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Abstract

Background: Major histocompatibility complex class I-related chain A and B (MICA/B) are two stress-inducible
ligands that bind the immunoreceptor NKG2D and play an important role in mediating the cyotoxicity of NK and T
cells. In this study, we sought to study MICA/B expression in pancreatic cancer and to determine whether and how
genotoxic drugs such as gemcitabine can affect MICA/B expression and natural killer cytotoxity.

Methods: Seven pancreatic cancer cell lines were analyzed for MICA/B expression by flow cytometry and for their
sensitivity to NK-92 cell killing by a 51Cr release assay. MICA/B expression in tumor tissues and sera of pancreatic
cancer was analyzed by immunohistochemical staining (IHC) and ELISA, respectively.

Results: Two MICA/B-positive cell lines were sensitive to the cytotoxic activity of NK-92 cells. Other two MICA/B-
positive cell lines and three MICA/B-negative cell lines were resistant to NK-92 cell killing. MICA/B expression was
positive in 17 of 25 (68%) pancreatic ductal adenocarcinomas but not in normal pancreatic ductal epithelial cells.
Serum MICA/B levels were significantly elevated in patients with pancreatic adenocarcinomas but did not correlate
with the stage of pancreatic cancer and patient survival. Gemcitabine therapy led to increased serum MICA levels
in 6 of 10 patients with detectable serum MICA. Allopurinol, an inhibitor of xanthine oxidoreductase that converts
xanthine to uric acid, blocked uric acid production, MICA/B expression, and sensitivity to NK-92 cell killing toward a
PANC-1 cancer cell line exposed to radiation and two genotoxic drugs, gemcitabine and 5-fluorouracil.

Conclusions: The levels of MICA/B expression in serum and tissue of pancreatic cancer are elevated. DNA damage-
induced MICA/B expression is mediated through increased uric acid production.
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Background
Pancreatic cancer remains one of the most lethal human
cancers and causes > 30,000 deaths per year in the Uni-
ted States [1]. Conventional treatments, such as surgery,
radiation, and chemotherapy, or combination of these
approaches, have had little impact on patient survival

[1]. Over the past decade, improved understanding and
knowledge of the immune system have generated novel
strategies for immunotherapy [2]. While the success of
tumor immunotherapy primarily relies on the identifica-
tion of tumor antigens, the expression of transforma-
tion-associated stress genes commonly provokes innate
immune reactions. These responses could be exploited
to develop immunotherapeutic approaches to treat can-
cer [3].
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MICA is a glycosylated, polymorphic and membrane-
anchored non-classical MHC class I molecule [4,5]. The
structure of MICA resembles other MHC class I heavy
chains. However, MICA is not associated with b2 micro-
globulin, lacks a CD8 binding site and does not present
any antigens [4,5]. MICA is broadly expressed in a vari-
ety of malignancies, including melanoma, breast, colon
and hepatocellular cancers [6-8]. MICA can be cleaved
by matrix metalloproteinases and ADAM proteinase,
and released into the blood stream or tissue culture
medium as a soluble molecule (sMICA) [7,9-11]. MICA
functions as a ligand for NKG2D, an important immu-
noreceptor expressed on NK cells, CD8 and gδ T cells
[5]. The interaction of MICA and NKG2D plays an
important role in immune surveillance by both innate
immunity and adaptive immunity. In vitro studies have
provided strong evidence that MICA is critical for the
susceptibility of target cells to NK cells, CD8 cytotoxic
T cells, and gδ T cells [5]. Antibodies that block the
interaction of MICA and NKG2D can inhibit NK and T
cell-mediated cytolysis [5]. Tumor cells stably expressing
NKG2D ligands at high level are rejected by CD8 T
cells and/or NK cells [12]. Mice immunized with
NKG2/D ligand-transfected tumor cells develop adaptive
immunity against re-challenge with the parental tumor
cell lines [13].
Gemcitabine is a first-line chemotherapy drug for pan-

creatic cancer [14]. Gemcitabine alone or in combina-
tion with 5-fluorouracil (5-FU) or radiation treatment
can prolong the survival of pancreatic cancer patients
[14]. We have recently characterized the change of
immune cells in pancreatic cancer patients treated with
gemcitabine [15]. Our data suggest that gemcitabine
therapy may decrease memory T-cells and promote
naive T-cell activation, and that gemcitabine therapy is
not immunosuppressive but rather may enhance antitu-
mor immunity induced by tumor vaccine [15]. Our pre-
sent study aims at analyzing MICA/B expression in
pancreatic tumor tissues and sera, and determining if
gemcitabine can stimulate antitumor immunity by indu-
cing MICA/B expression on pancreatic cancer cells.

