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Abstract

Background: Genome wide gene expression data is a rich source for the identification of gene signatures suitable
for clinical purposes and a number of statistical algorithms have been described for both identification and
evaluation of such signatures. Some employed algorithms are fairly complex and hence sensitive to over-fitting
whereas others are more simple and straight forward. Here we present a new type of simple algorithm based on
ROC analysis and the use of metagenes that we believe will be a good complement to existing algorithms.

Results: The basis for the proposed approach is the use of metagenes, instead of collections of individual genes,
and a feature selection using AUC values obtained by ROC analysis. Each gene in a data set is assigned an AUC
value relative to the tumor class under investigation and the genes are ranked according to these values.
Metagenes are then formed by calculating the mean expression level for an increasing number of ranked genes,
and the metagene expression value that optimally discriminates tumor classes in the training set is used for
classification of new samples. The performance of the metagene is then evaluated using LOOCV and balanced
accuracies.

Conclusions: We show that the simple uni-variate gene expression average algorithm performs as well as several
alternative algorithms such as discriminant analysis and the more complex approaches such as SVM and neural
networks. The R package rocc is freely available at http://cran.r-project.org/web/packages/rocc/index.html.

Background
One of the most promising clinical applications of gen-
ome wide expression studies is the construction of
robust and reliable disease classifiers. Correct identifica-
tion and sub-classification of diseases such as cancer is
a prerequisite for proper and efficient treatment. To
date a large number of different algorithms for disease
classification have been described. They range in com-
plexity from neural network approaches [1] to the sim-
pler nearest-neighbor classification algorithms [2]. Even
though some of the more complex approaches such as
neural networks and self organized maps (SOM) [3]
have proved to be very efficient, these methods often
rely on the tuning of several parameters and hence are
liable for over-fitting. Furthermore, simple classifiers

seem to perform remarkably well when compared to
more sophisticated ones [4]. In the present investigation
our aim has been to design a simple predictor system
useful for cancer subtype classification. Features to be
included in the predictor signatures are selected based
on their classification capacity as determined by a recei-
ver operating characteristic (ROC) analysis and area
under the curve (AUC) estimates [5,6]. After selection
of the appropriate number of genes in the predictor sig-
nature, the mean expression level of all genes included
is calculated, transforming the ensemble of genes into
one vector and used as a uni-variate gene expression
average, or a metagene, as classifier. Two features of
gene expression are exploited by the merging of genes,
genes are often co-regulated and hence correlated, and
by using the expression level of the metagene, effects by
random noise from single genes are minimized. Most of
the commonly used algorithms such as SVM [7] and
PAM [8] apply specifications such as support vectors
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and weights to the individual features included in the
predictor gene signatures which potentially complicate
their application to independent data [9]. Hence in this
investigation we use an alternative way to evaluate the
results by using the obtained training set gene signature
genes only and then establish new parameters in the
validation set to evaluate the performance of the classi-
fier. We show that the proposed metagene classifier pro-
duces excellent accuracies, similar to what is obtained
with a SVM approach, in several types of cancer data
sets using a variety of tumor classification criteria.

