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Abstract

expression status.

with PRL-3 expression.

Background: Phosphatase of regenerating liver-3 (PRL-3) has deserved attention as a crucial molecule in the
multiple steps of metastasis. In the present study, we examined the mechanisms regulating PRL-3 expression, and
assessed the clinical potential of PRL-3-targeted therapy in gastric cancer.

Methods: PRL-3 genomic amplification was analyzed using quantitative-polymerase chain reaction and/or
fluorescence in situ hybridization in 77 primary gastric tumors. The anticancer activity of PRL-3 inhibitor (1-4-
bromo-2-benzylidene rhodanine) treatment was evaluated against cancer cells with different genetic and

Results: PRL-3 genomic amplification was closely concordant with high level of its protein expression in cell lines,
and was found in 20% (8/40) among human primary tumors with its expression, which were all stage Ill/IV disease
(40%, 8/20), but in none (0/37) among those without expression. Additionally, PRL-3 genomic amplification was
associated with metastatic lymph node status, leading to advanced stage and thereby poor outcomes in patients
with lymph node metastasis (P = 0.021). PRL-3 small interfering RNA robustly repressed metastatic properties,
including cell proliferation, invasion, and anchorage-independent colony formation. Although neither PRL-3
genomic amplification nor expression level was responsible for the sensitivity to PRL-3 inhibitor treatment, the
inhibitor showed dose-dependent anticancer efficacy, and remarkably induced apoptosis on all the tested cell lines

Conclusions: We have for the first time, demonstrated that PRL-3 genomic amplification is one of the
predominant mechanisms inducing its expression, especially in more advanced stage, and that PRL-3-targeted
therapy may have a great potential against gastric cancer with its expression.
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Background

Gastric cancer (GC) is the fourth most common cancer
and the second leading cause of cancer-related death
worldwide [1]. Recent improvements in diagnostic tools
and methods have facilitated detection of early GC and
thereby excellent long-term survival. However, patients
with advanced disease at the time of diagnosis remain
poor outcomes. Metastasis is a multistep process, invol-
ving local invasion, dissemination, and re-establishment
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into distant organs, and is the major determinant of the
mortality [2]. Therefore, a better understanding of
metastasis may open the way to a host of innovative
therapeutic strategies in GC.

The protein tyrosine phosphatases (PTPs) form a large
family of enzymes that serve as key regulatory compo-
nents in signal transduction pathways [3]. The phospha-
tases of regenerating liver (PRL-1, -2, and -3), belonging
to a small class of PTP superfamily, have a unique
COOH-terminal prenylation motif, which critically
affects their cellular localization and function [4]. PRL-3
was firstly identified to be specifically over-expressed in
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liver metastases derived from colorectal cancer [5], and
subsequently its overexpression was documented in var-
ious tumor types, including GC [6]. PRL-3 can promote
cancer invasion, migration, growth, and angiogenesis,
through either dephosphorylation that is catalyzed by
catalytic domain or localization to plasma membrane
directed by COOH-terminal prenylation motif [7-9].
Thus, PRL-3 has deserved attention as a crucial mole-
cule in the multiple steps of metastasis and therefore as
a new therapeutic target. On the other hand, the
mechanisms inducing PRL-3 expression are not fully
clarified. Amplification of genomic regions containing
oncogenes is the major mechanism of its consequent
overexpression and the cancer development, and there-
fore has importance for targeted therapies [10]. PRL-3
gene amplification partially accounts for the overexpres-
sion in colorectal cancer and esophageal cancer [5,11].
However, the relationship between genomic amplifica-
tion and GC remains elusive in the both mechanistic
and therapeutic points of view. In the present study, we
examined the characteristics of PRL-3 genomic amplifi-
cation in GC, and further assessed the clinical potential
of PRL-3-targeted therapy.

