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Abstract

responses, cytoskeletal remodeling and focal adhesion.

Background: Osteosarcoma (OSA) spontaneously arises in the appendicular skeleton of large breed dogs and
shares many physiological and molecular biological characteristics with human OSA. The standard treatment for
OSA in both species is amputation or limb-sparing surgery, followed by chemotherapy. Unfortunately, OSA is an
aggressive cancer with a high metastatic rate. Characterization of OSA with regard to its metastatic potential and
chemotherapeutic resistance will improve both prognostic capabilities and treatment modalities.

Methods: We analyzed archived primary OSA tissue from dogs treated with limb amputation followed by
doxorubicin or platinum-based drug chemotherapy. Samples were selected from two groups: dogs with disease
free intervals (DFI) of less than 100 days (n = 8) and greater than 300 days (n = 7). Gene expression was assessed
with Affymetrix Canine 2.0 microarrays and analyzed with a two-tailed t-test. A subset of genes was confirmed
using gRT-PCR and used in classification analysis to predict prognosis. Systems-based gene ontology analysis was
conducted on genes selected using a standard J5 metric. The genes identified using this approach were converted
to their human homologues and assigned to functional pathways using the GeneGo MetaCore platform.

Results: Potential biomarkers were identified using gene expression microarray analysis and 11 differentially
expressed (p < 0.05) genes were validated with gRT-PCR (n = 10/group). Statistical classification models using the
gRT-PCR profiles predicted patient outcomes with 100% accuracy in the training set and up to 90% accuracy upon
stratified cross validation. Pathway analysis revealed alterations in pathways associated with oxidative
phosphorylation, hedgehog and parathyroid hormone signaling, cCAMP/Protein Kinase A (PKA) signaling, immune

Conclusions: This profiling study has identified potential new biomarkers to predict patient outcome in OSA and
new pathways that may be targeted for therapeutic intervention.

Background

Osteosarcoma (OSA) is the most common malignant pri-
mary bone tumor of children and accounts for roughly
5% of all childhood cancers in the United States. Charac-
teristically, OSA is found in the metaphyseal regions of
long bones in the appendicular skeleton. More than 15%
of patients present with clinically detectable pulmonary
metastases and it is estimated that 80% or more have
micrometastases at presentation [1]. Advances in treat-
ment such as multi-agent chemotherapy have improved
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prognosis over the last several decades with five-year sur-
vival rates up to 70%. Despite these advances, patients
that present with metastases or those whose tumors are
refractory to neoadjuvant chemotherapy continue to have
a poor prognosis [1]. This suggests that within the same
histologic type of tumor, different genetic mechanisms
may be operating, altering response to chemotherapy and
metastatic capability in some tumors.

Osteosarcoma is also the most common primary bone
malignancy in dogs. The majority of these tumors occur
in the appendicular skeleton of middle-aged large and
giant breeds. Roughly 10,000 new cases of OSA are
identified in dogs annually. Standard treatment involves
amputation or limb-sparing surgery followed by
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adjuvant chemotherapy with doxorubicin, a platinum-
based drug, or a combination of the two drug types [2].
Median disease-free interval (DFI) following amputation
has ranged from 165 to 470 days depending on adjuvant
chemotherapy protocol and study size [3-7]. Median
survival time in dogs undergoing amputation alone
ranges from 134 to 175 days [3-7]. Like their human
companions, pulmonary metastases are typically the
cause of terminal morbidity. It has been suggested that
up to 90% of canine patients may present with micro-
scopic metastases that are undetectable via routine ima-
ging [2]. The high variability in DFI suggests that canine
OSA exhibits variable metastatic capability, rate and/or
resistance to adjuvant chemotherapy, similar to the dis-
ease in humans.

Canine OSA shares many features with human OSA,
making dogs a valuable comparative model. Pet dogs
develop OSA primarily in the metaphyseal regions of long
bones, as do human patients. The lesions are histologically
identical [2]. The similarities between the molecular char-
acteristics of human and canine OSA have been estab-
lished (see [8] for review). Furthermore, Thomas and
colleagues recently demonstrated that some of the same
genetic aberrations identified in human OSA are also seen
in canine OSA with both breed-dependent and indepen-
dent associations [9]. Among the genetic changes identi-
fied, Wilms tumor 1 (WT1I), tumor protein p53 (TP53),
cyclin-dependent kinase inhibitor 2A (CDKN2A), phos-
phatase and tensin homolog (PTEN) and retinoblastoma 1
(RB1I) tumor suppressors as well as v-myc myelocytomato-
sis viral oncogene homolog (MYC) and v-kit Hardy-Zuck-
erman 4 feline sarcoma viral oncogene homolog (KIT)
oncogenes were shown to be affected by cytogenetic
abnormalities in 76% of their samples [9]. Similarly, com-
parative analysis of gene expression profiles in human and
canine OSA determined that the diseases were indistin-
guishable by hierarchical clustering [10]. Treatment and
chemotherapeutic regimens are also similar with the nota-
ble exception that most amputee dogs do not undergo
neoadjuvant chemotherapy, so tumors collected at the
time of amputation are naive to drugs. Dogs also provide a
valuable model system in that their tumors arise “natu-
rally,” they share an environment with humans, and they
metabolize drugs at a similar rate. Finally, dogs are more
genetically diverse than mouse model systems and share
more genetic homology with humans than mice [8]. Thus,
genetic prognostic screening in dogs has strong potential
applicability to the human disease [11].

In recent years, it has become clear that the tumor
microenvironment plays a strong role in metastatic
events even if metastatic subclones are only a small pro-
portion of tumor cells [12,13]. For example, van de Vij-
ver and colleagues demonstrated that gene expression
analysis of primary tumors can divide breast cancer
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patients into “good” and “poor” prognostic groups based
on the tumors’ intrinsic metastatic ability [14]. Thus,
gene expression profiles of primary tumors provide
information about metastatic potential and patient prog-
nosis even if distant disease is not detectable or present.

