA-free PCR mixture [(-)] is also tested. (B) PLC and Hep3B cell lines are

both (A) and (B), bands lower than 100 bp are primer dimers.

treated with 2.5 uM 5-AzaC and 1 uM TSA. The SkHep1 cell line was used as a positive control. [(-)]: DNA-free PCR mixture. M: marker (bp). In

To determine the overall frequency of SIPI methyla-
tion in clinical HCC samples, we examined 39 tumor
and paired normal liver tissues and performed COBRA
analysis whenever an amplicon was obtained. Depending
on the availability of restriction sites, PCR products of
P1 and P2 were digested by BstUI, and amplicons deriv-
ing from P3 were cut by Tagl enzymes (Additional file
3). A tumor-specific methylation pattern was observed
in 48% (14/29) and 43% (10/23) of P1 and P3 sites,
respectively. However, in our analysis of the P2 region,
only 4% (1/26) of HCC samples were hypermethylated
(Figure 6). COBRA analysis of the P1 and P3 regions
also revealed partial methylation in both normal and
tumor tissues in 52% (15/29) and 30% (7/23) of the

paired samples, respectively. Six out of 23 amplicons in
the P3 region (26%) failed to be restriction digested. We
also noticed that 65.6% (21/32) of the paired samples
displayed tumor-specific methylation when all three
regions were considered. COBRA results of all paired
HCC samples are given in Additional file 4.

Discussion

SIP1 is a member of the ZEB family of transcription fac-
tors and, along with other E-cadherin repressors, it was
repeatedly shown to induce the EMT phenotype both in
vivo and in vitro and correlate with a poor prognosis in
cancer patients [5,12,15,19]. On the other hand, SIP1
was also shown to be a negative regulator of h”TERT
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Figure 5 In silico analysis of CpG-rich putative SIPT promoters. The 100 Kb genomic region upstream of the third exon is analyzed by CpG
island prediction (MethPrimer) and promoter prediction (Promoter2.0) programs. Localization of the CpG islands (gray zones) and three putative

promoter (P1-P3) regions are represented. Boxes indicate the first and second exons and the translation start site of SIP1.
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transcription in breast cancer cells [17]. Consistent with
this, we have recently reported that SIP1 was partly
responsible for inducing senescence in hepatocellular
carcinoma-derived cells through ZTERT repression, and
hypothesized that it may act as a tumor suppressor gene
in HCC [18]. In support of this hypothesis, a recent
microarray study showed downregulation of SIPI in
early and advanced HCC [44]. Also, induced expression
of SIP1 has recently been shown to directly inhibit
cyclin D1 in the A431 squamous carcinoma cell line,
leading to the accumulation of cells in the G1 phase
[19]. Other studies described posttranscriptional regula-
tion mechanisms, such as those mediated by miR-200
family [24-26] and SIP1 NAT [27], in the downregula-
tion of SIP1 in different pathophysological contexts.

BstUl
T) (N

Taql
T) (N

M (N T

P1 P2

P3

Figure 6 Methylation analysis of promoter regions by COBRA.
Photographs are representative of tumor-specific methylation in
three promoter regions. Amplicons of P1 and P2 are cut with BstUl
(left and middle), and Tagl digestion is applied to the PCR products
of the P3 region (right). N: normal; T: tumor; M: marker.

Obviously, DNA methylation and alterations of chro-
matin structure are predominant mechanisms that epi-
genetically inactivate tumor suppressor genes in tumors
[45]. For instance, SIPI was found to be hypermethy-
lated in poorly metastatic breast adenocarcinoma cells,
but hypomethylated in a more aggressive variant of this
cell line [28]. Yet more recently, silencing of SIPI
expression was shown to be mediated by promoter
hypermethylation in a substantial proportion of pancrea-
tic cancer cell lines and tissues [29].

Herein, we explored the expression of SIP1 in HCC at
the transcriptional and protein levels and provided a
mechanistic insight by demonstrating that promoter
hypermethylation operates as one of the mechanisms in
the epigenetic regulation and downregulation of SIP1 in
the majority of HCC samples.

Our initial expression studies in HCC cell lines
revealed two groups of cells that differentially express
SIP1. Most fibroblastoid-like cells displayed strong SIP1
transcripts, while cell lines with an epitheloid appear-
ance had no or low expression. This in vitro expression
pattern of SIPI was in accordance with its role in indu-
cing EMT, but was neither informative about a tumor
versus normal comparison of SIP1 levels nor the beha-
viour of SIP1 in a liver tissue context. We therefore pro-
ceeded with normal liver and HCC tissues and found a
significant decrease of SIPI transcripts in 74% of
tumors. By using a previously described anti-SIP1
monoclonal antibody, clone 6E5, an immunoblot was
performed with the lysates of HCC cell lines [21]. This
assay not only proved the specificity of this antibody,
but confirmed our initial observation that SIP1 is down-
regulated in tumors (Figure 2). Even a higher rate of
SIP1 downregulation was observed in our IHC experi-
ments. Compared to normal, 83% of HCC cases dis-
played no immunoreactivity and the remaining tumor
samples were stained with only a weak intensity. This
small difference between transcript and protein levels
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might be explained by the aforementioned posttran-
scriptional regulatory mechanisms of SIPI expression. In
fact, a miRNA profiling study that showed upregulation
of miR-200c in HCCs but not in benign liver tumors
could partly explain the downregulation of SIP1 in
HCCs [46]. It would be interesting to analyze the
expression levels of these regulators in HCCs.