Methods

Cell lines and Tissue Samples

The GC cell line MKN7 was kindly provided from the
Cell Resource Center for Biomedical Research Institute
of Development, Aging and Cancer, Tohoku University
(Sendai, Japan). Seven other GC cell lines (GCIY,
AZ521, Katolll, SH10, H111, MKN74, and NUGC4)
were purchased from RIKEN BioResource Center (Ibar-
aki, Japan). These cell lines cover the two main types of
GC [12], intestinal type (MKN7, MKN74, AZ521, and
H111 cells) and diffuse type (GCIY, Katolll, SH10, and
NUGC cells) [13-15]. MKN7, NUGC4, and AZ521 cells
were established from lymph node metastasis (LNM),
and MKN74 cells were from liver metastasis. KATOIII
and GCIY cells were established from metastatic pleural
effusion and ascites, respectively. H111 and SH10 cells
were established from the xenotransplantation. Normal
skeletal muscle C2C12 cells were purchased from DS
Pharma Biomedical Co., Ltd (Osaka, Japan). AZ521 and
C2C12 cells were grown in DMEM medium (GIBCO,
Carlsbad, CA) supplemented with 10% fetal bovine
serum (FBS). The other cells were grown in RPMI1640
medium (GIBCO) supplemented with 10% FBS. 1-4-
bromo-2-benzylidene rhodanine was purchased from
Calbiochem Corp (San Diego, CA), which was identified
as a PRL-3 inhibitor through high throughput screening
using chemical library of Korea Chemical Bank, and
inhibited PRL-3 phosphatase activity [16]. Indeed, phos-
phorylation of KRT8, PRL-3-interacting protein, induced
by catalytically inactive mutant of PRL-3, but not by
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wild type, was confirmed by PRL-3 inhibitor treatment
in a dose-dependent manner [17]. Moreover, anticancer
efficacy of PRL-3 inhibitor treatment also showed to be
similar to that of siRNA treatment in esophageal cancer
or colorectal cancer [11,17].

Out of 173 formalin-fixed, paraffin-embedded, tissue
samples series where we previously assessed PRL-3
expression status using immunohistochemical staining
(IHC) in GC [6], 77 matched pairs of primary tumor tis-
sues and the corresponding normal mucosa tissues were
randomly selected from patients with differential stages
according to the 13"™ edition of the Japanese Classifica-
tion of Gastric Carcinoma (JCGC) [18]; 40 pairs with
positive PRL-3 expression (10 patients in Stage I, 10 in
II, 10 in III, and 10 in IV) and 37 pairs with negative
expression (10 patients in stage I, 10 in II, 9 in III, and
8 in IV). All patients underwent gastrectomy according
to the gastric cancer treatment guidelines in Japan [19],
and histopathologic examinations were done according
to the JCGC. The 6 edition of the International Union
Against Cancer (UICC)/TNM classification was also
used [20]. Table 1 depicts the detailed information on
77 patients. All tissue samples were collected at the
Kitasato University Hospital, and informed consent was
obtained from all patients. The present study was
approved by the Ethics Committee of the Kitasato
University.

Fluorescence in situ hybridization analysis

Fluorescence in situ hybridization (FISH) analysis was
performed, as described previously [11]. PRL-3 is located
on chromosome 8q24.3 (GenBank accession number NT
000008.9), and the chromosome 8 centromeric probe
was used to estimate the copy number. Because PRL-3
FISH scoring algorithms had not been standardized, the
assessment was based on the criteria of HER2 [21]. For
each sample, at least 60 cancer cells were scored. Posi-
tive PRL-3 genomic amplification was defined as a ratio
of PRL-3 to chromosome 8 centromere more than 2.2,
and negative was the ratio of less than 1.8. If the ratio
of PRL-3 to chromosome 8 centromere was 1.8 to 2.2,
additional cells were counted, and the ratio of more
than 2.0 was finally considered as positive [21]. Polys-
omy was defined as the mean chromosome 8 centro-
meric signals more than 3.0 per nucleus [22].