Materials and methods
Reagents and cell lines
Anti-MICA/B mAbs (Clones 6D4 and SR99) have been
previously described [6,16-18]. Both antibodies can be
used in flow cytometric analysis to detect MICA/B cell
surface expression. SR99 but not 6D4 can be used in
immunohistochemical staining to monitor MICA/B
expression in sections of paraffin-embedded tumor
blocks. A polyclonal anti-MICA rabbit IgG was pur-
chased from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA). CAPAN-1, CAPAN-2, COLO-587, HPAF-II, Mia-
PaCa, PANC-1, and MPANC-96 cell lines were

purchased from the American Type Culture Collection
(Manassas, VA). MRO87, originally thought to be a thyr-
oid cancer cell line but later identified as a colon adeno-
carcinoma cell line, was included as a positive control
[19]. CAPAN-1, CAPAN-2, and HPAF-II cells were
grown in complete MEM medium containing 10% FBS,
non-essential amino acids, sodium pyruvate, HEPES,
penicillin and streptomycilin. COLO-587 and MRO87
cells were grown in complete RPMI 1640 medium con-
taining 10% FBS. PANC-1 cells were grown in complete
RPMI 1640 medium containing 10% FBS, non-essential
amino acids, sodium pyruvate, HEPES, penicillin and
streptomycilin. MPANC-96 and MiaPaCa were grown in
complete DMEM medium containing 10% FBS. NK-92
cells were grown in MyeloCult H5100 medium (StemCell
Technologies, Vancouver, British Columbia, Canada)
supplemented with IL-2 (100 units/ml) (R&D Systems).

Patient information, tumor specimens and blood samples
The use of specimens from human subjects was
approved by the Institutional Review Board of Rush
University Medical Center. Paraffin-embedded tissue
blocks derived from patients with either primary pan-
creatic adenocarcinomas and/or metastases were
obtained from the Department of Pathology. The stage
of the pancreatic adenocarcinomas was classified accord-
ing to the TNM scheme used by the AJCC. Blood sam-
ples were collected from 61 patients with pancreatic
ductal adenocarcinoma. Ten of them were treated with
gemcitabine (Gemzar®; Eli Lilly, Indianapolis, IN) recon-
stituted from lyophilized powder in 200-mg and 1000-
mg aliquots. Patients were treated at a dose of 1000 mg/
m2 weekly by an intravenous infusion in 250 mL over
30 minutes. Patients were treated for 3 weeks. Blood
samples were drawn before (day 0) and on day 3, 7, 14,
21 after gemcitabine treatment. Serum samples were
prepared, aliquoted, and stored at -80°C until analysis of
sMICA using a sandwich ELISA as described below.

Flow cytometric analysis
The monolayers of MRO87 and 7 pancreatic cancer cell
lines were harvested when they reached approximately
80% confluence. To determine whether DNA damage
stimulated MICA/B expression in pancreatic cancer
cells, PANC-1 cells grown in 6-well plates were preincu-
bated with allopurinol (250 μg/ml) for 1 hr, followed by
treatment with 5-FU (10 μM), gemcitabine (2 μM) or
radiation (40 Gy). PANC-1 cells were also treated with
uric acid crystals (200 μg/ml) and analyzed for MICA/B
expression. Cell surface MICA/B was stained with an
anti-MICA/B mAb (Clone 6D4) and analyzed on live
cells, which were gated on the forward scattering, in a
FACScan flow cytometer (Becton Dickinson, Palo Alto,
CA) as previous described [20].
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Chromium release assay
Pancreatic cancer cell lines were grown in T-25 flasks.
Upon 90% confluence, the cell monolayers were washed
and treated with Cell Dissociation Solution (Sigma, St.
Louis, MO). Single cell suspensions were labeled with
51Cr ( 50 μ Ci per 1 × 106 cells) at 37°C for 1 hr. The
cells (5000 per well) were aliquoted in triplicate in a 96-
well U-bottom plate in the absence or presence of NK-92
cells with a ratio of effector to target at 25:1, 5:1, or 1:1.
Cells were incubated at 37°C in a humidified CO2 incu-
bator for 4 hr. The supernatants were collected, trans-
ferred to Ready-Caps, and the radioactivity was measured
in a scintillation counter (Becton Dickinson, Palo Alto,
CA). To determine whether genotoxic drugs and radia-
tion can sensitize pancreatic cancer cells for NK-92 cell
killing, PANC-1 cells grown in 6-well plates were prein-
cubated with 5-FU (10 μM), gemcitabine (2 μM) or radia-
tion (40 Gy) in the absence or presence of allopurinol
(250 μg/ml). The experiments were conducted in tripli-
cate and repeated at least twice with similar results.

