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COX-2 activation is associated with Akt
phosphorylation and poor survival in ER-negative,
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Abstract

Background: Inducible cyclooxgenase-2 (COX-2) is commonly overexpressed in breast tumors and is a target for
cancer therapy. Here, we studied the association of COX-2 with breast cancer survival and how this association is
influenced by tumor estrogen and HER2 receptor status and Akt pathway activation.

Methods: Tumor COX-2, HER2 and estrogen receptor a (ER) expression and phosphorylation of Akt, BAD, and
caspase-9 were analyzed immunohistochemically in 248 cases of breast cancer. Spearman’s correlation and
multivariable logistic regression analyses were used to examine the relationship between COX-2 and tumor
characteristics. Kaplan-Meier survival and multivariable Cox proportional hazards regression analyses were used to
examine the relationship between COX-2 and disease-specific survival.

Results: COX-2 was significantly associated with breast cancer outcome in ER-negative [Hazard ratio (HR) = 2.72;
95% confidence interval (CI), 1.36-5.41; comparing high versus low COX-2] and HER2 overexpressing breast cancer
(HR = 2.84; 95% CI, 1.07-7.52). However, the hazard of poor survival associated with increased COX-2 was highest
among patients who were both ER-negative and HER2-positive (HR = 5.95; 95% CI, 1.01-34.9). Notably, COX-2
expression in the ER-negative and HER2-positive tumors correlated significantly with increased phosphorylation of
Akt and of the two Akt targets, BAD at Ser136 and caspase-9 at Ser196.

Conclusions: Up-regulation of COX-2 in ER-negative and HER2-positive breast tumors is associated with Akt pathway
activation and is a marker of poor outcome. The findings suggest that COX-2-specific inhibitors and inhibitors of the
Akt pathway may act synergistically as anticancer drugs in the ER-negative and HER2-positive breast cancer subtype.

Background
Cyclooxygenase-2 (COX-2) catalyzes the conversion of
arachidonic acid to prostaglandin E2 (PGE2) and
enhances the metastatic phenotype of both breast cancer
cells in vitro and breast tumors [1]. Increased COX-2
expression occurs early in breast cancer and can be
detected in ductal carcinoma in situ [2], invasive breast
carcinoma [3] and in metastatic lesions [4]. Recently,
COX-2 expression has been associated with decreased
disease-free survival in breast cancer [5], and breast

cancer specific survival [6-8], suggesting that the inhibi-
tion of this enzyme has anticancer effects.
We have previously observed a significant association

between COX-2 expression and Akt phosphorylation
in breast tumors [9]. We also demonstrated the ability
of PGE2 to induce phosphorylation of Akt in the ER-
negative MDA-MB-231 breast cancer cells, and to a
lesser degree in ER-positive MCF-7 breast cancer cells.
The results indicated that COX-2 is a key modulator
of Akt activation in breast cancer which is consistent
with other published findings [10]. Additionally, it has
been shown by others that administration of the COX-
2 inhibitor, celecoxib, in murine mammary tumor
models results in inhibition of Akt phosphorylation
and enhanced induction of apoptosis [11].
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In the current study, we hypothesized that COX-2
expression would be associated with poor breast cancer
survival, and that the COX-2 effect on survival would be
modified by the tumor ER and human epidermal growth
factor receptor 2 (HER2) status and/or Akt pathway
activation. A recent celecoxib anti-aromatase adjuvant
trial did not find a clinical benefit for celecoxib, a COX-
2-specific inhibitor, among ER-positive patients with
advanced disease [12], while two other similar trials
showed promising, albeit not significant effects of this
drug when administered in combination with exemes-
tane [13,14]. We investigated the association of COX-2
expression with disease outcome among ER-positive and
ER-negative breast cancer patients. The results from our
study suggest that COX-2-specific inhibitors could be
more efficacious in ER-negative tumors than ER-positive
tumors and may perhaps synergistically interact with
Akt inhibitors in breast cancer survival.