Implementation
Data sets
To establish the classifier we used bladder cancer data-
sets produced by Sanchez-Carbayo et al. [10] (Supple-
mentary Table 10 in [10]) “SanchezC”, Stransky et al.
[11] (ArrayExpress: E-TABM-147) “Stransky"; and Blaveri
et al. [12] (Supplementary Table 4 in [12]) “Blaveri”. The
remaining datasets were obtained from Gene Expression
Omnibus (GEO) [13], except for the vandeVijver breast
cancer dataset [14]. The following datasets were down-
loaded from GEO; for breast GSE2034 (WangY),
GSE2990 (Sotiriou), for neuroblastoma GSE3960
(WangQ), GSE12460 (JanoueixL), GSE19274 (Attiyeh),
for lung GSE8569 (Angulo), GSE11969 (Takeuchi). For a
detailed description of the datasets see Additional file 1.
Normal urothelium samples, recurring tumors from the
same patient, cell lines, and technical replicates were not
included in the final bladder cancer data sets. The San-
chezC dataset was quantile-normalized using the normal-
izeBetweenArrays function of the R package limma [15].
Robust Multi-array Average (RMA) was performed sepa-
rately for two samples sets of the Stransky dataset (on
U95A and U95Av2 respectively) using the affy package
[16]. Obtained RMA expression values were de-logged,
the samples sets combined, and quantile normalized
using limma. The SanchezC and Stransky datasets were
both transformed to log2 scale. To obtain gene-centered
values the gene expression values were subtracted by the
mean expression of the gene in each dataset separately.
The Blaveri dataset was imputed for missing values using
k-nearest neighbors (k = 10) for genes that had no more
than 20% missing data, and genes with >20% missing
data were omitted [17]. The HGNC GeneSymbols were
updated in all datasets with the official HGNC GeneSym-
bols from the HGNC webpage [18]. The expression
values of GeneSymbols with multiple reporters were
merged by taking the median expression value. All repor-
ters in the datasets without a GeneSymbol were dis-
carded. The final SanchezC dataset contained 90 patients
and 12761 genes, the Stransky dataset 56 patients and
8955 genes, and the Blaveri dataset 74 patients and 4430
genes. The SanchezC and Stransky datasets share a total

of 8518 GeneSymbols and were used to explore the AUC
characteristics. For classification, Ta and T1 cases were
considered non-muscle invasive (NMI), and ≥T2 cases as
muscle-invasive (MI). Grade is discriminated between
Grade 2 and 3 in SanchezC, and between Grade1+2 and
Grade 3 in Sanchez. Randomized versions of the datasets
were generated using the mean and standard deviation of
the original datasets. Non-bladder cancer Affymetrix
datasets not already normalized were downloaded as cel
files and normalized using RMA. All other datasets were
downloaded as normalized ‘series matrix files’. In the
case of missing values, k-nearest neighbor imputation
was performed (k = 10). Gene Symbols were updated
using the official HGNC nomenclature file, and then
expression values for reporters with the same GeneSym-
bols were merged. The data was mean-centered, except
for two-color array data, as this data comes already in
ratios. Reporters with no GeneSymbols were excluded
from the final data. The vandeVijver data was imputed
for missing values by k-nearest neighbor, transformed to
log2 ratios and GeneSymbols were updated and merged.

ROC analyses
The receiver operating characteristic (ROC) curve is the
plot of sensitivity (true positive rate) vs. 1-specificity
(false positive rate), for predicting a binary classification
variable z using some covariate x. That is, if x >t for some
threshold t then z is predicted as 1, otherwise as 0. As the
threshold t ranges from +N to -N the fraction of true
positive and false positive predictions will both increase
from 0 to 1, yielding the ROC curve. The area under this
curve (AUC) is an overall measure of the predictor’s per-
formance. An ideal predictor obtains true positive rate 1
and false positive rate 0 for some threshold t, and then
AUC = 1. Ignoring covariate information and guessing
randomly by predicting z = 1 with some probability q
yields AUC = 1/2 by letting q range from 0 to 1, so 1/2 is
a worst-case AUC. If AUC < 1/2 the covariate x is how-
ever negatively correlated with z, and replacing x by -x
turns AUC into 1-AUC (which will be >1/2). For a given
covariate x we can thus view max(AUC,1-AUC) as its
performance. For a finite sample of x’s and z’s, AUC can
be computed as a function of the Mann-Whitney (or
two-sample Wilcoxon) statistic for comparing the x’s
associated z = 0 and z = 1 respectively.

Supervised classification using the uni-variate gene
expression average classifier
Genes to be included in the gene signatures are selected
in order of their ranked max(AUC,1-AUC) values. To
merge the gene expression of a given gene signature to
a single metagene expression value, an arithmetic mean
is computed by summing up the expression values after
multiplying expression values for genes negatively
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associated with the feature (AUC < 0.5) by -1 (Addi-
tional file 2). The resulting metagene expression values
are then used in ROC analyses, i.e. by ranking the sam-
ples according to their metagene expression values. The
optimal split of positive (i.e., 1) and negative (i.e., 0)
samples is determined as the metagene expression
threshold which produces the highest accuracy i.e., cor-
rect class assignments in respect to the real class, in the
training set. More precisely, the threshold is computed
as the mean metagene expression value of the two sam-
ples that constitute the border of the split. A new sam-
ple to be classified has its metagene expression value
determined with the same genes to be multiplied by -1.
The new sample is classified according to which side of
the threshold the sample falls in, with a sample having
higher metagene expression being classified as positive
(i.e., 1) and with lower expression as negative (i.e., 0).
The split yielding optimal accuracy in the ROC curve is
determined using the R package ROCR [19]. The out-
lined approach is to some respect similar to the
approach described by Rosenwald et al [20] except that
we have simplified the use of metagenes further by
using one single metagene and thus do not have to
assign any specific weights to individual metagenes. In
addition we optimize the threshold for each dataset.