Quantitative-genomic PCR

Tissue sections from tumor and the corresponding nor-
mal mucosa, obtained at least 5 cm from the tumor
edge, were sharply dissected on hematoxylin and eosin-
stained slides, and genomic DNA was subsequently
extracted using of a QIAamp DNA FFPE Kit (QIAGEN
Sciences, Hilden). Quantitative-genomic polymerase
chain reaction (Q-PCR) was performed to quantify
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Table 1 Correlation between PRL-3 gene amplification and clinicopathological variables in 77 patients with gastric
cancer

PRL-3 gene amplification

Variables Total number Negativity Positivity p value
Number (%) Number (%)
PRL-3 expression 0.006
Negativity 37 37 (100) 0 0)
Positivity 40 32 (80) 8 (20)
Age (years) 0.726
<60 34 30 (88) 4 (12)
>60 43 39 (91) 4 ©)
Gender 0.710
Male 51 45 (88) 6 (12)
Female 26 24 (92) 2 8)
Lymphatic permeation 0.343
Absence 15 15 (100) 0 )
Presence 62 54 (87) 8 (13)
Vascular permeation 0.263
Absence 25 24 (96) 1 “4)
Presence 52 45 (87) 7 (13)
Differentiation 0.134
Well and moderate 31 30 (97) 1 3)
Poor 46 39 (85) 7 (15)
Depth of invasion 0.006*
T1 (m and sm) 15 15 (100) 0 )
T2 (mp and ss) 35 33 (94) 2 6)
T3 (se) 19 16 (84) 3 (16)
T4 (si) 8 5 (63) 3 (38)
Lymph node metastasis 0.022
Absence 29 29 (100) 0 )
Presence 48 40 (83) 8 17)
JCGC lymph node status’ 0.004*
NO 29 29 (100) 0 0)
N1 21 20 (95) 1 (5)
N2 20 14 (70) 6 (30)
N3 and distant lymph nodes 7 6 (86) 1 (14)
UICC lymph node status* 0.002*
NO 29 29 (100) 0 0)
N1 18 17 (94) 1 (6)
N2 16 13 (81) 3 (19)
N3 and distant lymph nodes 14 10 71) 4 (29)
JCGC stage 0.005*
I (IA and IB) 20 20 (100) 0 (0)
I 20 20 (100) 0 )
Il (1A and 11IB) 19 15 (79) 4 (21)
% 18 14 (78) 4 (22)
UICC stage 0.003*
I (IA and IB) 21 21 (100) 0 0
Il 20 20 (100) 0 )
I (IIA and 11IB) 16 13 (81) 3 (19)
\% 20 15 (75) 5 (25)
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PRL-3 gene copy numbers using iQ™ Supermix (Bio-Rad
Laboratories, Hercules, CA) in triplicate on the iCycler
iQ™ Real-Time PCR Detection system (Bio-Rad). To nor-
malize PRL-3 gene copy number per cell, ADAM metallo-
peptidase domain 2 (ADAM?2, NT 923907.1), located on
chromosome 8p11.2, was used as an endogenous reference
because that gene amplification is defined as a copy num-
ber increase of a restricted region of a chromosome arm
[10]. ACt values were calculated as Ct (PRL-3)-Ct
(ADAM?2) for each sample. Relative copy number was
determined as 272%¢Y, where AAC, = AC, (tumor)-AC,
(corresponding normal) [23]. The increases of more than
2-fold relative to the corresponding normal were consid-
ered as genomic amplification. Additional file 1 depicts
detailed PCR condition and sequences of primer and
probe used in the present study.

Western blotting

Whole cell lysates were extracted in RIPA buffer (Pierce,
Rockford, IL) supplemented with 10 pL/mL Halt™ Pro-
tease Inhibitor Cocktail Kit (Pierce) and Halt™ Phos-
phatase Inhibitor Cocktail Kit (Pierce), and the protein
were separated on NuPAGE® 4-12% Bis-Tris Gel (Invi-
trogen) according to the manufacturer’s protocol. Both
detection and quantification of the specific proteins
were performed using ATTO Light Capture (ATTO
Corporation, Tokyo, Japan). Two colorectal cancer cell
lines DLD-1 and SW480 cells (RIKEN BioResource)
were used as the low and high expression controls,
respectively, as described previously [11].