Gene expression analysis of primary tumors can also
elucidate novel chemotherapeutic targets by defining
individual gene changes and/or whole pathway derange-
ments [15,16]. Identification of such differences between
“good” and “poor” prognostic groups in OSA will allow
for more personalized treatment of disease based on an
individual’s tumor expression profile.

The current study utilized Affymetrix GeneChip
Canine Genome 2.0 arrays to explore differences in
gene expression between primary OSA tumors taken
from client dogs with a DFI of less than 100 days (“poor
responders”) and those with a DFI greater than 300 days
(“good responders”) following definitive treatment and
chemotherapy. Individual genes with significant changes
in expression were validated using qRT-PCR and
explored for their ability to correctly classify good and
poor responders using four different machine learning
schemes. A broader, systems approach was used to iden-
tify changes in groups of interacting genes or pathways
that may contribute to metastatic progression and resis-
tance to therapy. We have found evidence of altered
expression of several genes and pathways and have veri-
fied that the Hedgehog signaling pathway is compara-
tively downregulated in the poor responding group.

Methods

Chemotherapy-naive primary tumor samples were
selected from the Colorado State University Animal
Cancer Center’s tissue archive based on the criteria that
the patient had undergone surgical amputation followed
by chemotherapy with doxorubicin and/or a platinum-
based drug (Table 1). Limb-spare surgical samples were
excluded from the study as differences in DFI are asso-
ciated with post operative infections common to the
procedure [17,18]. Samples were collected at the time of
amputation with the written consent of the owners
(between 1996 and 2006), flash-frozen in liquid nitrogen
and stored at -80°C. Disease-free intervals (DFI) were
calculated based upon the presence of metastatic disease
and samples were divided into cohorts of DFI < 100
days and DFI > 300 days. These cohorts were defined to
select samples distant from the median DFI of 200 days
so that expression differences could be analyzed in very
good and very poor responders.

Samples were freeze-fractured, homogenized, extracted
with Trizol reagent (Invitrogen, Carlsbad, CA, USA) and
purified with RNeasy clean up (Qiagen, Valencia, CA,
USA) per the manufacturers’ protocols. Resultant RNA
was quantified via spectrophotometry and assayed for
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Table 1 Study Population
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Unique ID DFI Age at Dx (yrs) Sex Breed Tumor Site Tumor Chemotherapy Received
Subtype

184844 40 44 MC Greyhound L Prox Humerus Osteoblastic Doxorubicin
208911 60 8.0 FS Doberman L Prox Humerus Giant cell Carboplatin
173175 69 50 MC Rottweiler L Dist Femur Osteoblastic Cisplatin
223986 77 7.0 MC Greyhound L Dist Femur Osteoblastic Carboplatin
153599 90 9.0 FS Mix L Tibia Giant cell Cisplatin
222189 91 6.1 FS Greyhound L Prox Humerus Osteoblastic Doxo & Carbo
204714 94 80 FS Greyhound L Prox Tibia Giant Cell Doxorubicin
208756 95 10.2 FS Labrador Ret. L Dist Humerus Osteoblastic Cisplatin
146719 97 88 MC Mix R Dist Femur Fibroblastic Doxorubicin
212759 97 108 MC Golden Ret. L Prox Humerus Osteoblastic Doxorubicin
177466 307 76 FS Mix L Dist Radius Osteoblastic Cisplatin
188084 329 104 MC Rottweiler R Dist Radius PD Doxorubicin
190030 356 134 MC Mix L Dist Humerus Osteoblastic Doxorubicin
180223 384 11.5 FS Mix R Prox Femur Osteoblastic Cisplatin
208513 467 7.1 MC Greyhound L Prox Humerus Osteoblastic Doxorubicin
180119 619 104 FS Mix R Dist Femur Osteoblastic Cisplatin
193231 694 124 MC Mix L Dist Radius Osteoblastic Doxorubicin
174513 734 10.1 FS Malamute L Dist Radius Osteoblastic Doxo & Carbo
155214 787 87 MC Labrador Ret. R Tibia Osteoblastic Doxorubicin
168327 885 80 FS Golden Ret. L Dist Radius Osteoblastic Carboplatin

DFI = disease-free interval, Dx = diagnosis, MC = castrated male, FS = spayed female, L = left, Dist = distal, Prox = proximal, R = right, PD = poorly-differentiated,

“Doxo & Carbo” = Doxorubicin and Carboplatin combination therapy

quality on Agilent (Santa Clara, CA, USA) and Bio-Rad
(Hercules, CA, USA) bioanalyzers at the Rocky Moun-
tain Regional Center for Excellence (RMRCE) Genomics
Core at CSU. Only samples exhibiting minimal degrada-
tion as evidenced by RNA Integrity Numbers (RIN)
greater than 8 were used for microarrays.