Additional classification algorithms
We compared our classifier initially to a Support Vector
Machine (SVM) with a linear kernel. SVMs have been
shown to perform considerably well in microarray data
[21] and SVMs with a linear kernel has been suggested to
perform better in gene expression data than more complex
SVM versions (Manual BRB Array Tools, [22]), and addi-
tionally, no parameter tuning is necessary for linear SVMs.
Briefly, Support Vector Machines (SVMs) identify the
maximum margin hyperplane that optimally separates the
training samples (based on support vectors) and then clas-
sify unseen samples according to the side of the hyper-
plane they fall into [23]. We used the ‘svm’ function of the
R package e1071 [24]. Additional classification algorithms
were implemented using the R package MLInterfaces [25]
using the default settings and included SVM with radial
kernel (SVMradial), SVM with polynomial kernel
(SVMpoly), k-nearest neighbor (knn, k = 3), random forest
(rforest), recursive partitioning trees (rpart), bagging (bag-
ging), linear discriminant analysis (lda), diagonal linear dis-
criminant analysis (dlda), stabilized linear discriminant
analysis (slda), neural network (neural net, with 3 hidden
layers), except for the nearest centroid classifier (ncc) that
was implemented using the pamr package [8].

Performance Evaluation
As the accuracies of prediction are dependent on the
prior distribution of samples, we used balanced

accuracies computed by (sensitivity + specificity)/2.
Balanced accuracies are independent of the prior distri-
butions [26]. Unbiased accuracies were obtained by
leave-one-out-cross-validation (LOOCV). Feature selec-
tion was repeated in each loop of LOOCV. When test-
ing the performance of a gene signature in independent
validation data only the genes were used in the valida-
tion data, i.e. not the information on AUC and 1-AUC
or the classification threshold. In a clinical validation
platform, as qPCR and IHC, we assume that the classi-
fier specification might not be taken over. We applied a
LOOCV loop to determine max(AUC,1-AUC) and opti-
mal classification threshold for the signature metagene
in each loop. Accuracies obtained from cross-validation
loops are an estimate for the accuracy obtained from
the whole dataset, i.e. all samples.

R package rocc
Briefly, the package includes the functions tr.rocc, p.
rocc, and o.rocc. The function tr.rocc uses a training set
with a given phenotype to determine the metagene
threshold. The function p.rocc predicts the class of a
new sample using the classifier specification of the tr.
rocc output. The function o.rocc performs a LOOCV
loop using a metagene of given size, e.g., top 200 genes,
with feature selection in each loop separately.
tr.rocc (data,out,xgenes = 200)
p.rocc (tr.rocc.object,newsample)
o.rocc (data,out,xgenes = 200)
data = dataset as a matrix file with samples as col-

umns and genes as rows
out = phenotype as factor with levels 0 and 1
xgenes = number of genes that constitute the meta-

gene; can be a numeric vector.
newsample = sample to be classified using a classifier

obtained from tr.rocc()