Immunohistochemical (IHC) analysis
Tissue sections were de-paraffinized with xylene and
rehydrated. MICA/B were stained with an anti-MICA/B
mAb (SR99) as previously described [20]. Two investiga-
tors (X.X. and P. G.) graded MICA/B expression in a
blinded fashion. MICA/B expression was confirmed with
a rabbit polyclonal anti-MICA/B IgG with a similar
immunohistochemical staining procedure as previously
published [20]. Negative MICA/B expression was graded
as no MICA/B signal (-)with weak signal (+) in less than
20% of tumor cells. MICA/B-positive tumors were
defined as weak (+), moderate (++) or strong (+++)
MICA/B signal in more than 20% of tumor cells.

ELISA
A MICA ELISA kit (IMMATICS Biotechnologies, Tubi-
gen, Germany) was used to detect sMICA in sera fol-
lowing a protocol described previously [21]. Plates were
coated with the AMO1 capture mAb against MICA in
PBS. After incubation overnight at 4°C, the plates were
blocked with PBS containing 5% bovine serum albumin
for 1 hr at 37°C and washed. Standard recombinant
sMICA and serum samples (diluted 1:3) were added to
the plates and incubated for 2 hrs at 37°C. After 3x
wash, detection mAb BAMO3 (IgG2a specific for
MICA/B) was added and incubated at 37°C for 2 hrs.
The plates were washed and incubated at 37°C with
HRP- conjugated anti mouse IgG2a. Color was devel-
oped using ABTS (2,2-Azino-bis-(3-ethylbenzenthiazo-
line-6-sulfnoic acid). Absorbance was measured at 450
nm. A standard curve of the logarithimic relationship
between concentration and absorbance was used to cal-
culate the sMICA concentration in serum samples.

Quantification of uric acid
PANC-1 cells were left untreated or treated with 5-FU
(10 μM), gemcitabine (2 μM) or irradiated with 40 G in
the absence or presence of allopurinol (250 μg/ml) for
24 hr. Cells were collected by trypsinization and counted
with Trypan Blue staining in a hemacytometer. The cells
were then washed 3 times with PBS and lysed at 5 × 105

cells/100 μl in the buffer containing Tris-HCl, 50 mM,
pH 8.0; 2 mM EDTA, 1% Triton X-100 and followed by
a 10-second homogenization. The lysates were incubated
on ice for 30 min then centrifuged at 2000 g for 15 min.
The supernatants were analyzed for uric acid concentra-
tion by using a uric acid kit (BioAssay Systems, Hay-
ward, CA).

Statistical analysis
Chi-square tests were performed to analyze the differ-
ence in the clinicopathologic parameters of MICA/B-
positive and MICA/B-negative pancreatic ductal adeno-
carcinomas for significant association. Student t test was
used to analyze the difference in NK-92 cell-mediated
cytotoxicity. Mann-Whitney U test was used to compare
serum MICA levels between the control group and pan-
creatic cancer patients. Paired student t test was used to
determine whether serum MICA/B levels were signifi-
cantly changed before (day 0) and on day 3 after gemci-
tabine treatment. The survival of pancreatic cancer
patients with serum MICA/B activity at a cutoff of 200
pg/ml was determined according to the Kaplan-Meier
method, and the difference was evaluated by the log-
rank test. A p value less than 0.05 was considered statis-
tically significant. All statistics was conducted by using
SigmaStat 3 software (Richmond, CA).