Eight samples from each DFI cohort were selected and
array analysis with GeneChip Canine 2.0 Genome
Arrays (Affymetrix, Santa Clara, CA, USA) was per-
formed in two batches (batch 1, n = 6; batch 2, n = 10)
at CSU’s RMRCE Genomics Core per Affymetrix proto-
cols. One sample was removed from analysis after data
collection based upon pathologist review and review of
hospital records that determined the sample was not
OSA but hyperreactive osteoid tissue. Briefly, the One-
Cycle Target Labeling and Control Reagents package
(Affymetrix, Santa Clara, CA, USA) was used to synthe-
size cDNA from total RNA spiked with prokaryotic
Poly-A RNA as a control. The Sample Cleanup Module
(Affymetrix, Santa Clara, CA, USA) was used to purify
the cDNA which was then used for synthesis of biotin-
labeled cRNA. cRNA was purified, quantified and
fragmented before hybridization with the GeneChips.
Hybridized chips were washed, stained using streptavi-
din-conjugated phycoerythrin dye (Invitrogen, Carlsbad,
CA, USA) and enhanced with biotinylated goat anti-
streptavidin antibody (Vector Laboratories, Burlingame,
CA, USA) using an Affymetrix GeneChip Fluidics Station

450 and Genechip Operating Software. The Affymetrix
GeneChip scanner 3000 was used to acquire images.

Microarray data was preprocessed using Probe Loga-
rithmic Intensity Error (PLIER) estimation [19] and
Robust Multichip Average (RMA) [20] algorithms with
log, transformations. PLIER and RMA methods were
compared as part of the data discovery. A standard
unpaired 2-tailed t-test with a false discovery rate cor-
rection for multiple comparisons was used. Uncorrected
p-values were used to rank probesets. CIMminer was
used to generate clustered images of the data with the
following parameters: unsupervised clustering on both
axes, average linkage and Euclidean distance [21].
Microarray data has been made available through
NCBI's Gene Expression Omnibus (GEO) and can be
accessed via accession number GSE24251.

Quantitative RT-PCR was performed on an expanded
set of 20 OSA samples including the same 15 samples
used in the array analysis plus an additional five samples
that met the selection criteria of amputation, che-
motherapy, appendicular location of tumor and DFI (n
= 3 in the DFI > 300 cohort and n = 2 in the DFI < 100
cohort). These additional 5 samples increased the num-
ber of samples in each cohort to ten. The sample set
was expanded so that expression of genes of interest
could be assessed in independent samples in addition to
those from the microarray study. cDNA was synthesized
using the QuantiTect Reverse Transcription Kit (Qiagen,
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Valencia, CA, USA) with 1 pug input RNA. Quantitative
real time PCR was performed in duplicate using iQ SYBR
Green Supermix (Bio-Rad, Hercules, CA, USA) and 25 ng
equivalent RNA input in 25 pL reactions on a Stratagene
Mx3000P instrument. Primers (Table 2) were designed
based upon NCBI RefSeq mRNA sequences with Primer-
Quest (Integrated DNA Technologies, Coralville, IA, USA)
and were cross-checked for specificity using UCSC In-
Silico PCR [22,23]. Where possible, primers were designed
to be intron spanning and in a central region of the gene.

Table 2 Primer sequences and amplicon sizes for selected
genes

Primer Sequence (5’ to 3') Size of
Amplicon

HPRT1 S TGC TCG AGA TGT GAT GAA GG 191 bp
HPRT1 AS  TCC CCT GTT GAC TGG TCA TT
ADHFET S CCA ACA GTG GCT TCG ATG TGC TTT 104 bp
ADHFE1 TGC TGG CCG AGT GAT AGG ATT TGA
AS
AGTRT S TGA CTT TGC CAC TAT GGG CTG TCT 178 bp
AGTRT AS  AGG CGG GAC TTC ATT GGA TGA ACA
CCDC3 S TGA ACC AGA AGC TCA GCG AGA AGT 162 bp
CCDC3 AS  TAG ATT CCC TGG CAA GAG GCA ACA
DHH S ACA ACC CGG ACA TCA TCT TCA AGG 109 bp
DHH AS ATG TTC ATC ACC GCA ATG GCC AAG
FBP1 S TCC TGT ACC CAG CGA ACA AGA AGA 89 bp
FBP1 AS TGC CTT CTC CAT GAT GTA GGC CAT
IGF2 S TCG TGG AAG AGT GCT GTT TCC GTA 154 bp
IGF2 AS TCG TAT TGG AAG AAC TTG CCC ACG
IMP1 S TTG CAG AAT TTG ACA GCG GCT GAG 118 bp
IMP1 AS TTT GGT GCA GCT GCT TAA CTT GGG
NDRG2 S ATA AGT CTT GCT TCC AGC CGC TCT 183 bp
NDRG2 AS  TCA GGT ACT GCA GAA TGC AAG GGA
PTCH2 S CAT ATT CCT GCT GGC ACA TGC CTT 229 bp
PTCH2 AS  GAA GAC AAG CAT CAC GGC TGC

AAA
SCN1B S TCG TGG CAG AGA TGG TTT ACT GCT 121 bp
SCNIB AS  ACA CCC GTA CAG TTC TCC TTG CTT
SMO S TGG TGC TCA TTG TGG GAG GTT ACT 210 bp
SMO AS ACT CAG CCT GGT TGA AGA AGT CGT

S = sense, AS = antisense, bp = base pairs
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Primers were designed to amplify all possible isoforms
noted in NCBI and were not specific to the Affymetrix
probe region. Expression levels were normalized to hypox-
anthine phosphoribosyltransferase 1 (HPRT1) expression
as it was consistently expressed at a moderate level in our
arrays and has previously been used as a canine house-
keeping gene [24] (primer sequences courtesy of Dr. Luke
Wittenburg, CSU). Standard curves, dissociation curves
and amplification data were collected using Mx3000P
(Stratagene, La Jolla, CA, USA) software and analyzed
with the 2¢42Y method [25] followed by an unpaired 2-
tailed t-test as well as REST2009 software [26,27]. In all
cases, amplification efficiencies were greater than 90%.
Quantitative RT-PCR products were electrophoresed on a
2% agarose gel in 1x TBE and visualized under UV light
with ethidium bromide to verify product size.