PRL-3 mouse monoclonal antibody (R&D Systems,
Minneapolis, MN) and f-actin mouse monoclonal anti-
body (Sigma, St. Louis, MO) were used as described
previously [11].

PRL-3 small interfering RNA transfection

Cells were transfected with 1 pmol/L Accell SMART-
pool, siRNA-PRL-3 (Thermo Fisher Scientific, Lafayette,
CO) mixed with Accell siRNA Delivery Media (Thermo
Fisher Scientific) according to the Thermo Scientific
Dharmacon® Accell™ siRNA Delivery Protocol [24].
The Accell Non-targeting Pool (siRNA-ctr) and Accell
siRNA Delivery Media alone were used as a control for
non-sequence-specific effects and as a mock-treatment,
respectively.

Anchorage-independent colony formation assay

Anchorage-independent cell growth was analyzed by
plating 0.36% top agarose (Bacto™ Agar, Becton, Dick-
inson and Company, Franklin Lakes, NJ) containing 1 x
10° cells on a surface of 0.72% bottom agarose in 6-well
plates [11]. Cells were fed weekly by overlying fresh
soft-agar solution, and colonies were photographed after
2 weeks of incubation. The 50% effective concentration
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(ECsp) value of PRL-3 inhibitor treatment was calculated
based on the measurement of colony count.

Proliferation assay and invasion assay

The proliferation assay was performed using Premix
WST-1 Cell Proliferation Assay System (Takara Bio,
Tokyo). Cells (2 x 10%) were seeded in 96-well, and the
proliferative activity was measured by absorbance at
450 nm on designated sampling days. The sensitivity to
PRL-3 inhibitor on antiproliferation was determined
using the 50% inhibitory concentration (ICs,) value after
treatment for 72 hours.

The invasion assay was performed in the 24-well BD
BioCoat™ Matrigel™ Invasion Chamber (BD Bios-
ciences Discovery Labware, Bedford, MA). Cells that
had invaded through the membrane were counted in
four separated fields per well. Both experiments were
done in triplicate.

Apoptosis Assays

Apoptosis assays were performed using Guava PCA Sys-
tem (Guava Technologies, Inc., Hayward, CA). Cells
(2 x 10°) were treated with the PRL-3 inhibitor at the
indicated concentration in medium supplemental with
1.0% FBS for 72 hours, then stained with Annexin V
and 7-AAD (Guava Nexin Reagent). The experiment
was done in triplicate and analyzed using CytoSoft 2.1.5
software (Guava Technologies).

Statistical Analysis

Fisher’s exact test, or the Mann-Whitney U-test was
used to statistically analyze the relationship between
PRL-3 gene amplification and clinicopathological vari-
ables. One-way analysis of variance (ANOVA) with
post-hoc test was used to compare between three
groups for siRNA treatment (siRNA-PRL-3, siRNA-ctr,
and mock). Student ¢ test was used to evaluate thera-
peutic effect for the individual concentrations of PRL-3
inhibitor, compared with 0 pmol/L of PRL-3 inhibitor.
The Kaplan-Meier method was used to estimate cumu-
lative survival rates, and differences in survival rates
were assessed with the use of the log-rank test. All
deaths of patients were cancer-related, and disease spe-
cific survival (DSS) was measured from the date of sur-
gery to the date of death or the last follow-up. P < 0.05
was considered to indicate statistical significance. All
statistical analyses were conducted with JMP 7.0 soft-
ware (SAS Institute, Cary, NC).