Results and Discussion
Feature selection
Two bladder cancer datasets, SanchezC and Stransky,
were selected to explore the efficiency of predictor gene
signatures based on ROC statistics. For each gene the
association with muscle-invasiveness (MI) and tumor
grade (G) as feature variables was estimated by calculat-
ing the AUC value in each dataset. The obtained AUC
values ranged between 0.06 and 0.95, and 0.07 and 0.94
for MI, and between 0.14 and 0.85, and 0.10 and 0.89
for high grade (G3) in the SanchezC and Stransky data,
respectively. The distribution of the AUC values
deviated from the normal distribution and showed
heavy tails (Figure 1). As a comparison, AUC values
were also estimated in randomized versions of the San-
chezC and Stransky datasets. In the randomized data
99% of the obtained AUC values were approximately
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between 0.7 and 0.3 for MI and tumor grade. A total of
31% and 23%, and 11% and 14% of genes fall outside
these 99% borders for MI and Grade variables in the
SanchezC and Stransky dataset, respectively. In contrast,
1% of genes are expected to fall outside for a rando-
mized variable. The genes in excess to this 1% of false
discovery genes are informative, and hence may be con-
sidered as the maximum size of a gene signature.
Hence, a large proportion of genes show informative

AUC values. Furthermore, as more genes are associated
with MI than with grade, the major difference in bladder
cancer phenotype seems to be associated with stage.
We then investigated the robustness of obtained AUC

values by comparing AUC values from two different
datasets. In Figure 2A we have plotted the AUC values
for NMI/MI status and in Figure 2B the equivalent data
for grade, for the SanchezC and Stransky data respec-
tively. The correlations between the two datasets were

Figure 1 Distribution of AUC values for all genes in a dataset. AUC values in respect to MI-Status are plotted in solid lines for SanchezC
data in A) and Stransky data in B). AUC values in respect to high grade (G3) are plotted in solid lines for SanchezC data in C) and the Stransky
data in D). Distributions of AUC values for randomized versions are plotted in dashed lines and the intervals that contain 99% of randomized
data are indicated with vertical dashed lines.
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moderate, 0.60 and 0.66, respectively. In fact, many
genes change from significant AUC values (> 0.7 or
<0.3) in one data set to insignificant values in the other,
and even obtain AUC values in the opposite direction.
Very few genes showed AUC values outside the 95%
confidence interval of the randomized data in both data-
sets (Figure 2).
We then investigated the possibility to identify robust

predictor genes i.e., genes with informative AUC values
in more than one dataset, by using more information
during the feature selection process. We investigated
deviations from a normal distribution as a possible addi-
tional criterion. In an optimal scenario an informative
gene should show high expression in one and low
expression in a second group in a two class situation
and hence produce a bimodal distribution, or a distribu-
tion with a heavy tail. We used the Shapiro test for nor-
mality to identify genes with skewed or otherwise
distorted distributions; the analysis revealed no differ-
ences between the two groups (Figure 3A and 3B). We
investigated the variance of the informative genes as
genes with large variance are expected to produce more
robust results and did note a significant shift to larger
variance for genes with AUC values >0.7. This shift was
however too small to be of any practical use (Figure 3C
and 3D). Similar results were obtained for the Stransky
data (Additional file 3). From this we conclude that
deviation from the normal distribution or large variance
cannot be used to preselect genes with robust AUC

values and hence no such functions were added to the
software.
Gene expression is inherently noisy and random noise

is expected to reduce the performance of predictors
based on single genes. We therefore reasoned that the
random noise effect could be counteracted by using the
mean expression level for more than one gene. We con-
sequently calculated the AUC values for all genes with
respect to MI and grade in the Sanchez data. Before
ranking, AUC values for genes with negative correlation,
and hence showing AUC values <0.5, were inverted to
values >0.5 by assigning AUC = 1-AUC-. We then
designed gene signatures with increasing sizes by adding
genes in order of their rank with steps of 1 at a time.
For each signature the average expression level was cal-
culated. In cases when genes showed negative associa-
tion with MI or grade, the gene expression levels were
inverted. The AUC values were then estimated using
the expression levels of the created metagenes. Figure
4A and 4B show that the use of uni-variate gene expres-
sion average classifier results in considerably higher
AUC values than those obtained for single and top
ranking AUC genes. Furthermore, the AUC values turn
stable when the metagenes become large enough.