The pathway analysis pipeline used in this study has
been previously described [28]. Briefly, the University of
Pittsburgh Gene Expression Data Analysis suite
(caGEDA) [29] with a standard J5 metric, a threshold of
4 and a jackknife of 4 was used to select unique genes
for pathway analysis following both PLIER and RMA
preprocessing. The DAVID Gene ID conversion tool
was used to link canine identifiers to their human coun-
terparts [30,31] and identifiers absent from the database
were hand-annotated by BLAST and BLAT comparisons
of the target sequence; GeneGo MetaCore was used to
assign functional pathways. Pathways were assigned
independently to PLIER and RMA preprocessed data
and the resulting pathways were compared.

WEKA software was used to generate classification
models to test the analytical value of qRT-PCR-derived
expression changes [32]. Classification models were built
using a Support Vector Machine (SVM), a J48 decision
tree, and logistic regression [33]. Models were generated
with the full (n = 20) data set and tested for sensitivity
and specificity using stratified tenfold cross-validation.
Tenfold cross-validation randomly selects 90% of the
data for training the model, and uses the other 10% of
the data to test the model. The process is repeated ten
times and the ten model error rates are averaged to
compute an overall error rate.

Results

Tumor Donors

The DFI < 100 group was composed of 5 castrated
males and 5 spayed females with an average age of 7.73
years (range: 4.4-10.8) at the time of diagnosis. The DFI
> 300 group was also composed of 5 castrated males
and 5 spayed females with an average age of 9.96 years
(range: 7.1-13.4) at the time of diagnosis. The samples
used in the microarray study were a subset of these as
described in the “Methods” section. Dog breed, che-
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motherapy type, tumor phenotype and tumor location
are included in Table 1.

Affymetrix Canine 2.0 Genome Array Analysis

Criteria for assessing differential regulation of probe-
sets were based on the preprocessing algorithm used
as both PLIER and RMA have benefits and drawbacks.
Briefly, PLIER exhibits higher signal reproducibility
and differential sensitivity for low expressing genes yet
the variance can be unstable on a log scale, whereas
RMA demonstrates fold change compression at the
low end of expression, but the variance is stable on a
log scale [19]. Thus, selection criteria for genes to vali-
date with qRT-PCR were: PLIER fold change greater
than 3 with an uncorrected p-value less than 0.05 and/
or RMA fold change greater than 2 with an uncor-
rected p-value less than 0.05. False discovery rate
correction yielded no significant genes so uncorrected
p-values were used: this is not surprising in this
natural, diverse patient population.

Affymetrix Canine 2.0 gene array analysis yielded 75
probesets matching the PLIER criteria and 68 probesets
matching the RMA criteria. Twenty-eight probesets and
twenty-three genes were shared (Figure 1A &1B, blue
labels) between the two selection criteria yielding 115
total probesets for further investigation (Figure 1C).
Unsupervised hierarchical clustering of the 75 PLIER-
selected probesets grouped the dogs according to their
respective disease free interval groups (Figure 1A,
X-axis). This hierarchical clustering also grouped the
probesets relative to fold change differences between the
DFI < 100 day group and the DFI > 300 day group
(Figure 1A, Y-axis). This pattern indicates that, based on
the genes showing the greatest expression differences,
dogs that have a longer disease-free interval (X-axis, left
half) have more-similar primary tumor gene expression
to each other than to dogs with a short DFI (X-axis, right
half), even those of the same breed. Hierarchical cluster-
ing of the 68 RMA-selected probesets yielded similar
results with all but one of the dogs (208911 DFI < 100)
clustering in their respective DFI groups. (Figure 1B).
The differences in sample clustering, the ranges of
expressed values, and the differences in shared gene clus-
tering (i.e. genes shared between the two algorithms are
clustered primarily in half of the PLIER dendogram but
spread throughout the RMA dendogram) underscore the
fact that different algorithms yield different results and
illustrate the value of applying multiple algorithms.

Quantitative RT-PCR Analysis of Putative Biomarkers and
Array Validation

Thirty-six genes were assayed for expression via qRT-PCR
in 20 OSA samples to both correlate array data to qRT-
PCR as well as explore potential biomarker expression via
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a method not subject to multiple sampling errors. Of
these, 8 demonstrated significantly different (p < 0.05)
expression between the two cohorts as calculated by
both the 2249 method [25] with a 2-tailed t-test and
the REST2009 [27] iterative method that accounts for
amplification efficiency. qRT-PCR expression is plotted
as 204Y in Figure 2. Higher expression levels between
cohorts and among genes can be visualized as an
increased 204Y value. Fold changes and statistical cal-
culations stated in the text were calculated with
REST2009 as this program consistently demonstrated
higher stringency for significance than the 244
method with t-test.

We observed significant down-regulation of insulin-like
growth factor II (IGF2, fold change = 18.52, p = 0.003,
Figure 2A) in our poor-responder cohort (DFI < 100).
Other significantly down-regulated genes in the DFI <
100 cohort were: alcohol dehydrogenase, iron containing
1 (ADHFE], fold change = 3.56, p = 0.001, Figure 2B),
coiled-coil domain containing 3 (CCDC3, fold change =
7.30, p < 0.001, Figure 2C), sodium channel, voltage-
gated, type I, beta (SCN1B, fold change= 3.72, p = 0.002,
Figure 2D), angiotensin II receptor, type 1 (AGTR], fold
change = 7.14, p = 0.003, Figure 2E), and n-myc down-
stream-regulated gene family member 2 (NDRG2, fold
change = 4.29, p = 0.005, Figure 2F). Up-regulated genes
in the DFI < 100 cohort were: fructose-1,6-bisphospha-
tase 1 (FBP1, fold change = 5.94, p = 0.006, Figure 2G)
and IGF2 mRNA binding protein 1 (IMP1, fold change =
6.81, p = 0.047, Figure 2H). The remaining 28 genes dis-
played qRT-PCR fold changes similar in amplitude and
direction to at least one of the applicable Affymetrix pro-
besets with only one exception. Although these genes did
not meet significance criteria on qRT-PCR, there is a
strong correlation between the qRT-PCR data and the
microarray data (data not shown).