Methods
Tissue collection
Paraffin-embedded (n = 248) tumor specimens were
obtained from breast cancer patients that resided in
the greater Baltimore area, as described [9]. Patients
were recruited at the University of Maryland Medical
Center (UMD), the Baltimore Veterans Affairs Medical
Center, Union Memorial Hospital, Mercy Medical Cen-
ter, and the Sinai Hospital in Baltimore between 1993
and 2003. All patients were identified through surgery
lists and enrolled into the study prior to surgery. They
signed a consent form and completed an interviewer-
administered questionnaire. Clinical and pathological
information was obtained from medical records and
pathology reports. Disease staging was performed
according to the tumor-node-metastasis (TNM) system
of the American Joint Committee on Cancer/the
Union Internationale Contre le Cancer (AJCC/UICC).
The Nottingham system was used to determine the
tumor grade. The collection of tumor specimens, sur-
vey data, and clinical and pathological information was
reviewed and approved by the University of Maryland
Institutional Review Board for the participating institu-
tions (UMD protocol #0298229). IRB approval of this
protocol was then obtained at all institutions (Veterans
Affairs Medical Center, Union Memorial Hospital,
Mercy Medical Center, and Sinai Hospital). The
research was also reviewed and approved by the NIH
Office of Human Subjects Research (OHSR #2248).

Immunohistochemistry
IHC was performed as described previously [9]. Staining
specificity was evaluated and shown with negative and
positive control slides and, if available, with blocking
peptides that were purchased from the manufacturer.

Phospho-specific blocking peptides were available for
phosphorylated Akt and phosphorylated caspase-9. To
block phospho-Akt staining, blocking peptides from Cell
Signaling for Akt Ser473 (#1140) and Akt Thr308
(#1145) were used. The specificity of these blocking
peptides for phospho-Akt has been shown by the manu-
facturer. In brief, protein expression was evaluated using
the following primary antibodies: 1:50 diluted monoclo-
nal antibody (clone 33; no. 610204 (formerly C22420);
BD Biosciences/Transduction Laboratories, San Diego,
CA) for COX-2; 1:100 diluted rabbit polyclonal antibody
(DakoCytomation) for HER2 (c-erbB-2); and ready-to-
use monoclonal (Clone 6F11) antibody (Ventana Medi-
cal Systems, Tucson, AZ) for the estrogen receptor (ER);
1:25 diluted rabbit polyclonal antibody (no. 9277; Cell
Signaling Technology, Beverly, MA) for phosphorylated
Akt (Ser473); 1:80 diluted monoclonal antibody 244F9
(no. 4056; Cell Signaling Technology) for phosphory-
lated Akt (Thr308); 1:100 diluted rabbit polyclonal anti-
body (no. 9295; Cell Signaling Technology) for
phosphorylated Bad (Ser136); 1:250 diluted rabbit poly-
clonal antibody (no. SC-11755; Santa Cruz Biotechnol-
ogy, Santa Cruz, CA) for phosphorylated caspase-9
(Ser196), and the ready-to-use monoclonal antibody
(Lab Vision Corp., Fremont, CA) for CD31. The IHC
protocol to determine the tumor ER status followed
guidelines for clinical laboratories to evaluate semi-
quantitatively ER expression in formalin-fixed, paraffin-
embedded tissue on a Ventana automated slide stainer
for clinical assessment of a patient’s ER status (“CON-
FIRM Estrogen Receptor” assay by Ventana). The IHC
staining protocol for HER2 followed the DAKO Her-
cepTest™ protocol. A combined score of intensity and
distribution was used to categorize the immunohisto-
chemical staining for protein expression with the excep-
tion of the ER IHC. Intensity received a score of 0 to 3
if the staining was negative, weak, moderate, or strong.
The distribution received a score of 0 to 4 if the staining
distribution was <10% positive cells, 10%-30%, >30%-
50%, >50%-80%, and >80%. A sum score was then
divided into four groups as follows: (1) negative = 0-1,
(2) weak = 2-3, (3) moderate = 4-5, and (4) strong =
6-7. The ER status was scored negative/positive. The ER
status was determined at the Department of Pathology,
University of Maryland, according to the reference range
set by the ChromaVision® ACIS® assisted quantitative
image analysis software (Clarient Diagnostic Services,
Irvine, CA), consistent with clinical guidelines. The
HER2 status was determined using either the sum score
system, as described above, or the score system accord-
ing to the HercepTest™ protocol. However, additional
FISH results to detect HER2 amplification were not
available for this patient cohort. The quantification of
the tumor MVD was performed on CD31-positive
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microvessels according to the method of Weidner et al
[15]. Microvessels were counted per 200× field in the
most vascular region of the tumor.

TP53 mutational analysis
Tumors were screened for p53 mutations as previously
described [16].