Results

PRL-3 expression and genomic amplification in gastric
cancer cell lines

Initially, PRL-3 expression status was evaluated using
western blotting in 8 GC cell lines (Figure 1A). PRL-3
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Figure 1 Expression and genetic status of PRL-3 in 8GC cell lines. (A) Expression level of PRL-3 by western blotting. (B) FISH analysis on
metaphase of PRL-3 gene (green). The chromosome 8 centromeric probe (orange) was used to estimate the copy number.
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expression was observed at a detectable level in all the
cell lines, among which 5 cell lines (KatollIl, H111,
MKN7, MKN74, and NUGC4 cells) and 3 cell lines
(GCIY, AZ521, and SH10 cells) exhibited high and rela-
tively low expression, respectively. Subsequently, FISH
analysis was performed to examine whether PRL-3
expression was caused through its genomic amplification
(Figure 1B). Genomic amplification was obviously posi-
tive in 2 cell lines (MKN7 and MKN74 cells) and nega-
tive in 6 cell lines. 3 of the six were dysomic (AZ521,
GCIY, and NUGC4 cells), and three were polysomic
(KatolIl, SH10, and H111 cells). PRL-3 genomic amplifi-
cation frequently occurred in the different regions from
chromosome 8, so-called distributed insertions, on
metaphase [10], and was concordant with its high
expression.

Characteristic of PRL-3 genomic amplification in human
primary gastric cancers

In our previous study, PRL-3 expression was detected in
95 (55%) out of 173 primary GCs by IHC [6]. To explore

the link between PRL-3 expression and its genomic ampli-
fication, Q-PCR was performed for both the 40 tumors
with positive PRL-3 expression and 37 tumors with nega-
tive expression, which were randomly selected from differ-
ential stages in the 173 primary tumors. All the primary
tumors without PRL-3 expression were not amplified,
whereas 8 (20%) out of the 40 primary tumors with PRL-3
expression were amplified (Figure 2A). FISH analyses also
confirmed obvious genomic amplification as the cancer-
specific alteration (Figure 2B), and exhibited at nearly
homogenous pattern in both the central area and invasive
area within tumor. Subsequently, the relationship with
clinicopathological factors was assessed for PRL-3 genomic
amplification (Table 1), where it was significantly asso-
ciated not only with its expression (P = 0.006), but also
with depth of tumor invasion (P = 0.006), presence of
LNM (P = 0.022), LNM status (P = 0.004 in JCGC, P =
0.002 in UICC), and stage (P = 0.005 in JCGC, P = 0.003
in UICC). Additionally, all the primary tumors with geno-
mic amplification were stage III or IV disease (40%, 8/20).
Moreover, the genomic amplification negatively affected
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Figure 2 Frequency and prognosis of PRL-3 genomic amplification in 77 human GC. (A) Frequency of PRL-3 genomic amplification using
Q-PCR in 77 human GC. Q-PCR was performed for both the 40 tumors with positive PRL-3 expression and 37 tumors with negative expression.
To normalize PRL-3 gene copy number per cell, ADAM2, located on chromosome 8p11.2, was used as an endogenous reference. ACt values were
calculated as Ct (PRL-3)-Ct (ADAM2) for each sample. Relative copy number was determined as 2785 where AAC, = AC, (tumon)-AC,
(corresponding normal). (B) Representative FISH analysis of PRL-3 gene in primary tumor and corresponding normal (case 82). (C) Kaplan Meier
curves of 5-year DSS according to the positivity or negativity of PRL-3 genomic amplification in the histologically node-positive patients. Error

bars, standard deviation (SD).

the outcomes of the histologically node-positive patients
(P = 0.021, Figure 2C), although PRL-3 expression did not
in our and other previous reports [6,25].