Genetic screening of cell lines did not reveal any
mutational alterations in the SIPI gene, suggesting the
implication of epigenetic regulatory mechanisms for the
silencing of SIPI in HCC. Upon our observation that
SIPI mRNA expression was restored after treatment of
cells with 5-azaC and TSA, we decided to explore pro-
moter hypermethylation as a possible mechanism of
SIP1 downregulation in HCC.

In vitro activities of three alternative SIPI promoter
regions have been previously described in experiments
with mouse tissue and the one located around the first
exon (P2) exhibited the highest activity. The other alter-
native promoter regions (P1 and P3) were of low, but
detectable, activity [42]. Studies in human cancer cell
lines revealed a similar pattern of promoter activation,
but this time in an AKT-dependent manner [43]. In
striking contrast to these findings, we detected only one
methylated tumor sample among 26 paired tissues when
we examined the P2 promoter region. However, nearly
half of the HCC cases displayed tumor-specific hyper-
methylation at both the P1 and P3 putative promoter
sites. In fact, the number of CpG sites were more
restricted in P2 than in the P1 and P3 regions. We also
noticed only one BstUI restriction site in P2 but two in
the P1 region. P3 amplicons, which were devoid of
BstUI sites, were digested with the Tagl enzyme. Hyper-
methylation in the P3 alternative promoter region (43%)
might inhibit SIPI translation in a different context. The
regulation of SIPI translation by a NAT has been pre-
viously shown [27]. After the completion of EMT, a
NAT is expressed and makes translation of SIP1 mRNA
possible. This NAT expression was shown to be con-
trolled by elements placed at the 5 site of the second
exon, which corresponds to the P3 alternative promoter
region [27]. Therefore, hypermethylation at the P3 site
might inhibit the expression of the NAT, which in turn
negatively affects SIPI translation. It would be interest-
ing to study the expression of the NAT in HCC.

Downregulation of SIP1 in HCC is also in accordance
with the dual role of TGF-B in tumorigenesis. The
tumor suppressor role of TGF-B in the premalignant
stage was shown to switch to an EMT-inducing role in
the later stages of cancers, leading to metastasis [47].
This former failsafe mechanism might partly explain
higher levels of SIP1 expression in normal liver com-
pared to HCCs. Despite our previous description that
SIP1 is partly responsible for replicative senescence in
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liver cancer cells, its role in inducing apoptosis in dis-
tinct pathophysiolocal contexts should also be thor-
oughly investigated in HCC. Given the downregulation
and possible tumor suppressor role of SIP1 in HCC, we
also propose the assessment of this regulator as a prog-
nostic factor for patients affected by this aggressive form
of liver cancer.

Conclusions

The data presented here clearly demonstrate that SIPI is
downregulated and undergoes epigenetic silencing in a
considerable proportion of HCCs. Taken with our pre-
vious findings that SIP1 represses #TERT and mediates
senescence arrest in HCC-derived cells, our results sug-
gest that SIP1 is regulated in and a potential tumor sup-
pressor gene of hepatocarcinogenesis.

Additional material

Additional file 1: Clinicopathological characteristics of liver samples
used in quantitative RT-PCR. Data about gender, age, diagnosis and
tumor stage are given. A more detailed information on the samples can
be found on the website below. http://www.origene.com/assets/
documents/TissueScan/LVRT-01.xIs

Additional file 2: Primers used in the study. Name, sequence, Tm
value and PCR product size are given.

Additional file 3: Sequence of the bisulfite-modified SIP1 putative
promoter regions. Arrows underlie the position of COBRA primers.
Boxes show the cutting sites of the restriction enzymes.

Additional file 4: COBRA results of three SIP1 putative promoter
regions in paired HCC samples. Figure S1. BstU! restriction analysis of
the P1 region amplified by SIPM1dF/SIPM1iyR1 and SIPMTiF/SIPMTiyR1
semi-nested primer pairs. Fourteen out of 29 HCC samples (48%) are
methylated. Figure S2. BstUl restriction analysis of the P2 region
amplified by SIPM2iyF1/SIPM2iR and SIPM2iyF1/SIPM2iyR2 semi-nested
primer pairs. One out of 26 HCC samples (4%) is methylated. Figure S3.
Taq! restriction analysis of the P3 region amplified by SIPM3dF/SIPM3dR
and SIPM3iF/SIPM3iR nested primer pairs. Ten out of 23 HCC samples
(43%) are methylated.
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