Statistical analysis
Data analysis was performed using Stata/SE 10.1 (Stata
Corp, College Station, TX) statistical software package. All
statistical tests were two-sided, and an association was
considered statistically significant with P values <.05.
Spearman’s rank correlation and logistic regression models
were used for correlation analysis and to calculate odds
ratios (ORs), respectively. Multivariable regression models
were applied to calculate adjusted ORs. Survival was deter-
mined for the period from the date of hospital admission
to the date of the last completed search for death entries
in the Social Security Index (date of search: December
31st, 2006) for the 248 patients. The mean and median fol-
low-up times for breast cancer survival were 71 months
and 68 months, respectively (range: 12 to 166 months). A
total of 89 (36%) of these 248 patients died during this
period. We obtained information (National Death Index,
death certificates) on the causes of death for the deceased
patients and censored all patients whose causes of death,
such as accidents, were not related to breast cancer (n =
11). The Kaplan-Meier survival method and the log-rank
test of equality of survival function were used for univari-
ate survival analysis. Cox regression was used for multi-
variable survival analysis to calculate adjusted hazard
ratios. For the survival and logistic regression analyses,
COX-2 expression was dichotomized into high and low.
COX-2 IHC scores of moderate to strong were categorized
as high and scores of negative to weak were categorized as
low. The following covariates were included into the ana-
lyses: age at diagnosis (as a continuous variable), race/eth-
nicity (African-American versus European-American),
TNM stage (categorized as ≤stage II versus > stage II),
tumor grade (categorized as ≤grade 2 versus > grade 2),
chemotherapy (yes/no), and p53 mutation (categorized as
negative versus positive). In the univariate analysis, age at
diagnosis, TNM stage, tumor grade, and p53 mutational
analysis were significantly associated with disease out-
come. Proportional hazards assumptions were verified by
log-log plots and with the nonzero slope test of the scaled
Schoenfeld residuals.

Results
Study population characteristics
We have previously reported a functional relationship
between tumor COX-2 expression and Akt pathway
activation in breast cancer [9]. To explore this finding

further, we examined the relationship between tumor
COX-2 expression and disease outcome in the same
patient population from the greater Baltimore area.
Patient characteristics and tumor marker expression are
described in Table 1. Representative immunostains for

Table 1 Demographic and clinicopathological features of
cases

N %

ER Status Negative 102 41%

Positive 145 59%

HER2 Status Negative 106 43%

Weak 48 19%

Moderate 51 21%

High 42 17%

TNM Stage < = II 184 71%

> = III 44 29%

Grade 1 or 2 108 50%

3 107 50%

COX-2 Negative 75 30%

Weak 83 34%

Moderate 65 26%

High 25 10%

pAkt Ser473 Negative 17 7%

Weak 29 12%

Moderate 59 24%

High 142 57%

pAkt Thr308 Negative 14 6%

Weak 24 10%

Moderate 71 29%

High 134 55%

pCaspase9 Ser196 Negative 38 15%

Weak 30 12%

Moderate 73 30%

High 106 43%

pBAD Ser136 Negative 43 18%

Weak 41 17%

Moderate 76 31%

High 85 34%

Survival Alive 159 64%

Death from breast cancer 78 32%

Death from other causes 11 4%

Race AA 143 58%

EA 105 42%

p53 mutation Negative 200 81%

Positive 48 19%

Chemotherapy No 99 43%

Yes 132 57%

mean ± SD

Age at Diagnosis (n = 248) 55.0 ± 13.9

Body mass index1 (n = 236) 29.0 ± 8.1

CD31 (n = 208) 49.1 ± 43.9
1 At time of hospital admission.
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COX-2, phosphorylated Akt, BAD, and caspase-9 are
shown in Figures 1 &2 and for HER2 in Figure 3. TNM
stage, tumor grade, tumor ER and HER2 status, patient’s
race/ethnicity, or age at diagnosis were not associated
with COX-2 expression in the tumor. However, COX-2
expression was found to be inversely correlated with
body mass index at hospital admission. After stratifica-
tion by tumor ER status, this association was restricted
to patients with ER-negative breast cancer (Spearman’s
correlation coefficient: -0.24; p = 0.024).