Pathway Analysis

Pathway analysis was utilized to examine the microarray
data in a biologically relevant manner and to rule out
the false positives commonly found in fold change ana-
lysis. To select differentially-expressed genes from the
greater-than 40,000 probesets in an unbiased fashion,
we utilized the J5 metric as described previously [29].
For the PLIER-processed data, this yielded 3179 total
probesets and 1783 unique annotated or identifiable
gene identities with human homologs. The RMA-pro-
cessed data yielded 1374 total probesets with 764 unique
identifiers. Probesets that were not associated with a
human homolog in the Affymetrix or DAVID databases
were hand-annotated, where possible, using NCBI
BLAST and/or UCSC BLAT. These datasets were then
analyzed with the MetaCore platform to assign func-
tional pathways to each individual dataset as well as to
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the identifiers common to both PLIER and RMA data-
sets. Figure 3 displays significantly altered pathways (p <
0.001) by ascending p-value for PLIER (a), RMA (b),
and combined RMA/PLIER (c) analyses. Sixty-nine sig-
nificant pathways were identified using the PLIER

dataset (Figure 3A) and eight significant pathways were
identified using the RMA dataset (Figure 3B). Analysis
of identifiers common to both RMA and PLIER datasets
yielded 379 shared identifiers and ten significant path-
ways (Figure 3C).
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Figure 3 Pathway analysis, most significant pathways. Top ranked pathways from GeneGo MetaCore pathway analysis following probeset
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The pathway expression differences between good and
poor responders primarily involved genes associated
with oxidative phosphorylation, bone development,
cAMP/Protein Kinase A (PKA) signaling, cell adhesion,
cytoskeletal remodeling and immune response. Many of
the pathways show modulation in commonly observed
“cancer” signatures including matrix metalloproteinases,
transforming growth factors, wingless-type MMTYV inte-
gration site family members (WNTSs) and nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-xB)
downstream targets, as well as actin and myosin cytos-
keletal components (data not shown and Additional
Files 1, 2).

qRT-PCR Analysis of the Hedgehog Pathway

The identification of hedgehog pathway components in
each pathway (Figure 4) and fold change analysis
(HHIP, Figure 1A and 1B), led us to examine expression
of nine genes in the pathway via qRT-PCR: hedgehog
interacting protein (HHIP), patched (PTCHI1 and
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PTCH2), smoothened (SMO), glioma-associated onco-
gene family zinc fingers (GLI1 and GLI3), and hedgehog
ligands (DHH, SHH, and IHH). Three of these genes,
DHH, SMO, and PTCH2, demonstrated significant
down-regulation in the poor-responder cohort (Figure
5). Sonic hedgehog was unexpressed in 17 of 20 samples
and only minimally expressed in the remaining three
(Figure 5 inset).

Data Classification

Four classification models were generated based on the
qRT-PCR gene expression patterns of fifteen genes, the
eleven significant genes plus four genes that were mem-
bers of the Hedgehog signaling pathway or were selected
in the fold-change analysis of both the RMA and PLIER
normalized data sets: GLI3, HHIP, RAN binding protein
3-like (RANBP3L) and peptidoglycan recognition pro-
tein 1 (PGLYRP1). The accuracies for each of these
models during model generation and cross validation
are listed (Table 3). Stratified cross-validation in each of
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these models was repeated 10 times using 90% of the
samples to train the model and 10% to test the model.
The J48 decision tree selected two genes that were most
predictive for all samples: ADHFE1 and NDRG2. It suc-
cessfully predicted cohort for all of the 20 samples.
When the same model was built with stratified cross-
validation using 90% of samples to train the model and
10% to test the model, it predicted cohort with a 75%
success rate. A Support Vector Machine algorithm was
used to generate two models. The first, incorporating all
15 genes, predicted cohort with a 100% success rate and
90% in cross-validation. The second SVM model

Table 3 Results of classification modeling

incorporated only the 3 most heavily weighted genes
from the previous model, CCDC3, FBP1 and ADHFEI.
It also predicted cohort with 100% success rate and 90%
in cross-validation. Logistic regression including the
three most predictive genes from the SVM model pre-
dicted cohort with a 100% success rate and 90% in
cross-validation.

Discussion

In this study, we analyzed gene expression in che-
motherapy-naive primary OSA tumors from 20 dogs
with the aim of identifying a gene signature of

Classifier Model

J48 Support Vector Machine Logistic Regression Support Vector Machine
Decision Tree (15 Genes) (3 Genes) (3 Genes)
(15 Genes)
Full Training Set® 100%° 100% 100% 100%
Stratified Cross-Validation® 75% 90% 90% 90%

2 Full training sets included data for all 20 samples to both build and test the model.
b Stratified cross-validation models were built with 90% of the samples and tested with the remaining 10% through multiple iterations.

€ Percent of samples correctly classified by the model.
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aggressive metastasis and/or resistance to chemotherapy
following definitive treatment with limb amputation and
adjuvant therapy with doxorubicin and/or a platinum
drug. The purpose of this aim was 3-fold. First, it pro-
vides a basis for development of a prognostic screen;
such a tool would be of great value to the clinicians
diagnosing and treating the more than 8,000 new cases
of canine OSA every year. Additionally, pet owners
would benefit greatly from a more accurate projected
survival time when weighing their dog’s quality of life
and their own monetary obligations in treatment deci-
sions. Secondly, analysis of gene signatures may allow
elucidation of single genes or genetic pathways that may
be manipulated for treatment purposes. Finally, dogs are
an excellent model for human OSA and identification of
markers and pathways leading to disease progression
and resistance to therapy in dogs may be translated to
the pediatric clinical setting to improve prognosis and
treatment of human OSA.

