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Background: Tumour growth and metastatic infiltration are favoured by several components of the tumour
microenvironment. Bone marrow-derived multipotent mesenchymal stromal cells (MSC) are known to contribute to
the tumour stroma. When isolated from healthy bone marrow, MSC exert potent antiproliferative effects on
immune effector cells. Due to phenotypic and morphological similarities of MSC and tumour stromal cells (TStrQ),
we speculated that immunotherapeutic approaches may be hampered if TStrC may still exhibit

Methods: In order to compare immunomodulatory properties of MSC and tumour stromal cells (TStrC), we
established and analyzed TStrC cultures from eleven paediatric tumours and MSC preparations from bone marrow
aspirates. Immunophenotyping, proliferation assays and NK cell cytotoxicity assays were employed to address the

Results: While TStrC differed from MSC in terms of plasticity, they shared surface expression of CD105, CD73 and
other markers used for MSC characterization. Furthermore, TStrC displayed a strong antiproliferative effect on
peripheral blood mononuclear cells (PBMC) in coculture experiments similar to MSC. NK cell cytotoxicity was
significantly impaired after co-culture with TStrC and expression of the activating NK cell receptors NKp44 and

Conclusions: Our data show that TStrC and MSC share important phenotypic and functional characteristics. The
inhibitory effect of TStrC on PBMC and especially on NK cells may facilitate the immune evasion of paediatric

Background

Solid tumours are composed of tumour stromal cells,
blood vessels, infiltrating immune cells and tumour cells
themselves. Over the last decade, a growing body of lit-
erature has highlighted the importance of the tumour
microenvironment for the prognosis of different types of
cancer [1]. The significance of tumour stroma for the
overall prognosis may be in part due to the fact that
several components of the tumour-microenvironment
have been shown to compromise immune effector
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functions against tumour cells [2]. Tumour invading
immune cells are functionally impaired within tumours:
NK cells, derived from non small cell lung tumours dis-
play a decreased cytotoxicity against cancer cells in vitro
and differ from NK cells from peripheral blood not only
by a different cytokine secretion, but also by other func-
tional alterations [3]. In a comprehensive study, tumour-
infiltrating lymphocytes were analysed and regulatory
T cells could be identified in all tumour samples, which
impair anti-tumour responses of immune effector cells
[4]. More evidence for the immunological activities of
tumour stroma came from the elimination of cancer
associated fibroblasts in a murine breast cancer model
resulting in a shift from Th2 to Thl polarization [5].
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Hence, tumour stromal cells (TStrC) may participate in
regulation of immune effector functions at several levels
[6]. However, the exact mechanisms are poorly under-
stood. The site of origin and recruitment of TStrC into
the tumour have been identified as key issues in the elu-
cidation of TStrC function in the microenvironment [7].
TStrC resemble multipotent mesenchymal stromal cells
(MSC) in morphological aspects and MSC might indeed
be a source for these specialized stromal cells [8]. MSC
have been shown to suppress proliferation and alloreac-
tivity of T cells [9-11]. Furthermore, they modulate
functions of B cells and of dendritic cells [12] and,
importantly, MSC do not only inhibit the proliferation
of NK cells but also suppress their cytotoxic activity
[13-15]. These immunological properties may contribute
to tumour spread as MSC can be found in human
breast cancers and promote metastasis [16]. Biolumines-
cence imaging of mice indicated a tropism of bone mar-
row-derived MSC to inflammatory microenvironments
such as tumours [17]. In this context, the inhibitory
effects of MSC on virtually all cells of the immune sys-
tem may be relevant [12]. To investigate immunological
features of stromal cells in neuroblastomas and other
paediatric tumours, we isolated TStrC and hypothesized
that immunomodulatory properties of these cells may
contribute to the immune evasion of tumours. When we
focused on NK cells, we found that the activating NK
cell receptors NKp44 and NKp46 were downregulated
while the inhibitory receptor NKG2A remained unaf-
fected. This may be one mechanism to inhibit lysis of
e. g. neuroblastoma cells, which are known to express
only low densities of HLA molecules and represent
good NK cell targets [18].