COX-2 expression predicts poor disease-specific survival
in both ER-negative and HER2 expressing breast cancers
High COX-2 expression was significantly associated with
inferior breast cancer-specific survival in ER-negative
patients (p = 0.001) (Figure 4). We did not find an asso-
ciation between COX-2 and survival in patients with
ER-positive tumors in this population (p = 0.483). COX-
2 was also associated with a significantly decreased sur-
vival in patients with high HER2 (HER2-positive) tumors
(p = 0.022) but not with survival in patients with low
HER2 (HER2-negative) breast tumors (p = 0.601) (Fig-
ure 4). A similar trend was observed when the tumor
HER2 status was determined immunohistochemically
according to HercepTest™ guidelines. Because FISH
results to detect HER2 amplification were not available
for this patient cohort, only a HercepTest™ score of 3
was considered positive for tumor HER2 expression in
this analysis. There was no significant association of
COX-2 with survival in patients being scored negative
for HER2 (HercepTest™ score of 0 or 1), but there was a
significant poorer outcome among patients with high
COX-2 and a positive HercepTest™ score [Log-rank test:
p = 0.017; HR = 3.2, 95% CI (1.24-9.21) comparing high
COX-2 (n = 24) versus low COX-2 (n = 29) in patients
with a HercepTest™ score of 3]. Multivariable Cox
regression survival analysis at 5-year and 10-year follow-
up confirmed these findings (Table 2), indicating that
COX-2 was an independent predictor of poor outcome
in both ER-negative and HER2-positive breast cancers at
5-year [adj. HRER- = 2.79, 95% CI (1.35-5.78); adj.
HRHER2+ = 3.39, 95% CI (1.24-9.21)] and 10-year [adj.
HRER- = 2.72, 95% CI 1.36-5.41; adj. HRHER2+ = 2.84,
95% CI 1.07-7.52] follow-up.
While COX-2 remained a predictor of poor outcome

in ER-negative patients who were also HER2-negative
[adj. HR = 2.34, 95% CI 1.01-5.41], the hazard of poor
survival associated with increased COX-2 was highest in
ER-negative patients who were HER2-positive [adj. HR
= 5.95, 95% CI 1.01-34.9], as shown by univariate (Fig-
ure 5) and multivariable analyses (Table 2). ER-/HER2+
tumors belong to a distinct subtype of breast cancer
based on its gene expression profile [17]. In ER-positive
tumors, no statistically significant association between

COX-2 and patient survival was observed, regardless of
HER2 status, in our patient population.

Relationship between COX-2 and the phosphorylation
status of Akt, caspase-9 and BAD is dependent on tumor
ER and HER2 status
In a previous study of inflammation and breast cancer,
we had found a positive correlation between COX-2
expression and increased phosphorylation of Akt, cas-
pase-9 and BAD in breast tumors [9]. Both caspase-9
and BAD are downstream targets of Akt and their phos-
phorylation inhibits their pro-apoptotic function.
Because of our observation that COX-2 is an indepen-
dent predictor of poor survival in ER-negative and
HER2-positive breast tumors, we applied correlation and
logistic regression analyses to examine the influence of
both the tumor ER and HER2 status on the association
between COX-2 and Akt pathway activation in 248
breast tumors.
The correlation analysis revealed that the strongest

correlation between increased COX-2 expression and
Akt pathway activation is present in tumors that are
ER-negative and HER2-positive (pAkt Ser473 p = 0.003;
pAkt Thr308 p = 0.003) (Table 3). In this tumor sub-
type, COX-2 was also associated with a significantly
increased vessel density, as judged by the number of
CD31-positive microvessels (p = 0.021). The same asso-
ciations were either weaker or absent (CD31) in all
other strata supporting the hypothesis that the poor out-
come signature of COX-2 in ER-negative and HER2-
positive breast tumors involves Akt pathway activation
and increased tumor angiogenesis. Further analysis of
the tumor immunohistochemistry by multivariable logis-
tic regression corroborated the results of the Spearman’s
correlation analysis showing the strongest association
between COX-2 expression and Akt pathway activation
in ER-negative and HER2-positive breast tumors inde-
pendent of age at diagnosis, disease stage, race/ethnicity,
and neoadjuvant chemotherapy (Table 4). The direction
and magnitude of the adjusted odds ratios point to a
pathway in which COX-2 induces the phosphorylation
of Akt and downstream targets most efficiently in
HER2-positive breast tumors, and this effect is increased
in an additive manner by an ER-negative tumor status.
Furthermore we observed a statistical interaction on
survival between COX-2 and pAkt Ser473 (p < 0.001),
COX-2 and pBad Ser136 (p < 0.001), COX-2 and
pCasp9 Ser196 (p < 0.001), further indicating a signifi-
cant role of Akt signaling in poor survival of COX-2
expressing tumors.