We utilized qRT-PCR to confirm the differential
expression of eleven genes between primary OSA from
good (DFI > 300 days) and poor (DFI < 100 days)
responding dogs (Figs. 2 and 5). Transcriptional profiles
of an additional 28 genes selected from fold change ana-
lysis of the microarray data were assessed via qRT-PCR
and, although differential expression was observed in
many, significance criteria for the qRT-PCR analysis were
not met (data not shown). Nineteen of these qRT-PCR
targets were selected for analysis before pathologist
review identified one of the “tumors” as hyperplastic tis-
sue without neoplasia. Removal of that sample and subse-
quent reprocessing of microarray data removed some of
these targets from the RMA and PLIER fold change lists.
Despite their failure to achieve significance in our fold-
change analysis, the qRT-PCR data for these targets still
correlates strongly with the array data on a sample-by-
sample basis. Two of these genes, IMP1 and AGTR1,
were verified as differentially expressed by qRT-PCR ana-
lysis (Figure 2), possibly due to the increased sample
number used in each group for this analysis. From the
additional 28 genes that failed to show statistically signifi-
cant differences by qRT-PCR, eleven of these gene targets
were selected by the fold change analysis of either RMA
or PLIER processed data shown in Figure 1. The failure
of these gene targets to reach significance in the qRT-
PCR analysis may reflect the variability in microarray
preprocessing algorithms as well as differences in expres-
sion values based on primer design as primers used in
this study were not designed to align with Affymetrix
probe locations. In addition, since our qRT-PCR analysis
used a larger number of samples than the microarray
study, some of the microarray hits may have been false
positives that have now been removed from the list of
putative biomarkers thanks to the qRT-PCR analysis.
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Although these genes were primarily assessed by qRT-
PCR for their prognostic potential, they may also have
functional roles in metastatic progression and resistance
to chemotherapy. IMP1 (6.93 fold up-regulated in the
poor-responders), also known as IGF2BP1 and not to be
confused with the family of IGF binding proteins, is a
member of a family of three oncofetal proteins (IMP1-3)
whose function is to bind and regulate mRNA stability
in the cytoplasm during development. IMP1 expression
is stimulated by Wnt/B-catenin signaling and has many
regulatory targets, some of which are implicated in can-
cer: stabilization of c-myc [34,35] and CD44 mRNAs
[36], translational suppression of IGF2 [37], and localiza-
tion of B-actin mRNA to sites of actin polymerization
[38]. These targets can affect cell growth and survival as
well as metastatic mechanisms such as invadopodia for-
mation and cell adhesion [39]. IMP1 over-expression
has been associated with poor prognosis in numerous
cancer types including human ovarian and colorectal
carcinomas [39,40].

IGF2 (15.4 fold down-regulated in the poor-respon-
ders) has been shown to be down-regulated in response
to IMP1 as well as to hedgehog pathway inhibition and
the observed alterations in these factors/pathways may
account for some down-regulation of IGF2 [41]. Addi-
tionally, IGF2 expression is modulated by numerous
other factors including parathyroid hormone (PTH),
cortisol, and transforming growth factor beta (TGF-f)
[42]. Finally, our pathway analysis shows reduction in
PTH related protein (PTHrP) and subsequent modula-
tion of the PTH pathway suggesting IGF2 may be com-
paratively under-expressed in poor-responders due to
decreased PTHrP expression in that cohort. It is impor-
tant to note that the observed down-regulation of IGF2
(and all other genes discussed here) is relative between
cohorts and that the mRNA was expressed in all sam-
ples, but to a lesser degree in poor-responders.

FBP1 (5.94 fold up-regulated in the poor-responders)
is involved in gluconeogenesis and is expressed in the
liver and, to a lesser extent, most other cell types. Its
action opposes that of phosphofructokinase and its
expression can lead to increased cellular glutathione and
an apoptosis-resistant phenotype [43]. Bigl and collea-
gues examined FBP1 expression in several types of
breast cancer and found it to be up-regulated in invasive
lobular carcinoma when compared to normal tissue but
down-regulated in other tumor types suggesting a vari-
able role depending on tumor type [44].

ADHFEL1 is an iron-activated alcohol dehydrogenase
with widely conserved motifs that is found in multiple
tissue types. It has been shown to oxidize gamma-
hydroxybutyrate and is 3.50 fold down-regulated in the
poor-responders [45]. CCDC3, also down-regulated in
the poor-responders (7.10 fold), encodes a 270 amino
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acid protein with a putative coiled-coil domain near the
C-terminus. Recent reports indicate that this protein is
secreted by both adipocytes and endothelial cells and is
under both hormonal and nutritional control [46]. Inter-
estingly, CCDC3 was identified as a factor contributing
to ifosfamide resistance in a mouse xenograft model
using human OSA cell lines. Bruheim and colleagues
reported a 40-fold down-regulation of this gene in resis-
tant tumor cells[47]. As none of the dogs in the current
study received ifosfamide, this gene may contribute gen-
erally to both metastasis and chemotherapeutic
resistance.

Chioni et al. recently elucidated a role for SCN1B in
cellular adhesion and migration in breast cancer cell
lines. Their mildly metastatic cell line demonstrated
increased expression of SCN1B compared to the highly
metastatic cell line; furthermore, siRNA-mediated
knockdown of SCN1B decreased adhesion and increased
migration in the mildly metastatic line [48]. Our
observed 3.70 fold down-regulation of SCN1B in the
poor-responders indicates that the tumor environment
may become more pro-migratory due to reduced
expression of this factor.