Results
MICA/B expression in pancreatic cancer cell lines
MICA/B expression was analyzed in 7 pancreatic cancer
cell lines by flow cytometry. MICA/B expression was
detected in a positive control cell line (MRO87) and in
4 pancreatic cancer cell lines (PANC-1, MPANC96,
HPAF-II, and CAPAN-1) but not in the other 3 cell
lines (COLO-587, MiaPaCa, and CAPAN-2) (Figure 1A).
Next, MICA/B expression was correlated with their sen-
sitivity to cytotoxic activity mediated by NK-92 cells, a
natural killer cell line that expresses NKG2D receptor
[20]. Three MICA/B-negative cell lines (COLO-587,
MiaPaCa, and CAPAN-2) were not sensitive to NK-92
cell killing (Figure 1B). Percent cytolysis of these cell
lines by NK-92 cells assayed with a ratio of effector to
target cells of 5:1 or 1:1 were less than 10%. Two of
four MICA/B-positive cell lines, CAPAN-1 and PANC-
1, were sensitive to NK-92 cell-mediated killing, with a
percent cytolysis of approximately 20% when the ratio
of effector to target cells was 5:1 or 1:1. Two MICA/B-
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Figure 1 MICA/B expression in pancreatic cancer cell lines and their sensitivity to NK-92 cell-mediated cytotoxic activity. (A) FACS
analysis of MICA/B expression in MRO87 and 7 pancreatic tumor cell lines. Cells (1 × 106/sample) were stained with 1 μg of anti-MCA/B mAb
(clone 6D4) followed by 10 μl of fluorescein-conjugated goat-anti-mouse IgG. Isotype-matched mouse IgG was used as a negative control. Cells
were analyzed in a BD FACScan flow cytometer. Green line, IgG control; Red line, anti-MICA/B mAb. (B) Cytotoxicity of NK-92 cells against 8
tumor cell lines. Single cell suspensions were prepared and analyzed for cytolysis by NK-92 cells in a standard 51Cr release assay. Experiments
were conducted in triplicate and repeated at least twice. The data represent the mean ± standard deviation (SD) from one representative
experiment.
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positive cell lines, MPANC96 and CAPAN-1, were resis-
tant to NK-92 cell killing.

MICA/B expression in pancreatic ductal adenocarcinomas
Twenty-five pancreatic cancer specimens from 25
patients (15 male and 10 female) with a mean age of 65
± 11 (median age: 65, range: 38-81 years) were analyzed
for MICA/B expression by immunohistochemical stain-
ing according our previous publication [18]. These 25
samples included 23 primary adenocarcinomas and 3
metastatic implants (one in the peritoneum, one in the
liver, and one in the gallbladder). IHC staining with an
anti-MICA/B mAb (SR99) (Figure 2,A-C) revealed the
strong dark brown signal of MICA/B expression present
in the tumor cells (Figure 2C) but not in normal ductal
cells (Figure 2A) nor in a cyst adenoma (Figure 2B).
Negative control IgG did not show any signal (Figure
2D). MICA/B expression was confirmed with a polyclo-
nal anti-MICA/B antibody (Figure 2E). A MICA/B-nega-
tive pancreatic adenocarcinoma is shown in Figure 2F.
Eighteen of (68%) of 25 pancreatic adenocarcinomas
were positive for MICA/B (Table 1). Among these
MICA/B-positive tumors, MICA/B expression was
graded as weak, moderate, and strong in 2, 5, 11 sam-
ples, respectively. Clinicopathologic analyses did not
reveal that MICA/B expression was associated with

patient gender, tumor stage, and lymph node metastasis,
and differentiation (Table 1).

Increased serum MICA levels in pancreatic cancer patients
The median and mean serum MICA levels in 61
patients were 228 pg/ml and 1107 ± 46 pg/ml respec-
tively. The median and mean sMICA concentrations in

Figure 2 MICA/B expression in pancreatic cancer by IHC analysis. The sections of pancreatic adenocarcinomas were analyzed for MICA/B
expression by immunohistochemical staining with a monoclonal antibody (Clone SR99) (30 μg/ml) (A-C) or a polyclonal anti-MICA rabbit IgG
(1:60) (E-F). Lack of MICA/B expression in normal pancreatic ductal epithelial cells (A) and a cyst adenocarcinoma (B). Mouse IgG isotype was
included as a negative control (D). (C & E) MICA/B signals in the membrane and cytoplasm. (F) No signal was present in a MICA/B-negative
pancreatic cancer.