PRL-3 as a convergent therapeutic target

In GC, the functional roles of PRL-3, including invasion
and proliferation abilities, have been documented only in
SGC7901 cells [25]. To confirm these metastatic proper-
ties using 3 cell lines with different PRL-3 expression and
genetic status, knock-down of endogenous PRL-3 expres-
sion was performed using siRNA transfection; AZ521 cells
(low expression and disomy), H111 cells (high expression
and polysomy), MKN74 cells (high expression and geno-
mic amplification). These cell lines were transfected with
siRNA-PRL-3 or siRNA-ctr, and western blotting showed
the decreased level of PRL-3 protein in siRNA-PRL-3
cells, but not siRNA-ctr cells, compared with mock-

treatment cells (Figure 3A). One of the important charac-
teristic of the metastatic phenotype is supposed as the
ability for cancer cells to grow under anchorage-indepen-
dent conditions [26], but the involvement in PRL-3
remains unknown in GC. All siRNA-PRL-3 cells showed
the significantly decreased size and number of colonies,
compared to siRNA-ctr cells or mock-treatment cells (Fig-
ure 3B). Moreover, in line with previous reports for other
GC cell lines [25,27], we also confirmed that siRNA-PRL-3
cells showed the significantly less proliferative activity (Fig-
ure 3C) and invasive ability (Figure 3D).

Therapeutic potential of PRL-3 inhibitor, 1-4-bromo-2-
benzylidene rhodanine

To assess the therapeutic potential and examine a land-
mark guiding the response to PRL-3-targeted therapy,
we evaluated the anticancer activity of PRL-3 inhibitor,
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cell-permeable benzylidene rhodanine compound [16],
against 6 cell lines with different PRL-3 expression and
genetic status; GCIY and AZ521 cells (low expression
and disomy), KatollI cells (high expression and polys-
omy), SH10 cells (low expression and polysomy), MKN7
and MKN74 cells (high expression and genomic amplifi-
cation). Cells were treated with PRL-3 inhibitor at con-
centrations ranging from 0 to 50 umol/L. PRL-3
inhibitor showed dose- and time-dependent antiproli-
ferative efficacy on all the tested cell lines, irrespective
of different PRL-3 expression level and genetic status,
and the ICy, values of GCIY, AZ521, Katolll, SH10,
MKN7, and MKN74 cells were 26.77, 9.98, 24.26, 23.95,
22.29, and 9.45 umol/L, respectively (Figure 4A). AZ521
and MKN74 cells were more sensitive to PRL-3 inhibi-
tor treatment than GCIY and MKN7 cells that were

categorized as the identical groups in terms of expres-
sion and genetic status, respectively. Namely, genetic or
expression status was not associated with sensitivity of
GC cells against the PRL-3 inhibitor. Similar efficacy
was shown in anchorage-independent colony formation,
and the ECs5qy values of GCIY, AZ521, SH10, and
MKN74 cells were 6.99, 9.52, 13.05, 9.09 pmol/L,
respectively (Figure 4B). GCIY cells exhibited more sen-
sitive inhibition in contrast with the anti-proliferation.
Additionally, this inhibitor also robustly abrogated the
invasive ability of GC cells (Figure 4C). To further char-
acterize the anticancer efficacy of PRL-3 inhibitor treat-
ment, apoptosis assay was performed (Figure 5A).
Although 1 pmol/L of the inhibitor was insufficient to
induce apoptosis beyond the baseline (0 pmol/L),
10 umol/L of the inhibitor robustly caused the drastic



Qoki et al. BMC Cancer 2011, 11:122 Page 8 of 11
http://www.biomedcentral.com/1471-2407/11/122
N
A
. WOuM B 1M & 10uM B50pM I_*_“""‘ . 1pM & 10pM s0pM

Relative proliferative rate
=
o

00 : L :
GCIY  AZ521 Kat Il SHI0O MEN7 MENT74 1 5 3 4 (days)
Expression L L H L H H
Genetic status D D P P A A
IC 2677 998 2426 2395 2229 945
0 1 10 50 (uM) 10 50 (uM)
[mouM @10 m10M D5OM | [wount @101 @ 10pM s0pn |
L 12 14
2
5 ln E 12 * * * * * * * * *
E, 08 g 10
g i
5 fos
S 05 A
] H 056
E-]
goa s 04
-
502 02
=]
& e -
& 00 s - 00 el !
GCIY AZS21 SH 10 MKN74 GCIY AZ521 SH 10 MKN74
ECq 699 952 1305 9.09