The putative tumor suppressor gene NDRG2 (4.57
fold down-regulated in the poor-responders) is
expressed in an inverse relationship to proliferation in
normal tissues and has been observed to be down-regu-
lated in numerous tumor types, especially in response to
myc oncogene expression (See [49] for review). Recent
cytogenetic analysis of canine OSA revealed breed inde-
pendent myc amplification in 40% of the cases, suggest-
ing this is a common chromosomal aberration in both
canine [9] and human OSA [50]. Tepel and colleagues
demonstrated epigenetic promoter modifications as a
mechanism for suppression of this gene in glioblastoma
[51]. Recent evidence has identified numerous mechan-
isms by which NDRG2 acts as a tumor suppressor and
invasion attenuator: anti-proliferative suppression of AP-
1 in colorectal carcinoma [52], anti-invasive suppression
of NF-xB in fibrosarcoma and melanoma cell lines [53],
pro-apoptotic involvement in the p53 pathway [54], and
reduction in invasion and intracellular f-catenin in
NDRG2-transfected cell lines [55]. Kim and colleagues
demonstrated that NDRG2 expression decreases with
increasing tumor stage in colon carcinoma, indicating
that this may be an excellent marker for molecular sta-
ging [55]. Furthermore, recent studies have shown that
the myc oncogene stimulates mitochondrial glutamino-
lysis resulting in reprogramming of mitochondrial meta-
bolism to depend on glutamine catabolism to sustain
cellular viability [56]. In support of this hypothesis, our
pathway analysis associated both upregulation of the
myc oncogene and alterations in mitochondrial oxidative
phosphorylation with poor outcome.
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To identify the prognostic potential of these genes, we
built several classification models to identify genes with
the most predictive power. Of the four models tested,
all classified the samples with 100% accuracy when the
model was built from all 20 samples. However, when
stratified cross-validation was used, the two SVMs and
the linear regression model were 90% correct whereas
the J48 decision tree was only 75% correct. These strati-
fied cross-validation results are generally thought to
more accurately reflect results in subsequent applica-
tions of the model. The two SVM models classified with
the same success rate regardless of whether built with
all fifteen genes or the three most heavily weighted con-
tributors, suggesting that CCDC3, ADHFE1 and FBP1
are highly predictive in this data set and are likely to be
robust classifiers in future OSA studies.

While biomarker identification can be successful using
traditional fold change methodology, as evidenced by
our gene hits above, understanding of the processes of
metastasis and chemoresistance can be furthered by all-
inclusive pathway analysis. Thus, to eliminate some of
the arbitrary nature of traditional fold change analysis,
we also examined our microarray data via this metho-
dology. Over 4,000 probesets were selected from micro-
array data using the J5 metric, annotated and converted
to human identifiers using public-access tools including
DAVID, and assigned to pathways with the GeneGo
MetaCore program. This program assigns pathway sig-
nificance based upon the number of genes represented
within a pathway and the direction of change. The over-
whelming benefit to this methodology is that change in
a single gene will be ignored unless related genes also
demonstrate altered expression. Thus, the downstream
impact of chip anomalies, probeset inefficiencies and
differences in preprocessing algorithms can be dramati-
cally reduced. This type of analysis allows integration of
the typical microarray methodology examining highly
expressed genes with the systems biology approach of
examining large numbers of genes, some of which may
be expressed only at low levels despite their importance
to a given pathway [28]. One pertinent example is
PTEN deletion which was identified as a chromosomal
aberration in 40% of canine OSA [9]. However, loss of
PTEN was not detected in our fold change analysis, but
was associated with poor outcome by pathway analysis
(Additional File 2).

Although discussing each of the modulated pathways
is beyond the scope of this study, some notable generali-
zations can be addressed. Cell adhesion and cytoskeletal
remodeling are both strongly represented in pathways
we have identified as significantly altered between our
two cohorts; this suggests that the aggressiveness of
tumor cells with regard to these two elements of metas-
tasis may be just as important as chemoresistance
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mechanisms in this population. Bone-related develop-
mental and immune-response pathways are also repre-
sented, much as one would expect in these osteoblastic/
osteolytic tumors. Finally, cAMP/PKA signaling path-
ways also have strong representation in these analyses.
Similar alterations in cAMP/PKA signaling with upregu-
lation of the PKA regulatory subunit la have been
described in other cancers [57]. However, the differences
between good and poor responders are notable and pro-
vide evidence for variation in molecular phenotype con-
tributing to aggressiveness within the same histologic
subtype of tumor.

The pathway analysis converged with the traditional
fold change analysis at the hedgehog signaling pathway.
The hedgehog signaling pathway appears to act
upstream of Wnt/B-catenin signaling during bone devel-
opment and aberrant hedgehog signaling has been asso-
ciated with cancer development and progression [58].
As a result, we decided to examine other genes in the
hedgehog pathway with qRT-PCR. Of the eight hedge-
hog-related genes examined, three were significantly
down regulated in the poor responder cohort. These
three genes, SMO, PTCH2 and DHH, where not identi-
fied on traditional fold change analysis and this is likely
due to two factors. First, DHH is not annotated in the
canine genome so primers were designed based on a
region of the canine genome homologous to the gene in
other species. Considering this, the Canine 2.0 microar-
ray does not have a probe for this gene. Probes were
present for the SMO and PTCH2 genes, however, in
this study, raw array expression values for these genes
were very low suggesting that the signal may be nearing
the detection limit of the microarrays.