Classification performance
We next compared the prediction performance of AUC-
based metagenes with the standard and frequently used
SVM-method. To accomplish this we constructed AUC

Figure 2 Scatter plot of AUC values for 8518 genes shared by SanchezC and Stransky. AUC values for MI-status are plotted in A and AUC
values for grade are plotted in B. Genes with lower or higher AUC values than 99% of randomized data (dashed lines) in both datasets are
depicted in green or red, respectively. r = Pearson correlation coefficient.
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metagenes with increasing number of genes in steps of 5
up to 500 genes. For comparison, we applied the most
differentially expressed genes as determined by a t-test
or AUC values to SVM, also in increasing steps of 5
genes. The accuracies were estimated using LOOCV in
both cases. In Figure 4C and 4D we tested the NMI/MI
classification in the SanchezC and in the Stransky data,
respectively. As can be seen the AUC metagene
approach is as efficient as the SVM approach using both
t-test and AUC as feature selection criteria; only slightly

poorer in the SanchezC data, with accuracies close to
0.9 in both cases, but slightly better in the Stransky
data, with accuracies close to 0.85 for the AUC meta-
gene and 0.80 for the SVM approach. Hence, the simple
AUC metagene approach seems to be as efficient as the
more sophisticated SVM.
The robustness of the AUC metagene approach was

then tested in independent data. For these purposes, we
designed AUC metagene signatures with increasing sizes
in one of the three datasets, SanchezC, Stransky, and

Figure 3 Deviation from normal distribution and standard deviation of genes from SanchezC with significantly high or low AUC
values in both datasets, SanchezC and Stransky. A) Deviation from normal distribution of genes grouped by their association to MI in Figure
2A. B) Deviation from normal distribution of genes grouped by their association to grade in Figure 2B. C) Box plot for standard deviation of
genes grouped by association to MI. D) Box plot for standard deviation of genes grouped by association to grade. -log10 p-value = logarithmic
p-value of Shapiro test for normality.
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Blaveri. The accuracy for each AUC metagene was first
determined in the respective training set using LOOCV
(Figure 5). Genes were then ranked according to AUC
values using all cases in the training set and used as a
source for producing gene signatures of increasing size
applied to the independent data sets. These metagenes
were then used to establish thresholds for maximum
accuracies in the validation data sets within LOOCV
loops. Hence, the signature genes used to produce the

metagene were derived from the training set but the
actual thresholds were derived from the validation sets.
To estimate classification performance in the validation
data sets we again performed LOOCV. In Figure 5A we
have used metagenes obtained from the SanchezC data-
set to predict NMI/MI in the Blaveri and Stransky data-
sets. As can be seen, when applied to the training set, i.e.
the SanchezC dataset itself, accuracies close to 0.9 are
obtained whereas in the Blaveri and Stransky accuracies

Figure 4 Area under the Curve (AUC) values of the ranked single genes and of the metagene obtained from taking the mean
expression of the single genes. A) AUC for association to MI. B) AUC for association to grade. Classification performance of MI status for the
metagene based predictor (ROC) and the SVM using LOOCV in the SanchezC (C) and Stransky data (D), respectively. For SVM we used two
different features selection criteria, t-test and AUC. Accuracy = Balanced Accuracy (see Methods), dashed line = Balanced Accuracy obtained by
random class assignment (= 0.5). ROC = metagene-based predictor. SVM = Support Vector Machine.
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slightly above 0.9 are obtained. Similar results were
obtained for the other combinations of training and vali-
dation data, and hence, the AUC metagene approach is
robust to independent data.
A close inspection of Figure 5A-C seems to indicate

that signatures for MI in bladder cancer smaller than
100 genes are less robust i.e. show a large variance in
accuracy when applied to validation data. To explore

this further, we calculated the change in accuracies
between each step of signature size for signatures
derived from the same dataset. These values were then
plotted (Figure 5D). It is obvious form Figure 5D that
signatures smaller than 100 are sensitive to the compo-
sition of the signature, whereas signatures above 200
show robust performance, seen as small or no changes
in accuracies for different AUC metagenes. From this