Discussion
In our study of 248 women with incident breast cancer
from the Greater Baltimore area, increased expression of
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Figure 1 COX-2 expression and phosphorylation of Akt at Ser473, BAD at Ser136 and caspase-9 at Ser196 in human breast tumors.
IHC analysis of two invasive carcinomas for COX-2 (A,E), Ser473-phosphorylated Akt (B,F), Ser136-phosphorylated BAD (C,G), and Ser196-
phosphorylated caspase-9 (D,H). Tumor to the left was negative for all markers (A,B,C,D). Tumor to the right shows that COX-2 is expressed in
the cytoplasm of tumor cells with some cells showing marked perinuclear localization of COX-2 protein (E). Immunostain intensity is moderate
to strong. Same tumors shows increased phosphoryation of Akt in the cytoplasm and along the inner cell membrane (F), and moderate to
strongly increased phosphorylation of BAD (G) and caspase-9 (H), with a distinct immunostain suggesting a partly mitochondrial localization of
the phosphorylated proteins (insets). Magnification: 200×. Counterstain: Methyl Green.
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Figure 2 Phosphorylation of Akt at Thr308 and Ser473 in human breast tumors. IHC analysis of invasive ductal carcinomas for pAkt at
Thr308 (A,B) and Ser473 (C-F). (A) Thr308-phosphorylated Akt is both cytosolic and nuclear in distribution. (B) The phospho-Akt (Thr308)-specific
blocking peptide inhibits binding of the anti-phospho-Akt (Thr308) mouse monoclonal antibody. Panels C,E show the distribution of Ser473-
phosphorylated Akt in tumor cells. (C) Phosphorylated Akt has a partly cytosolic distribution with a predominant staining at the inner cell
membrane. Strongly increased Akt phosphorylation at Ser473 in another tumor (E). (D,F) Immunostaining for Akt Ser473 is blocked after pre-
incubation with a phospho-Akt (Ser473)-specific blocking peptide. The IHC results are in agreement with the published literature that
phosphorylated Akt can be detected in the cytoplasm, and that Ser473 phosphorylation occurs at the inner cell membrane and precedes Thr308
phosphorylation, which leads, as a second step, to membrane detachment and nuclear translocation of phosphorylated Akt [36-38].
Magnification: 100× for E,F; 200× for A,B,C,D. Counterstain: Methyl Green.
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COX-2 was associated with decreased breast cancer-
specific survival in patients with ER-negative and HER2-
positive tumors, respectively. In patients with both
ER-negative and HER2-positive tumors, increased tumor
COX-2 was associated with the most inferior survival
among all patient groups, as judged by the hazard ratio
in the multivariable analysis. This was accompanied by
increased Akt pathway activation, as judged by the phos-
phorylation status of Akt and two key downstream tar-
gets in the apoptosis pathway. These findings could
have implications for COX-2 targeted therapy in breast
cancer and suggest that patients with ER-negative and
HER2-positive tumors would benefit from a COX-2 tar-
geted therapy with the efficacy of this therapy being
strongest in patients with both an ER-negative tumor
status and an amplification of HER2 leading to high
HER2 expression.
Two recent randomized clinical trials examined the

efficacy of the COX-2 inhibitor celecoxib in combina-
tion with the aromatase inhibitor, exemestane, in post-
menopausal women with hormone sensitive metastatic
breast cancer [12,18]. Both trials failed to find a signifi-
cant clinical benefit with the addition of celecoxib to the
exemestane regimen, despite earlier indications in small
feasibility studies that there could be increased efficacy

for the combination [13,14]. Both trials were performed
in predominantly hormone receptor-positive patients.
HER2 status information was also available for the
Falandry trial [18], with only 4.5% being HER2-positive.
The findings in our patient population suggest that the
efficacy of COX-2 inhibitors could be quite limited in
ER-positive breast cancer, consistent with the trial
results by Dirix et al. [12] and Falandry et al [18],
suggesting that the benefit of these inhibitors as a thera-
peutic could be strongest in the ER-negative or HER2-
positive disease. Our observation of an association
between COX-2 expression with poor survival in ER-
negative breast cancer is in agreement with the findings
of Witton et al. [19], but are different to the findings of
Ristimaki et al. [5], who found that the association of
COX-2 expression with distant disease-free survival was
restricted to patients with ER-positive or HER2-negative
breast cancer. However, there are several differences in
the evaluated patients between those in the study of Ris-
timaki et al and our study, which may contribute to the
different findings. All breast cancer patients in our study
were recruited as incident cases with surgery, and addi-
tionally our study recruited both African-American and
European-American patients. The Ristimaki study
(recruited 1991-1992) contained solely Finnish patients,