Table 1 MICA/B expression in 25 pancreatic cancers and
clinicopatholgoic significance

Gender Total MICA/B+ p value

Female 10 7

Male 15 11 0.66

Tumor stage

T1 3 1

T2 9 7

T3 8 6 > 0.05

T4 1 1

Metastases 3 3

Lymph node invasion

Yes 14 10

No 8 5 1.00

Tumor differenation

Poorly differentiated 3 2

Well differentiated 22 16 0.47
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26 healthy control subjects were 30 and 211 ± 18 pg/ml,
respectively (Table 2). Statistical analyses revealed that
serum MICA levels were significantly increased in pan-
creatic cancer patients, compared to those in the healthy
controls (p = 0.002) (Table 2).
No difference in serum MICA levels amongst male

and female patients was revealed. The mean and median
serum MICA levels in 25 female patients were 220 and
461 ± 173 pg/ml respectively; whereas the mean and
median serum MICA levels in 36 male patients were
238 and 1556.2 ± 582 pg/ml, respectively (Table 2).
Mann-Whitney test revealed that there was no signifi-
cant difference in serum MICA levels between female
and male patients (p = 0.901). The association between
serum MICA levels with different tumor stages was also
determined. The median and mean serum MICA levels
in 15 patients with tumor stages I-III were 144 and 437
± 40 pg/ml respectively, compared to 231 and 1325 ±
69 pg/ml in 46 patients with a stage IV tumor (Table 2).
Statistical analyses revealed that MICA levels in patients
with tumor stages I-III were not significantly lower than
those with a stage IV tumor (p = 0.178). Surgical resec-
tion is an option for patients with earlier stage disease,
hence serum MICA levels in 24 patients who underwent
surgery were lower than those who did not. The median
and mean serum levels in 24 patients who underwent
Whipple procedure (9 cases) or tumor resection (15
cases) were 145 and 390 ± 177 pg/respectively, whereas
the median and mean serum levels in 37 patients (14
cases with palliative surgery and 23 cases without any
surgery) were 267 and 1572 ± 565 pg/ml, respectively
(Table 2). Mann-Whitney test revealed a p value of
0.018, indicating that serum MICA levels in patients
who were eligible for tumor resecton is significantly
lower than those with unresectable tumors.
Pancreatic cancer patients were divided into two

groups according to a cutoff value of 200 pg/ml of
serum MICA levels. The mean survival of these 16

pancreatic cancer patients with serum MICA levels <
200 pg/ml was 10.3 ± 7.6 months; whereas the mean
survival of 45 pancreatic cancer patients with serum
MICA levels > 200 pg/ml was 10.3 ± 4.9 months (Figure
3A). Serum MICA/B levels was not associated with sur-
vival in pancreatic cancer patients (p = 0.233). We next
tested whether gemcitabine treatment led to increased
serum MICA levels in pancreatic cancer. Blood samples
were taken from 10 patients before (day 0) and on day
3, 7, 14, and 28 after drug administration. Serum MICA
levels were increased in 6 of 10 patients with detectable
serum MICA levels (Figure 3B). Paired student t test

Table 2 Increased serum sMICA levels and its
clinicopathologic significance

Number Median Mean ± SE p value

Healthy donors 26 30 211 ± 18

Pancreatic cancer patients 61 228 1107 ± 46 0.002

Female 25 220 461 ± 173

Male 36 238 1556 ± 582 0.901

with surgery 24 145 390 ± 177

without surgery 37 267 1572 ± 565 0.018

Stage I-III 15 144 437 ± 40

Stage IV 46 231 1325 ± 69 0.178

 

0

200

400

600

800

1000

0 3 7 14 21

Days

sM
IC

A
 (p

g/
m

l) Pt. 10
Pt. 2
Pt. 3
Pt. 4
Pt. 9
Pt. 7

 