Figure 5 Performance of the metagene-based classifier when applied to independent data. A) Genes with highest AUC values of the
SanchezC data are first tested by LOOCV in the SanchezC dataset (black circles) and then taken over to establish a classifier in the Stransky
(green) and Blaveri (datasets), again by LOOCV. Gene signatures of 5-500 gene members are used. Balanced Accuracies are plotted; the dashed
line at 0.5 indicates the balanced accuracy obtained by chance. B) and C): Procedure repeated with Blaveri and Stransky as training data,
respectively. D) Changes in balanced accuracies from one gene signature size to the next biggest size are plotted for all balanced accuracies
obtained in the validation datasets in A-C).
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one may conclude that gene signatures of at least 150
genes are needed to produce robust predictors of NMI/
MI in bladder.
The metagene classifier approach was then evaluated

further using two approaches. First, we evaluated the
algorithm performance regarding different endpoints.
For this purpose we used three breast cancer datasets
(vandeVijver, WangY, Sotiriou), three neuroblastoma
datasets (WangQ, JanoueixL, Attiyeh) and two lung can-
cer datasets (Angulo, Takeuchi), and six different end-
points; ER status, tumor grade, tumor size, tumor stage,
MYCN amplification status, and histological subtype.
Second, we compared the uni-variate gene expression
average classifier with 12 alternative classification algo-
rithms using two feature selection procedures.
In these comparisons we predetermined the number

of genes to be included in the metagene to 50, as this is
close to the median number of genes included in pub-
lished gene signatures. For each endpoint the selected
features (genes) were determined in one dataset and

then applied to the remaining ones (Table 1). For classi-
fication of e.g. ER status in breast cancer the gene list
was derived from one dataset and then applied to the
two remaining ones. This procedure was repeated using
each dataset for feature selection resulting in a total of
six tests. Overall the accuracies were high, ranging from
0.77 to 0.94 and similar to those obtained by SVM
(range 0.71 to 0.95) when applied to validation data.
Instances resulting in lower range accuracies using the
metagene predictor where also low when using the
SVM approach, indicating that the obtained lower
accuracies were dependent on dataset and not on the
algorithm used. Tumor grade was only available for two
breast cancer datasets, vandeVijver and Sotiriou. Grade
was predicted in validation data with accuracies ranging
from 0.82 to 0.85 using the metagene predictor, similar
to what was obtained by SVM (Table 1). The uni-variate
gene exression average classifier could also faithfully
predict MYCN status in neuroblastoma and histopatho-
logical subtype in lung cancers. Tumor stage in

Table 1 Balanced accuracies of prediction obtained in various phenotypes using the metagene classifier (ROC) and
linear SVM (SVM)

Phenotype/
Method Training1 Validation Validation Training Validation Validation Training Validation Validation Mean

ER2 (BC) vandeVijver WangY Sotiriou WangY vandeVijver Sotiriou Sotiriou vandeVijver WangY

ROC 0.95 0.89 0.74 0.89 0.94 0.77 0.77 0.90 0.88 0.85

SVM 0.94 0.82 0.71 0.82 0.95 0.73 0.69 0.95 0.82 0.83

Grade3 (BC) vandeVijver Sotiriou Sotiriou vandeVijver

ROC 0.79 0.85 0.84 0.82 0.84

SVM 0.72 0.78 0.84 0.78 0.78

Size4 (BC) vandeVijver Sotiriou Sotiriou vandeVijver

ROC 0.63 0.65 0.70 0.60 0.63

SVM 0.57 0.51 0.61 0.48 0.49

MYCN5(NB) WangQ JanoueixL Attiyeh JanoueixL WangQ Attiyeh Attiyeh WangQ JanoueixL

ROC 0.94 0.91 0.82 0.87 0.89 0.79 0.81 0.95 0.89 0.88

SVM 0.98 0.83 0.75 0.88 0.97 0.67 0.85 0.98 0.87 0.84

Stage6 (NB) WangQ JanoueixL Attiyeh JanoueixL WangQ Attiyeh Attiyeh WangQ JanoueixL