Figure 3 HER2 overexpression in breast tumors. Representative IHC staining for HER2 expression in invasive breast carcinomas (A-D). HER2 is
predominantly membrane-bound (B-D). (A) Tumor that is negative for HER2. (B) Tumor with moderate HER2 staining (HercepTest™ 2+ staining).
(C,D) Tumor with strong HER staining (HercepTest™ 3+ staining). Magnification: 100× for C; 200× for A,B,D. Counterstain: Hematoxylin.
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Figure 4 Association between COX-2 and breast cancer survival by ER and HER2 status. Kaplan-Meier cumulative breast cancer-specific
survival curves of (A) ER-negative breast cancer patients by tumor COX-2 status (n = 98). The survival of patients with high COX-2 expression
(n = 35) was significantly poorer than the survival of patients with low COX-2 expression (n = 63). Log-rank test: p = 0.001. (B) ER-positive breast
cancer patients by tumor COX-2 status (n = 139). The survival of patients with high COX-2 expression (n = 51) was not significantly different
from the survival of patients with low COX-2 expression (n = 88). Log-rank test: p = 0.483. (C) Low HER2 expressing breast cancer patients by
tumor COX-2 status (n = 154). The survival of patients with high COX-2 expression (n = 54) was not significantly different from the survival of
patients with low COX-2 expression (n = 100). Log-rank test: p = 0.601. (D) High HER2 expressing breast cancer patients by tumor COX-2 status
(n = 93). The survival of patients with high COX-2 expression (n = 35) was significantly poorer than the survival of patients with low COX-2
expression (n = 58). Log-rank test: p = 0.022.

Table 2 Effects of high COX-2 expression on breast cancer survival1

5-Year Multivariable Cox Regression3 10-Year Multivariable Cox Regression3

H.R. 95% CI p-value N H.R. 95% CI p-value N

All patients 1.82 1.07-3.10 0.028* 184 1.60 0.96-2.65 0.066 184

ER-negative 2.79 1.35-5.78 0.006* 81 2.72 1.36-5.41 0.004* 81

ER-positive 1.26 0.53-2.99 0.598 103 0.96 0.42-2.21 0.920 103

HER2-negative 1.50 0.77-2.94 0.237 121 1.37 0.73-2.56 0.331 121

HER2-positive2 3.39 1.24-9.21 0.017* 62 2.84 1.07-7.52 0.036* 62

ER-/HER2- 2.47 1.00-6.10 0.048* 61 2.34 1.01-5.41 0.047* 61

ER-/HER2+ 5.95 1.01-34.9 0.048* 20 5.953 1.01-34.9 0.048* 20

ER+/HER2- 0.73 0.21-2.58 0.626 60 0.64 0.18-2.20 0.474 60

ER+/HER2+ 2.60 0.47-14.2 0.272 42 1.91 0.42-8.57 0.397 42
1 High COX-2 expression (moderate to strong IHC) versus low COX-2 expression (absent to weak IHC).
2 HER2-positive: moderate to high IHC. 3 Adjusted for age at diagnosis, race, TNM stage, tumor grade, chemotherapy and tumor ER and p53 mutation status.
3 No further deaths after 5 years. *p < 0.05.
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with some of them having recurrent disease. There were
also differences in receipt of therapy with 47% of
patients from our study versus 61% in the Ristimaki
study who received postoperative radiotherapy. Of the
patients with node negative disease, 75% of our patients

received either adjuvant chemotherapy or endocrine
therapy, versus 9% in the Ristimaki study. There were
also differences in the types of therapies received.
In addition, more patients in our study had high
grade disease (50%), ER-negative disease (41%) and