Methods

Cell culture and isolation of tumour stromal cells
Excessive material after pathological analysis served as
starting material (Table 1). Informed written consent
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was obtained from the parents and the protocol
approved by the local IRB (892007V). Histological diag-
nosis was confirmed by the Institute of Pathology, Uni-
versity of Tibingen. Tumour tissue was disrupted
mechanically and placed in 2 ml DMEM medium low-
glucose (LG-DMEM, Lonza, Basel, Switzerland), supple-
mented with 5% (v/v) human fresh frozen plasma (FFP),
107/mL platelets (University of Tiibingen blood donor
center), 80 IU/mL heparin sulphate (Medunasal, Isern-
hagen, Germany), 100 IU/mL penicillin and 100 mg/mL
streptomycin (Biochrom, Berlin, Germany), 2 mM gluta-
mine (Biochrom) and incubated at 37°C under a water
saturated atmosphere with 10% CO,. After 7-9 days,
first TStrC colonies appeared. Non-adherent cells were
washed away and adherent cells were detached using
trypsin (Lonza) when confluency of 80% was reached.
Cells were re-plated at a density of 2000 cells/cm? in tis-
sue culture flasks. Cell cultures, which were employed
for experiments, did not exceed a number of twelve pas-
sages. All tumour samples except for sample no. 6 were
obtained after chemotherapy. Isolation efficiency of
TStrC did not vary considerably between different
tumour samples. The formation of first TStrC colonies
and the propagation of the cells took longer compared
to bone-marrow derived MSC.

The acute myeloid leukaemia cell line K562 was
obtained from ATCC (Wesel, Germany) and cultured
under standard conditions. Isolation and culture of bone
marrow-derived MSC from paediatric patients with hae-
matologic disorders were performed as described pre-
viously [19].

Differentiation Assays

Differentiation assays of TStrC and MSC towards the
osteogenic and adipogenic lineages were performed as
described earlier [20]. Briefly, cells were seeded into LG-
DMEM Medium containing 5% FFP, 80 IU/mL heparin
sulphate, 100 IU/mL penicillin and 100 mg/mL

Table 1 TStrC were isolated and propagated from eleven patients

Sample number Tumour

Age at resection

Chemotherapy prior to surgery

1 Neuroblastoma 2 years NBO4 Trial Protocol

2 Neuroblastoma 11 years NBO4 Trial Protocol

3 Neuroblastoma 4 months NBO4 Trial Protocol

4 Neuroblastoma 4 years NBO4 Trial Protocol

5 Neuroblastoma 3 months NBO4 Trial Protocol

6 Teratoma 1 month No prior treatment

7 Osteosarcoma 17 years COSS96 Trial Protocol

8 Osteosarcoma 20 years Euramos 1 Trial Protocol
9 Ewing sarcoma 16 years Euro-Ewing 99 Trial Protocol
10 Rhabdomyosarcoma 16 years CWS IV 2004 Trial Protocol
11 Rhabdomyosarcoma 8 years CWS IV 2004 Trial Protocol
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streptomycin, glutamine (2 mM), supplemented with
dexamethasone (10 nM), L-ascorbic acid-2-phosphate
(0.1 mM), beta-glycerol phosphate (5 mM) (all Sigma,
Munich, Germany) and BMP-2 (100 ng/ml) (Tebu-Bio,
Magenta, Italy). After 14-21 days, differentiated stromal
cells and controls were stained with aqueous 0.5% (v/v)
Alizarin Red-S (Sigma) and washed with PBS.

For adipogenic induction, MSC and TStrC were plated
in LG-DMEM supplemented with 5% FFP, 80 IU/mL
heparin sulphate, 100 IU/mL penicillin and 100 mg/mL
streptomycin, glutamine (2 mM), 1 mM dexamethasone,
60 nM indomethacin, 10 mM rh-insulin and 0.5 mM
isobuthylmethylxanthine. After 14-21 days differentia-
tion was verified by Oil-Red-O (Sigma) staining.