Time (month)
0 10 20 30 40 50 60

Su
rv

iv
al

 fr
ac

tio
n

0.0

0.2

0.4

0.6

0.8

1.0
<200 pg/ml (N=16)
>200 pg/ml (N=45)

Figure 3 Analysis of serum MICA levels in pancreatic cancer
patients. (A) Increased serum sMICA levels were not associated
with patient survival. Kaplan-Meier survival curves in 16 patients
with serum MICA levels < 200 pg/ml and in 45 patients with serum
MICA levels > 200 pg/ml were compared. (B) Serum sMICA levels
were elevated in pancreatic cancer patients treated with
gemcitabine. Blood samples collected from 10 patients before (Day
0) and after gemcitabine treatment at the indicated days were
analyzed for serum MICA levels using a sandwich ELISA kit. A
standard curve of the logarithimic relationship between
concentration and absorbance was used to calculate serum MICA
concentrations. Data from four patients whose serum MICA levels
were undetectable before and after gemcitabine treatment are not
shown.
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analysis revealed that serum sMICA levels were signifi-
cantly higher 3 days after gemcitabine treatment (day 0)
than those before treatment (p = 0.011). Serum MICA
levels in 4 patients with undetectable serum MICA level
before gemcitabine administration remained undetect-
able during 4 weeks of gemcitabine treatment.

Allopurinol blocks DNA damage-induced MICA/B
expression, uric acid production, and sensitivity of PANC-
1 cells to NK cell killing
The ability of gemcitabine and other DNA damage
reagents to induce MICA/B expression was verified in
vitro. Gemcitabine, 5-FU and radiation all led to
increased cell surface MICA/B expression in PANC-1
cells (Figure 4A). Allopurinol, an inhibitor of xanthine
oxidoreductase that converts xanthine to uric acid, was

added to PANC-1 cells 1 hr prior to the addition of
gemcitabine, 5-FU, or irradiation. Allopurinol was able
to block the induction of MICA/B expression in the
cells exposed to 5-FU, gemcitabine, or radiation (Figure
4A). To confirm a role of uric acid in mediating DNA
damage-induced MICA/B expression, exogenous uric
acid crystals were added and successfully induced
MICA/B expression in PANC-1 cells (Figure 4A). Analy-
sis of uric acid concentrations in PANC-1 cell lysates
revealed that uric acid levels were increased by approxi-
mately 3-fold in PANC-1 cells treated with gemcitabine,
5-FU, and radiation (Figure 4B), compared to untreated
controls. Allopurinol blocked the induction of uric acid
accumulation (Figure 4B). Of note, Trypan blue staining
revealed that 5-FU, gemcitabine, or radiation treatment
during 24 hr incubation did not lead to a significant
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Figure 4 Allopurinol blocks DNA damage-induced MICA/B expression. PANC-1 cells were treated with uric acid crystals (250 μg/ml each), 5-
FU (10 μM, gemcitabine (2 μM) or radiation (40 Gy) in the absence or presence of allopurinol (250 μg/ml). After incubation for 24 hr, the cells
were harvested and analyzed for MICA/B expression by FACS (Black line, isotype control) (A) or for intracellular uric acid concentrations by using
a colometric uric acid kit (B). The data represent the mean ± SD from one of two experiments with similar results. AP, allopurinol; MSU, uric acid
crystals (monosodium urate); 5-FU, 5-fluorouracil; Gem, gemcitabine, IR, radiation.
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number of dead cells (< 5% of stained cells), suggesting
that increased uric acid concentrations in DNA-
damaged cells were not due to the variation caused by
uncounted dead cells.
Pre-treatment of PANC-1 cells with gemcitabine, 5-

FU, or radiation led to a significant increase of the per-
cent 51Cr release (19-27%) in DNA-damaged cells, com-
pared to that in untreated or allopurinol-treated cells
(7-8%) (Figure 5A &5B). Allopurinol alone did not have
any effect on the sensitivity of PANC-1 to NK-92 cell
killing. However, allopuinol blocked DNA damaged-
induced sensitization of PANC-1 cells to NK-92 cyto-
toxicity (Figure 5A &5B). These observations suggest
that uric acid production and increased MICA/B expres-
sion play an important role in sensitizing pancreatic
cancer cells to NK-92 cell-mediated cytotoxicity.