Figure 5 Effect of ER/HER2 strata on COX-2 associated breast cancer survival. Kaplan-Meier cumulative breast cancer specific survival
curves of (A) ER-negative and low HER2 expressing breast cancer patients by tumor COX-2 status (n = 70). The survival of patients with high
COX-2 expression (n = 25) was significantly poorer than the survival of patients with low COX-2 expression (n = 45). Log-rank test: p = 0.044. (B)
ER-negative and high HER2 expressing breast cancer patients by tumor COX-2 status (n = 28). The survival of patients with high COX-2
expression (n = 10) was significantly poorer than the survival of patients with low COX-2 expression (n = 18). Log-rank test: p = 0.006. (C) ER-
positive and low HER2 expressing breast cancer patients by tumor COX-2 status (n = 77). The survival of patients with high COX-2 expression
(n = 28) was not significantly different from the survival of patients with low COX-2 expression (n = 49). Log-rank test: p = 0.182. (D) ER-positive
and high HER2 expressing breast cancer patients by tumor COX-2 status (n = 61). The survival of patients with high COX-2 expression (n = 22)
was not significantly different from the survival of patients with low COX-2 expression (n = 39). Log-rank test: p = 0.383.

Table 3 Association of COX-2 expression with tumor characteristics by tumor receptor status1

All tumors ER-negative ER-positive Her2 low Her2 high ER-negative/HER2 high

Spearman rank correlation r p-value r p r p r p r p r p

pAkt Ser473 0.23 <0.001 0.24 0.011 0.22 0.006 0.18 0.024 0.33 0.001 0.50 0.003

pAkt Thr308 0.26 <0.001 0.25 0.009 0.26 0.001 0.23 0.003 0.36 <0.001 0.51 0.003

pCasp9 Ser196 0.30 <0.001 0.31 0.001 0.30 <0.001 0.25 0.001 0.40 <0.001 0.67 <0.001

pBAD Ser136 0.20 0.001 0.26 0.008 0.15 0.063 0.13 0.084 0.31 0.002 0.57 <0.001

CD31 0.05 0.402 0.10 0.302 0.01 0.85 -0.02 0.799 0.19 0.084 0.41 0.021
1 Spearman’s correlation coefficient. Calculated with IHC scores 1-4 (negative, weak, moderate, strong) and continuous data (CD31).
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HER2-positive disease (38%), while in the Finnish study
only 30% were diagnosed with high grade breast cancer,
31% had ER-negative disease and 18% had HER2
amplification.
HER2 overexpression/amplification is an established

marker of poor prognosis in both early [20] and late
[21] stage breast cancer. HER2 overexpression is also
associated with an increased risk of metastasis [22,23]
and a poor response to chemotherapy in the metastatic
setting [24,25]. Several therapies directed at the inhibi-
tion of HER2 are currently in use, including the recom-
binant humanized monoclonal antibodes against HER2,
trastuzumbab (Herceptin™, Genentech), and pertuzumab
(Omnitarg™, Genentech), and the small molecule tyro-
sine kinase inhibitor of both HER2 and EGFR Lapatinib
(Tykerb™, GlaxoSmithKline) [26]. Akt phosphorylation is
associated with HER2 expression in breast cancer
[27,28], and it has been shown that HER2 transfection
of MCF-7 cells leads to Akt phosphorylation mediated

through the PI3K pathway [29]. These observations are
consistent with the findings in our study that Akt phos-
phorylation in breast tumors is significantly associated
with HER2 overexpression in the tumors. Additionally
Akt phosphorylation has been shown to be associated
with COX-2 expression in several studies [2] and COX-
2 specific inhibitors were found to disrupt Akt signaling
in breast cancer cells [30]. We recently demonstrated
that prostaglandin E2 (PGE2), the most active pro-
inflammatory metabolite of COX-2, induces phosphory-
lation of Akt at Ser473 and GSK-3b at Ser9, a known
downstream target of pAkt [9]. Our observation that the
correlation of COX-2 with Akt pathway activation is
greatest in ER-negative patients, who also have HER2
positivity, are supported by our previous finding that
while PGE2 phosphorylated Akt at Ser473 and GSK-3b
at Ser9 in two breast cancer cell lines, the response was
considerably stronger in the ER-negative MDA-MB-231
than the ER-positive MCF-7 breast cancer cells. The
result would suggest that ER-negative breast cancer cells
may be more sensitive to Akt activation by PGE2 than
ER-positive breast cancer cells. In summary, existing
data suggest that breast cancers, which are ER-negative
and overexpress both HER2 and COX-2, may have a
more prominent Akt pathway activation, increased resis-
tance to apoptosis, and a higher metastatic potential,
which is all consistent with the findings in this study.
Of further interest is that HER2-positive breast tumor-