ROC 0.74 0.58 0.82 0.66 0.65 0.70 0.69 0.62 0.48 0.64

SVM 0.79 0.58 0.74 0.61 0.73 0.61 0.60 0.72 0.54 0.65

AD/SQ7(LC) Angulo Takeuchi Takeuchi Angulo

ROC 0.93 0.96 0.95 0.96 0.96

SVM 0.89 0.91 0.93 0.84 0.88

Grade8(LC) Angulo Takeuchi Takeuchi Angulo

ROC 0.67 0.69 0.69 0.68 0.68

SVM 0.63 0.64 0.63 0.59 0.61
1 Accuracies given in italics indicates accuracies obtained in the training set using LOOCV.
2 ER+ vs. ER-.
3 grade 1 vs. grade 3.
4 tumors < = 2 cm vs. tumors > 2 cm.
5 MYCN amplification positive vs. MYCN amplification negative.
6 stage 1 and 2 vs. stage 3 and 4.
7 adenocarcinoma vs. squamous cell carcinoma.
8 grade 1 vs. grade 2 and 3.
Abbreviations; BC = Breast Cancer, NB = Neuroblastoma, LC = Lung Cancer.
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Table 2 Balanced accuracies of prediction using the metagene classifier (ROC) and various classification algorithms
and a t-test as feature selection criteria

Phenotype/
Method Training1 Validation Validation Training Validation Validation Training Validation Validation Mean

ER2 (BC) vandeVijver WangY Sotiriou WangY vandeVijver Sotiriou Sotiriou vandeVijver WangY

ROC5 0.95 0.89 0.74 0.89 0.94 0.77 0.77 0.90 0.88 0.85

SVM 0.94 0.82 0.71 0.82 0.95 0.73 0.69 0.95 0.82 0.83

SVMradial 0.94 0.86 0.70 0.87 0.93 0.73 0.76 0.93 0.84 0.83

SVMpoly 0.92 0.80 0.67 0.77 0.89 0.65 0.75 0.84 0.72 0.76

knn 0.94 0.83 0.70 0.84 0.93 0.78 0.77 0.95 0.78 0.83

rforest 0.98 0.85 0.73 0.84 0.93 0.73 0.76 0.98 0.83 0.84

rpart 1.00 0.79 0.61 0.82 0.90 0.63 0.72 1.00 0.75 0.78

bagging 1.00 0.84 0.72 0.86 0.91 0.72 0.81 1.00 0.84 0.84

lda 0.95 0.85 0.76 0.86 0.94 0.73 0.76 0.96 0.83 0.84

dlda 0.96 0.89 0.79 0.88 0.94 0.77 0.87 0.94 0.85 0.86

slda 0.94 0.86 0.74 0.85 0.94 0.77 0.77 0.94 0.85 0.85

neuralnet 0.94 0.78 0.69 0.81 0.92 0.72 0.76 0.97 0.80 0.81

ncc 0.96 0.89 0.78 0.88 0.94 0.75 0.82 0.95 0.87 0.86

MYCN3 (NB) WangQ JanoueixL Attiyeh JanoueixL WangQ Attiyeh Attiyeh WangQ JanoueixL