Discussion
It has been well documented that MICA/B expression is
increased in several types of malignancy. A very recent
study showed that MICA/B expression was detected in
92 of 103 pancreatic ductal adenocarcinomas from a
cohort of Chinese patients [22]. Marten et al. reported
that MICA/B was expressed in three pancreatic cancer
cell lines, including PANC-1, DNA-G, and PatSci [21].
Our study confirms the expression of MICA/B in pan-
creatic adenocarcinomas, showing that 17 of 25 pancrea-
tic adenocarcinomas (68%) were positive for MICA/B
expression; and that MICA/B expression was detected
in 4 of 7 pancreatic cancer cell lines. The molecular
mechanisms of increased MICA/B expression in pan-
creatic cancer are unknown. Our prior study suggests
that MAP kinase activation due to BRAF gene mutation
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in thyroid cancer may contribute to increased MICA/B
expression [20]. KRAS is mutated in more than 95% of
pancreatic cancers [14]. We speculate that MAP kinase
activation due to RAS gene mutation may in part contri-
bute to increased MICA/B expression. Further epige-
netic changes may be required for MICA/B
overexpression since MICA/B promoter methylation
regulates MICA/B gene expression in hepatomas [23].
Ectopic expression of NKG2D ligands Rae1b or H60

in several murine tumor cell lines leads to the sensitiza-
tion of these cells to immune cell-mediated cytolysis
and tumor rejection [13]. In contrast to murine NKG2D
ligands, tumor-derived soluble MICA/B molecules can
induce endocytosis and degradation of NKG2D on both
tumor-infiltrating and peripheral-blood lymphocytes
from patients with cancer [7,24]. Thus, serum MICA/B
molecules released from tumor cells act as a negative
force to counteract the effect of membrane-bound
MICA/B in immune surveillance and sensitization for
immune cell killing. Cell surface levels of NKG2D in
NK and T cells from cancer patients are decreased, sub-
sequently leading to the loss of cytotoxic activity [22,25].
Therefore, MICA/B expression in pancreatic cancer and
subsequent release as soluble molecules may have a very
intriguing impact in clinical outcome. In this study, we
found that elevated serum MICA levels were not asso-
ciated with a prolonged or shorter survival. In contrast,
Duan et al. [22] recently reported that the mean survival
of pancreatic cancer patients with low serum sMICA
levels are significantly longer than those with high
serum MICA levels, whereas the mean survival of
patients with low MICA/B expression in pancreatic
tumor tissues are significantly shorter than those with
high MICA/B expression in tumor tissues. We have no
explanation for this discrepancy. We found that serum
sMICA levels in patients with stage IV pancreatic cancer
were higher than those with stage I to III cancer, but
this was not statistically significant. An earlier study
showed that sMICA levels in patients with stage IV pan-
creatic cancer are significantly higher than those with
stage III cancer [21].
NK-92 cells have a superior effect over lymphokine

activated killer cells and other NK cell lines such as the
YT cell line [26], largely because of an abundant expres-
sion of perforin and granzyme B [27]. Romanski et al.
[28] showed that NK-92 cells can selectively kill a panel
of leukemia cell lines in a MICA/B-dependent manner.
NK-92 cells moderately express the NKG2D receptor
and two other NK activation receptors, NKp30 and
NKp46 [27]. NK-92 cells preferentially kill a panel of
MICA/B-positive tumor cell lines [20]. In this study, we
demonstrated that NK-92 cells were able to kill two
MICA/B positive pancreatic cancer cell lines (PANC-1
& CAPAN-1) but had only minimal effect on other two