-
-

Ahsorhance (OD 450
S mnp © 0 = = =~
L h'a b 0 b h &

Figure 4 Anticancer activity of PRL-3 inhibitor. (A) Proliferation assay after treatment with PRL-3 inhibitor at concentrations ranging from 0 to
50 umol/L against 6 cell lines with different PRL-3 expression and genetic status. With cells treated with chemical solution alone (0 umol/L PRL-3
inhibitor) as 1.0, the relative proliferative rate on 5 days after treatment was shown in left panel. The proliferative activity of AZ521 cells on 1, 2,
3, or 4 days after treatment was shown in right panel. L, low expression; H, high expression; D, disomy; P, polysomy; A, amplification; ICs, the
50% inhibitory concentration. (B) Anchorage-independent colony formation assays. Representative pictures of colony formation on AZ521 cells
(top panel) and the relative rate of colony number (bottom panel) were shown. Bars, 200 um; ECs, the 50% effective concentration. (C) Invasion
assay. Representative pictures (top panel) and the relative invasive rate (bottom panel) were shown. Bars, 200 um; *, P < 0.05 by Student ¢ test,

compared with 0 umol/L of PRL-3 inhibitor; error bars, SD.

apoptosis on all the tested cell lines, where there were
the 3-fold and 11-fold increases beyond the baseline in
GCIY and MKN74 cells, respectively. Thus, PRL-3 inhi-
bitor repressed these metastatic properties on all the
tested cell lines in dose-dependent manner, and neither
expression level nor genetic status showed clear correla-
tion with the sensitivity.

Finally, we assessed whether PRL-3 inhibitor induced
cytotoxicity in normal skeletal muscle, where PRL-3 is
predominantly expressed [28]. Both proliferation and
apoptosis assays were performed using normal skeletal
muscle C2C12 cells treated with the inhibitor, and
showed that 10 pmol/L of the inhibitor failed to cause
antiproliferative and apoptotic response on C2C12 in
contrast with the efficacies on all the tested GC cell
lines (Figure 5A and 5B).

Discussion
As LNM is considered as an important prognostic factor
for GC [29], research of the causative molecules reflect-
ing LNM is a promising avenue to improve the out-
comes. The close link of LNM with PRL-3 expression,
therefore, has potential as a new therapeutic target
[6,25]. However, the criteria for PRL-3-targeted therapy
have not been established, and it is critical to clarify the
characteristics of PRL-3 genomic amplification in the
both mechanistic and therapeutic points of view,
because of the major mechanism of its consequent
expression and the cancer development [10]. In the pre-
sent study, we offer the vital clues for the development
of this therapeutic strategy against GC.

The relationship between PRL-3 expression and its
genomic amplification have never been examined so far.
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Figure 5 PRL-3 inhibitor-mediated apoptosis. (A) Apoptosis assay was performed 72 hours after treatment with PRL-3 inhibitor (0 to 10 umol/
L). Representative figures of apoptosis assay on AZ521 and C2C12 cells were shown in left panel, and the percentage and SD of early apoptosis
(bottom right quadrant) and late apoptosis (top right quadrant) are shown in each panel. With cells treated with chemical solution alone (0
pmol/L PRL-3 inhibitor) as 1.0, the relative late apoptosis rate after treatment was shown in right panel. *, P < 0.05 by Student t test, compared
with 0 pmol/L of PRL-3 inhibitor. (B) PRL-3 inhibitor treatment against normal skeletal muscle C2C12 cells. C2C12 cells exhibited lower expression
level of PRL-3 than GC cells by western blotting. Proliferation assay after treatment with PRL-3 inhibitor was performed. Error bars, SD.