Immunophenotyping

Flow cytometric analysis was performed on a FACS
Calibur (Becton Dickinson) and data was analyzed by
the CellQuestPro software, Version 4.0.2. (Becton
Dickinson). Anti-IgG1-FITC (clone MOPC-31C), anti-
IgG1-PE (clone G18-145), anti CD45-FITC (HI30),
anti-CD34-PE (563), anti-CD56-FITC (B159), anti-
CD73-PE (A02), anti-HLA-DR-FITC (TU36) anti-HLA-
ABC-PE (G46-2.6), anti-NKp44 (P44-8.1), anti-NKp46
(9E2/NKp46), anti-CD69 (FN50) and anti-NKG2A
(20d5) monoclonal antibodies were obtained from Bec-
ton Dickinson; additionally, anti-CD105-FITC (N1-
3A1) was purchased from Ancell, Bayport, MN (USA).
Staining of the cells was performed as described
previously [20].

CFSE Assays

Proliferation of PBMC was determined using the CFSE
assay as described earlier [20]. Briefly, 75,000 HLA mis-
matched PBMC were added to each well of a 96-well
plate, already containing 5,000, 10,000, 20,000 or 30,000
TStrC, respectively. IL-2 (BD Biosciences) and OKT3
(Janssen-Cilag, Neuss, Germany) were used as stimuli
where indicated. For coculture experiments under
hypoxic conditions the plate was placed into a HERA
cell incubator (Heraeus Instruments GmbH, Hanau,
Germany) at 1% O, and 10% CO,.

Isolation of NK cells and coculture experiments

NK cells were isolated by immunomagnetic selection
with CD56" magnetic beads (Miltenyi Biotech, Bergisch
Gladbach, Germany) from PBMC of healthy donors
(IRB approval 892007V). Purity of isolated NK cells was
controlled by staining for CD56 after isolation and
exceeded 95% for NK cells that were employed in
experiments. For CFSE-proliferation experiments, 75,000
CFSE-stained NK cells were added into each well of a
96-well plate, already containing 10,000, 20,000 or
30,000 TStrC, respectively. Stimulation of NK cells was
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performed using 100 IU/ml IL-2. Phenotyping of NK-
cells after coculture of four days was performed by flow
cytometry with the antibodies described above.

Cytotoxicity assay

The effect of TStrC and MSC on NK cell function was
assessed by the BATDA cytotoxicity assay as described
previously [21]. NK cells were cocultured with TStrC
for four days at a ratio of 4:1 in presence of 100 U/ml
IL-2 where indicated. NK cells cultured with 100 U/ml
IL-2 served as a control. After the coculture period of
4 days, NK cells were removed from the stroma. Cyto-
toxicity of NK cells against the leukaemia cell line K562
as standard target was tested in triplicates. Effector cells
and target cells were incubated for 2 hours.

Statistics and data analysis

For figures showing mean values and standard deviation,
experiments were performed three time and samples
were analysed in triplicates. Statistical analysis of Figure
la and Figure 2 was performed with student’s t-test
(one-tailed, unpaired) using Microsoft Excel software
(Windows, Redmond, WA). p-values < 0.05 were con-
sidered as statistically significant (indicated by an aster-
isk), p-values < 0.01 as highly significant (indicated by
double asterisks).

Results

Establishment and characterisation of primary tumour-
stromal cell cultures

TStrC were isolated from eleven paediatric tumours
(Table 1). Cells could be successfully propagated under
culture conditions used for bone marrow-derived MSC
[20]. TStrC were plastic-adherent and displayed a homo-
genous morphology of a MSC-like triangular shape. All
tumour stromal cell cultures homogenously showed cell
surface expression of CD73, CD90 and CD105 as well as
HLA-ABC in flow cytometric analyses. The cells were
negative for the surface expression of CD34, CD45 and
HLA-DR (Figure 3; n = 11). However, a four day culture
of TStrC in the presence of 200 U/ml gamma-interferon
(IEN-vy) resulted in an upregulation HLA-DR on the cell
surface, suggesting that TStrC may acquire properties of
antigen-presenting cells when migrating to sites of
chronic inflammation such as tumours.