MICA/B-positive cell lines (HPAF-II and MPANC-96).
Marten et al. [21] found that NK-92 cells are able to kill
HLA-ABC-positive PANC-1 cells with similar potency.
The resistance of MICA/B-positive pancreatic cancer to
NK-92 cell killing could be due to the inhibitory effect
of co-expressed HLA-G antigen that suppresses NK cell
function [29-31]. Three MICA/B-negative cell lines,
CAPAN-2, COLO-587, and MiaPaCa, displayed very
low to moderate sensitivity to NK-92 cells. It is likely
that other NK activation receptors or other members of
MICA/B such as ULBP1-4 and Letal, a recently identi-
fied NKG2D ligand [32,33], may also participate in NK-
92 cell-mediated cytotoxic activity against MICA/B-
negative tumor cell lines [21].
Activation of the DNA damage pathway leads to

increased expression of NKG2D ligands in several mur-
ine tumor cell lines [34]. Other non-genotoxic antican-
cer drugs can also increase MICA/B and other NKG2D
ligand expression in various tumor cell lines and in
patients [35-37]. Mechanistic studies suggest that
increased cell surface MICA/B levels by anticancer
drugs could be due to transcriptional up-regulation of
MICA/B gene expression or due to the suppression of
proteinases that cleave MICA/B [35-37]. Our prior
study showed that MAP kinase activation due to RAS or
BRAF oncogene activation contributed to increased
MICA/B expression [20]. Additional study showed that
DNA damage induced by genotoxic drugs and radiation
leads to uric acid accumulation and MAP kinase activa-
tion, subsequently resulting in increased MICA/B
expression in MRO87 and HeLa cell lines (Manuscript
under review). Our in vitro study showed that uric acid
crystals were able to induce MICA/B expression in
PANC-1 cells, and that the blockade of uric acid pro-
duction by allopurinol abrogated DNA damage-induced
uric acid production and MICA/B expression. Our clini-
cal study showed that gemcitabine treatment led to a
transient increase of serum sMICA levels in 6 of 10
pancreatic cancer patients. These observations collec-
tively suggest that uric acid accumulation in DNA-
damaged pancreatic cancer cells plays an important role
in mediating genotoxic drug- and radiation-induced
MICA/B expression. Consistent with this notion, we
were able to detect the expression of xanthine oxidore-
ductase, a metabolic enzyme that generates uric acid, in
PANC-1 cell line and in pancreatic adenocarcinomas (X.
Xu, unpublished observations).
Since MICA/B expression in PANC-1 cells plays a cri-

tical role in NK-92 cell-mediated cytotoxicity [21], it is
highly likely that increased MICA/B expression contri-
butes significantly to DNA damage-enhanced sensitivity
of PANC-1 cells to NK-92 cell killing. Increased MICA/
B expression in HeLa and MRO87 cells by uric acid
crystals also leads to increased sensitivity to NK-92 cell
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killing. It should be noted that other NKG2D ligands or
Fas can be up-regulated by DNA damage too and may
also sensitize tumor cells to NK cell killing. Our clinical
study showed that gemcitabine treatment led to a transi-
ent increase of serum MICA levels in pancreatic cancer
patients. The highest levels of serum sMICA were on
day 3 after gemcitabine administration. Serum sMICA
declined slightly thereafter, which could be due to
tumoricidal effect of gemcitabine or due to the suppres-
sion of proteinase gene expression. Since soluble MICA/
B can antagonize membrane-bound MICA/B-mediated
antitumor immunity, the impact of genotoxic drug- or
radiation-induced MICA/B expression in pancreatic
tumor cells in a clinical setting remains unknown.
Recent clinical trials revealed that pancreatic cancer
patients treated with chemotherapy followed by immu-
nization with a GM-CSF-transfected pancreatic cancer
cell line developed a strong antitumor immunity and
prolonged patient survival [38,39]. Combinational use of
proteinase inhibitors that block MICA/B cleavage or use
of chemotherapeutic drugs that can also suppress pro-
teinase expression may further improve the therapeutic
outcome of immunotherapy for pancreactic cancer.

Conclusions
Our study has demonstrated that serum MICA levels
and MICA/B expression in pancreatic tumor tissues are
elevated. Radiation and genotoxic drugs are able to
induce MICA/B expression in pancreatic cancer cells
through the accumulation of uric acid. Gemcitabine
therapy leads to increased serum MICA levels, probably
as a result of increased MICA expression in tumor
tissues.

Abbreviation
5-FU: 5-fluorouracil; Gem: emcitabine; IHC: immunohistochemistry; MHC:
major histocompatibility complex; MICA/B: major histocompatibility complex
class I-related chain A and B; MMP: matrix metalloproteinase; NK: natural
killer; sMICA: soluble MICA.
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