PRL-3 genomic amplification was concordant with its
expression status in cell lines, and was found in 20% (8/
40) among human primary tumors with expression,
which were all stage III or IV disease (40%, 8/20), but in
none (0/37) among those without expression. Addition-
ally, PRL-3 genomic amplification was associated with
LNM status, leading to advanced stage and thereby poor
outcomes in patients with LNM (P = 0.021). Thus, PRL-
3 genomic amplification may be the more relevant
alteration for LNM, and be one of the predominant
mechanisms inducing its expression in the more
advanced stage. However, most tumors expressing PRL-
3 were not amplified, especially in the earler stage. In
mouse embryonic fibroblast cells with wild type but not
p5377, PRL-3 is induced in a p53-dependent manner
[30]. The p53 mutation or loss of function, however, has
been documented in all the GC cell lines used in the

present study, except for NUGC4 cells (The TP53 Web
Site, http://p53.free.fr/), indicating that there is other
mechanism independently of p53 pathway. PRL-3
expression was reported to be regulated at transcrip-
tional level by mitogenic cytokines, such as IL-6, IL-21,
HGF or IGF-1 in myeloma cell lines [24], or as TGF-§
in colon cancer cell lines [31]. Recently, PolyC-RNA-
binding protein 1 (PCBP1) has been identified as a
translational regulator of PRL-3 [32]. The alternative
mechanisms at transcriptional or translational level may
be involved to regulate PRL-3 expression.

We also confirmed that siRNA-mediated PRL-3
knockdown significantly repressed cell proliferation and
invasion in line with previous reports for other GC cell
lines [25,27], and furthermore for the first time revealed
the reduced effect of colony formation under ancho-
rage-independent conditions, supporting that PRL-3
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may be attractive therapeutic target against GC. The
success of molecular-targeted therapy depends on the
identification of a landmark to select patients with more
benefit from the therapy, such as activating mutation or
gene amplification of EGFR in non-small cell lung can-
cer [33], and overexpression or gene amplification of
HER2 in breast cancer [34]. Thus, genetic alteration or
expression status is possible to be a landmark for mole-
cular-targeted therapy, and it is indispensable to evalu-
ate the anticancer activity of PRL-3 inhibitor treatment
against cancer cells with different genetic and expression
status. Although neither PRL-3 genomic amplification
nor expression level was responsible for the sensitivity
to PRL-3 inhibitor treatment, the inhibitor exhibited
dose-dependent efficacy on all the tested cell lines with
PRL-3 expression, and remarkably induced apoptosis in
line with a previous report [35]. PRL-3 is not expressed
in human adult stomach, and its expression is cancer-
specific event [6,7]. Collectively, the presence of PRL-3
expression, but not expression level, may be sufficient to
promote metastatic properties through activation of
downstream signaling pathways, and the effective inhibi-
tion seems to have important implication for the success
of this treatment. Combined with our previous findings
demonstrating the high frequency of PRL-3 expression
(55%, 95/173) [6], PRL-3-targeted therapy may be
applicable for most patients with GC. The different sen-
sitivity against PRL-3 targeting as shown in the present
study may imply the additional alterations attenuating
the dependence of PRL-3 signaling networks on cancer
cells. Therefore, identification of molecules leading to
the different sensitivity would shed light on the develop-
ment of more sophisticated strategy.

Normal tissues with PRL-3 expression may be suscepti-
ble to adverse effects from the targeted therapy, especially
in normal skeletal muscle and heart [28]. Interestingly,
PRL-3 inhibitor treatment with the concentration of
10 pmol/L significantly repressed proliferation through
apoptosis induction on all the tested GC cell lines,
whereas did not on normal skeletal muscle C2C12 cells,
implying that this concentration may act as an optimal
dose of anticancer activity without severe effects against
muscle cells, and normal cells may have a better apopto-
tic protective mechanism, even though PRL-3 is constitu-
tively expressed [35]. As C2C12 cells might not be the
best control because of relatively weak expression, further
research will be necessary to validate our findings.

Conclusions

We have for the first time demonstrated that PRL-3 geno-
mic amplification is one of the predominant mechanisms
inducing its expression, especially in more advanced stage,
and that PRL-3-targeted therapy may have a great poten-
tial against gastric cancer with its expression.
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