To determine whether the isolated tumour stroma
retains not only their phenotypic features of MSC but
also their plasticity, we performed differentiation assays
toward the osteogenic and adipogenic lineage. MSC
were used as positive control. All tumour stroma pre-
parations displayed vigorous osteogenic differentiation
potential, verified by Alizarin Red Staining. However,
only few cells responded to adipogenic induction (Figure
4 n = 11).
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Figure 1 TStrC-mediated suppression of cytotoxic activity of NK cells. a) NK cells activated with 100 IU/ml IL-2 displayed a reduced
cytotoxicity against K562 (p < 0,05) at NK cell to K562 ratios of 20:1, 10:1 and 5:1, when the NK cells were cocultured for four days with the
TStrC (grey bars) in presence of 100 IU/ml IL-2 prior to the cytotoxicity assay; for control, NK cells were cultured alone in the presence of

100 1U/ml IL-2 for four days (black bars). (n = 5). b) NK cells displayed low cytotoxicity against TStrC themselves after stimulation with 100 1U/ml
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Figure 2 TStrC modulate immunophenotype of NK cells. Phenotyping of NK cells cocultured with TStrC for four days in the presence of 100
U/ml IL-2. For control IL-2 stimulated NK cells were cultured without TStrC for four days. The cocultured NK cells displayed a significantly
reduced expression of the activating receptors NKp44 and NKp46 (p < 0,01), as well as CD56 (p < 0,05). Remarkably, the expression of the

activation marker CD69 and of the inhibitory receptor NKG2A remained unaffected (n = 3).
- J
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Figure 3 Immunophenotype of TStrC. TStrC displayed a MSC-like
cell surface marker profile with negativity for markers of the
hematopoietic system (CD34, CD45). CD56 - as a surface molecule
expressed on most paediatric tumour cells - was negative in any
case. All cell cultures were positive for the MSC markers CD73,
CD90, CD105 (Fig. 3a). Dashed line: isotype control; bold line:
antibody as indicated. Fig. 3b shows that a dim surface expression
of HLA-DR could be found after a four day incubation period with
200 U/ml IFN-y, which is present in most tumour environments
(bold line TStrC in the presence of exogenous IFN-y, dashed line
control). The representative analysis was taken from tumour sample
number 3.
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Anti-proliferative impact of tumour stroma cells on
immune effector cells

One important functional property of MSC is their anti-
proliferative impact on effector cells of the immune sys-
tem. In order to test, whether TStrC influence the effec-
tor cells similarly, HLA mismatched PBMC were
isolated from healthy donors, labelled with CFSE and
cocultured with TStrC. For all TStrC cultures examined,
proliferation of PBMC was strongly inhibited in a TStrC
dose-dependent manner (Figure 5a). The inhibition by
TStrC was quantitatively comparable to the anti-prolif-
erative effect exerted by MSC.

The tumour-microenvironment is an area of low oxy-
gen tensions [22]. To determine whether the anti-prolif-
erative impact of TStrC is maintained under hypoxic
conditions and may thus contribute to paralysing
tumour infiltrating immune cells, the coculture experi-
ments were also performed under 1% oxygen tension.
As shown in Figure 5b, the anti-proliferative effect was
not abrogated under those conditions, although the inhi-
bition was less potent than under normoxia.

In neuroblastoma and other paediatric tumours with
low surface HLA expression, NK cells may play a major
role in tumour control by the immune system. There-
fore, we focused on NK cell proliferation and found that
TStrC strongly inhibit NK cell proliferation as well
(Figure 5c¢).

Exposition to tumour-stromal cells impairs NK cell
cytotoxicity

As cell proliferation in the immune system is only a sur-
rogate marker for functional properties, we next ana-
lyzed the cytotoxicity of NK cells. After four days of
coculture with TStrC at a ratio of 4:1 (NK cells :
TStrC), NK cells were removed, counted and used in
cytotoxicity tests against a standard target cell line
(K562). NK cells displayed a significantly reduced cyto-
toxicity (Figure la) at E/T ratios of 20:1, 10:1 and 5:1.
In order to exclude that the reduced cytotoxic capabil-
ities of cocultured NK cells were due to exhaustion of
the effector cells after killing of TStrC during the condi-
tioning period, we analyzed the cytotoxicity of NK cells
against TStrC as well. There was only a low cytotoxicity
of NK cells against TStrC themselves (Figure 1b). This
effect did not lead to an exhaustion of NK cells.