Hedgehog interacting protein (HHIP) was identified by
fold change criteria in both RMA and PLIER prepro-
cessed arrays. The up-regulation in the poor responder
cohort was also observed as a trend in qRT-PCR but
did not meet significance criteria. HHIP antagonizes all
three of the hedgehog family of ligands (SHH, DHH and
IHH) and has been shown to be down-regulated in
numerous epithelial tumor types [59] with the notable
exception of basal cell carcinoma where it is upregulated
[60]. HHIP is also abundant in endothelial cells but is
suppressed during angiogenesis through a VEGF
mediated pathway [61]. The up-regulation of HHIP
observed in our poor-responders likely has some causa-
tive relationship to the down-regulation of DHH and,
through feedback loops, SMO and PTCH2 in the same
cohort.

Three studies have examined gene expression in pri-
mary human OSA to identify chemotherapy-resistance
signatures by comparing good and poor responders
[62-64]. Among them, they identified over 200 differen-
tially regulated genes but each gene set was unique to
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each study (i.e. there was no overlap in expression sig-
natures). More recently, Walters and colleagues [65]
assayed expression patterns in OSA cell lines with dif-
fering aggressiveness and identified 252 differentially
regulated genes, four of which overlapped with the
Mintz et al. study’s gene signature [63]. This lack of
similarity in expression patterns is observed in array
analyses of various tumor types and is not at all surpris-
ing when one contemplates the differences in array pre-
processing algorithms. Considering the disparity
between the heat maps presented in Figure 1A and 1B,
it is plausible that the exact same data processed in two
different ways may yield two very different sets of candi-
date genes. Thus, in addition to traditional fold change
analysis of microarray data for biomarker identification,
a broader, unbiased systems-biology approach, such as
we have done here, is likely to identify biological
changes that can be reliably verified in multiple data
sets. In fact, this approach was used to analyze multiple
independent data sets to show that genes involved in
the oxidative phosphorylation pathway were reduced in
metastases compared to primary solid carcinomas [28].
Interestingly, in the current comparison of primary sar-
comas, increased expression of genes in the oxidative
phosphorylation pathway was associated with a poor
outcome, suggesting that different metabolic factors may
contribute to the initiation of metastasis from a primary
tumor and the implantation and successful growth of
metastasis at a distant site.

Given the small sample size of the study, we acknowl-
edge that this data serves primarily as a road map for
future studies. Our sample size was small primarily due
to the stringent selection criteria set forth in Methods
limiting our samples to dogs that had appendicular
osteosarcoma, undergone amputation and received che-
motherapy. Furthermore, we limited our samples to
those from dogs with either very low or very high DFIs:
the 100 and 300-day cutoffs were intended to straddle
our facility’s average DFI of 200 days. Selvarajah and
colleagues recently studied gene expression in a group
of dogs with OSA with good and poor outcome [66].
They utilized a larger sample size (n = 32) but included
dogs with axial OSA as well as dogs that did not receive
adjuvant chemotherapy. Although they did not observe
differences in outcome due to these factors, previous
studies have established an effect on DFI [2,3,5,7]. They
also based their good and poor responder groups on
survival time instead of DFI: this can greatly affect out-
come groups in a field of medicine where euthanasia is
practiced. Beyond study-design differences, we applied a
systems-based model for biomarker/pathway discovery
by using the J5 metric to enrich for high to medium
expressing genes that are most appropriate for selection
as diagnostic/prognostic biomarkers, as opposed to
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fold-change based input. Hand annotation of many pro-
besets based upon sequence homology allowed us to
input a very large and complete data set into the Meta-
Core pathway analysis. Despite these differences in
study design and analysis methods, we identified some
pathways with similarity to those they identified in their
PANTHER analysis, including hedgehog signaling, WNT
signaling and chemokine signaling. Considering the dif-
ferences in chemotherapy requirements between the two
studies, these pathways may be most indicative of
increased metastatic potential as opposed to chemother-
apeutic resistance.

Work by Paoloni and colleagues provides strong evi-
dence for the validity of dogs as a model for human
OSA. They found that canine and human OSA are
more similar to each other than to normal tissues
from the same species [10]. This, in concert with our
growing body of knowledge regarding gene and path-
way derangements in canine OSA provides insights
into the mechanisms of OSA progression and
chemoresistance.

Conclusions

The present study has examined gene expression in pri-
mary canine OSA via both traditional fold change analy-
sis and systems-based pathway analysis and found
significant differences between dogs that responded
poorly to chemotherapy following definitive treatment
and dogs that responded well as evidenced by a long
disease-free interval. This study has identified candidate
biomarkers of aggressive tumors as well as pathways
that are deranged in poor responders relative to good
responders, opening the door for molecular prognostic
screening in canine OSA and further molecular compar-
ison between the human and canine disease. Although
further studies, such as protein expression analysis will
be necessary to solidify the role of these genes and path-
ways in OSA, targets identified here provide a strong
foundation from which to identify druggable targets and
markers of progression in OSA.

Additional material

Additional file 1: Signal transduction - cAMP signaling. Top scored
pathway map in the analysis of gene targets common to both PLIER and
RMA processing. Red symbols indicate degree of upregulation of gene
target in DFI < 100 days relative to DFI > 300 days, blue symbols
indicate relative down-regulation. Numbers in symbols indicate specific
array processing algorithm, 1 = PLIER, 2 = RMA.

Additional file 2: Cell Adhesion- Chemokines and Adhesion. Second
scored pathway for the analysis of gene targets common to both PLIER
and RMA processing. Red symbols indicate degree of upregulation of
gene target in DFI < 100 days relative to DFI > 300 days, blue symbols
indicate relative down-regulation. Numbers in symbols indicate specific
array processing algorithm, 1 = PLIER, 2 = RMA.
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