igenesis may be modulated in part by COX-2, and vice
versa. Celecoxib was found to significantly reduce mam-
mary tumor development in HER2/neu-induced experi-
mental mouse models in two separate studies [31,32].
Additionally, tumor multiplicity and size was signifi-
cantly reduced in the HER2/neu transgenic mice,
crossed with a COX-2-deficient background [1]. This
suggests that COX-2 significantly contributes to HER2
associated breast tumor development. Wang et al.
demonstrated the ability of nuclear HER2 to transacti-
vate COX-2 in colon cancer cells by binding to its pro-
moter region, thus upregulating expression of COX-2
[33], while HER2 has also be shown to up-regulate
COX-2 expression through Ras ® Raf ® MAPK ®
AP1 mechanisms in breast cancer cells [34]. Both HER2
and COX-2 expression in breast cancer cells lead to the
activation of the Akt pathway. Conversely COX-2 and
its product PGE2 both lead to induction of HER2 gene
and protein expression in MCF-7 breast cancer cells
[35]. These data indicate that a positive feedback loop
exists between COX-2 and HER2 in breast cancer cells.
Our study has strengths and limitations. We con-

ducted the analysis in 248 cases of incident breast
cancer, recruiting both European-Americans and
African-Americans allowing us to assess the impact of
COX-2 on survival in both patient populations. We

Table 4 Multivariable logistic regression modeling for
association of high COX-2 with increased
phosphorylation of Akt, caspase-9, or BAD

OR* 95% CI p-value N

COX-2 and pAkt Ser473

All patients 1.52 1.05-2.09 0.024 211

ERNEG 1.47 0.84-2.57 0.181 89

ERPOS 1.57 0.96-2.57 0.072 121

HER2NEG 1.33 0.87-2.02 0.183 135

HER2POS 2.99 1.09-8.15 0.034 76

ERNEG/HER2POS 4.87 0.90-26.2 0.065 25

COX-2 and pAkt Thr308

All patients 1.99 1.31-3.02 0.001 207

ERNEG 1.85 0.98-3.50 0.057 87

ERPOS 2.08 1.18-3.63 0.011 119

HER2NEG 1.76 1.09-2.86 0.021 134

HER2POS 4.25 1.44-12.6 0.009 72

ERNEG/HER2POS 14.9 1.43-154 0.024 23

COX-2 and pCasp9 Ser196

All patients 1.90 1.36-2.65 0.000 211

ERNEG 1.84 1.06-3.22 0.030 89

ERPOS 2.01 1.31-3.08 0.001 121

HER2NEG 1.56 1.06-2.29 0.025 135

HER2POS 3.35 1.41-7.91 0.006 76

ERNEG/HER2POS 16.3 1.72-154.6 0.015 25

COX-2 and pBAD Ser136

All patients 1.61 1.20-2.16 0.001 209

ERNEG 1.58 1.04-2.38 0.032 89

ERPOS 1.66 1.09-2.54 0.019 119

HER2NEG 1.42 0.99-2.02 0.051 135

HER2POS 2.21 1.22-3.95 0.008 74

ERNEG/HER2POS 4.10 1.15-14.7 0.030 25

* OR (Odds ratio) adjusted for age at diagnosis, race, TNM stage and receipt
of neoadjuvant chemotherapy.
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found that COX-2-related survival was independent of
race/ethnicity, indicating that COX-2 inhibition should
be equally efficacious in both patient populations. We
were also able to assess the implication of the tumor
p53 mutational status on the association between COX-
2 and breast cancer survival and observed that COX-2-
related survival was independent of the p53 mutation
status. However, the existing sample size did not allow a
more in-depth examination of the effect of race and p53
mutation status on survival in the context of increased
COX-2. Furthermore, our immunohistochemical analysis
of phosphorylated Akt cannot differentiate between the
three Akt isoforms and FISH results to detect HER2
amplification were not available for this patient cohort.
We also realize that some clinically important subgroups
in our analysis were small, e.g. the number of patients
with ER-/HER+ tumors with high COX-2 was n = 10,
meaning that results for these subgroups should be
interpreted with caution. Thus, additional studies are
needed to further corroborate our findings.

Conclusions
Our study suggests that COX-2 may be a therapeutic
target for the treatment of ER-negative breast cancer. A
combination of COX-2, HER2, and Akt inhibitors may
be particularly efficacious in patients with ER-negative/
HER2-positive breast cancer.

List of Abbreviations
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