ROC 0.94 0.91 0.82 0.87 0.89 0.79 0.81 0.95 0.89 0.88

SVM 0.98 0.83 0.75 0.88 0.97 0.67 0.85 0.98 0.87 0.84

SVMradial 0.95 0.93 0.82 0.93 0.94 0.81 0.87 0.95 0.86 0.88

SVMpoly 0.95 0.86 0.74 0.79 0.88 0.69 0.82 0.90 0.79 0.81

knn 0.95 0.93 0.86 0.88 0.92 0.85 0.86 0.98 0.85 0.90

rforest 0.95 0.93 0.80 0.91 0.94 0.76 0.84 0.95 0.88 0.88

rpart 1.00 0.93 0.90 0.83 0.89 0.72 0.90 1.00 0.72 0.86

bagging 1.00 0.90 0.89 0.81 0.91 0.72 0.87 1.00 0.86 0.88

lda 1.00 0.70 0.83 0.69 0.94 0.73 0.86 0.98 0.65 0.80

dlda 0.94 0.90 0.86 0.90 0.94 0.86 0.84 0.95 0.85 0.89

slda 0.95 0.93 0.85 0.93 0.98 0.83 0.89 0.98 0.91 0.91

neuralnet 0.99 0.81 0.89 0.85 0.96 0.80 0.88 0.97 0.82 0.87

ncc 0.94 0.91 0.86 0.93 0.94 0.85 0.86 0.98 0.87 0.90

AD/SQ4 (LC) Angulo Takeuchi Takeuchi Angulo

ROC 0.93 0.96 0.95 0.96 0.96

SVM 0.89 0.91 0.93 0.84 0.88

SVMradial 0.97 0.93 0.96 0.96 0.95

SVMpoly 0.89 0.92 0.90 0.96 0.94

knn 0.94 0.94 0.95 0.94 0.94

rforest 0.94 0.95 0.96 0.94 0.94

rpart 0.86 0.93 0.95 0.82 0.87

bagging 0.91 0.96 0.95 0.93 0.94

lda 0.80 0.91 0.93 0.83 0.87

dlda 0.94 0.95 0.95 0.92 0.93

slda 0.93 0.95 0.95 0.96 0.96

neuralnet 0.91 0.95 0.94 0.92 0.94

ncc 0.93 0.96 0.95 0.93 0.95
1 Accuracies given in italics indicates accuracies obtained in the training set using LOOCV.
2 ER+ vs. ER-.
3 MYCN amplification positive vs. MYCN amplification negative.
4 adenocarcinoma vs. squamous cell carcinoma.
5 the metagene classifier uses AUC values as feature selection criteria.
Abbreviations; BC = Breast Cancer, NB = Neuroblastoma, LC = Lung Cancer.
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neuroblastoma and tumor grade in lung cancers were
predicted with lower but significant accuracies. As can
be seen from the computed average accuracies for each
phenotype, the simple metagene predictor on average
performs just as well, or better, than the more complex
SVM approach. All predictor evaluations were repeated
using 10 and 200 member metagenes, the obtained
accuracies were however not influenced by the size of
the metagenes (Additional file 4).
For the extensive comparison with other classification

algorithms we limited the analysis to ER status in breast
cancer, MYCN status in neuroblastoma, and adenocarci-
noma/squamous cell carcinoma status in lung cancer
using a t-test as feature selection criteria (Table 2). For
comparison we also used AUC as feature selection cri-
teria (Additional file 5). As can be seen in Table 2, all
classification algorithms show similar performance. The
performance is more dependent on the endpoint/dataset
than the actual algorithms used. Furthermore, simple
classifiers such as the discriminant analysis methods
(lda, dlda, slda) perform just as well as the more sophis-
ticated ones, such as the neural network algorithm neur-
alnet. Our uni-variate gene expression average classifier
shows good performance, ranking first, third, and fifth
in the lung cancer, breast cancer and neuroblastoma
datasets, respectively. Almost identical results were
obtained when using AUC as feature selection criteria
(Additional file 5).

Conclusions
We have developed a new algorithm for tumor classifi-
cation based on the formation of gene expression meta-
genes and of feature selection using AUC values
obtained by ROC analysis. This simple classification
algorithm shows good performance and is robust in
independent validation data. The described approach
has the potential to be a valuable complement to algo-
rithms based on alternative principles.

Availability and Requirements
• Project name: rocc
• Project homepage: http://cran.r-project.org/web/
packages/rocc/index.html
• Operating systems: Platform independent
• Programming language: R
• Other requirements: R 2.9.2 or higher is recom-
mended. The installation of the R package ROCR is
required.
• License: GPL2 or higher
• Any restrictions to use by non-academics: none

Additional material

Additional file 1: Description of the used cancer datasets.

Additional file 2: Scheme of the generation of metagenes.

Additional file 3: Deviation from normal distribution and standard
deviation of genes from Stransky with significantly high or low
AUC values in both datasets, SanchezC and Stransky. A) Deviation
from normal distribution of genes grouped by their association to MI in
Figure 2A. B) Deviation from normal distribution of genes grouped by
their association to grade in Figure 2B. C) Box plot for standard deviation
of genes grouped by association to MI. D) Box plot for standard
deviation of genes grouped by association to grade. -log10 p-value =
logarithmic p-value of Shapiro test for normality.

Additional file 4: Balanced accuracies of prediction obtained using
the metagene-based classifier and Support Vector Machine for
gene signatures that consist of 10, 50 and 200 genes.

Additional file 5: Balanced accuracies of prediction using the
metagene classifier (ROC) and various classification algorithms and
AUC as feature selection criteria.
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