Tumour stroma alters NK cell receptor expression
patterns

To determine, whether the observed decrease in cyto-
toxicity was caused by an altered expression pattern of
activating receptors on the cell surface, NK cells from
coculture experiments and their respective control were
analyzed for the expression of NKp44, NKp46 (natural
cytotoxicity receptors), CD56, CD69 and NKG2A by
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Figure 4 Morphology and plasticity of TStrC. a) TStrC, isolated from paediatric tumours, displayed an MSC-like, triangular morphology. b) - g)
show differentiation assays toward the adipogenic (b, d, f) and toward the osteogenic (c, e, g) line. Fig. 4b+c: Osteosarcoma TStrC; Fig. 4d+e:
Neuroblastoma TStrC; Fig. 4f+g: MSC (control). Osteogenic induction was successful in all 11 TStrC-preparations. However, adipogenic induction
yielded poor or no differentiation of TStrC into adipocytes. Representative pictures for each source of stromal cells are shown.

flow cytometry. Interestingly, IL-2 induced upregulation
of the natural cytotoxicity receptors NKp44 and NKp46
was strongly inhibited (p < 0.01) in the presence of
TStrC, which may contribute to the decrease in cyto-
toxicity against K562 (Figure 2). A similar difference was
seen in the expression level of CD56, which was reduced
after coculture with the tumour stroma. Consistent with
the previous results that TStrC render NK cells in an
inactive state, the expression levels of the inhibitory
receptor NKG2A did not show any difference compared
to its respective control. Similarly, the activation marker

CD69 was not upregulated, when adding TStrC to the
NK cells supporting the notion that the coculture period
did not lead to an activation of the cells against the
stroma. Taken together, TStrC share several biological
features with MSC and may contribute to immune
escape strategies, e. g. by interfering with NK cell
activation.

Discussion
The impact of tumour stroma and other components of
the tumour microenvironment on the prognosis is well



Johann et al. BMC Cancer 2010, 10:501
http://www.biomedcentral.com/1471-2407/10/501

10001 _T
_ * k.
S
-
(=2}
k) -
=~ 100
L
=

. ]
TStrC| - | + - | +

CD56 NKp46 | NKp44 | NKG2A

Figure 5 Anti-proliferative effects of TStrC. a) CFSE assay to
measure the anti-proliferative properties of TStrC. PBMC were
stimulated with IL-2 (100 1U/ml) and OKT3 (1 pg/ml). Black bars
show the proliferation of PBMC in presence of TStrC, grey bars
indicate the proliferation of PBMC in presence of MSC. For each
TStrC, a dose dependent inhibition of proliferation was seen (n =
10). b) To mimick the hypoxic tumour-microenvironment, PBMC
proliferation assays in presence of TStrC were also conducted under
low-oxygen tension (1%). The inhibitory effect of TStrC was
maintained under hypoxic conditions (n = 4). ¢) The anti-
proliferative property of TStrC also affected NK cells of different HLA
mismatched donors (n = 3). NK cells were isolated using CD56*
magnetic beads and stimulated with 100 IU/ml IL-2.

established, e. g. Finak et al. have developed a prognostic
score based on the cytogenetic profile of breast cancer
stroma [23]. Although the last years have seen a surge
in publications highlighting the immunological impact
of tumour-microenvironment, additional studies focus-
ing on functional aspects of native human TStrC are
sparse [24-26]. In particular the role of TStrC in paedia-
tric neoplasias has not been adressed in current litera-
ture. Several source tissues of TStrC have been
identified: On the one hand epithelial and endothelial to
mesenchymal transition are a major source of stromal
cells and on the other hand recruitment of bone mar-
row-derived MSC into the tumour has been suggested
as an origin of TStrC [7,8,25].

In the present study, we demonstrated that isolation of
TStrC from paediatric tumours is feasible and that cells
can be propagated under standard conditions. Our
results indicate that TStrC represent a population simi-
lar to bone-marrow derived MSC. Presence of typical
MSC markers as well as some overlap in plasticity sug-
gest that human TStrC are related to, but not identical
with MSC. Comparative analyses of MSC and TStrC are
sparse. However, Zhao et al. have shown that stromal
cells derived from prostate cancer express high levels of
CD90, but differ in their gene expression pattern from
MSC [27].
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MSC have been ascribed potent immunomodulatory
effects on various cell populations of the immune sys-
tem. These in vitro findings account for the beneficial
effects of MSC in aggressive, immunological processes
such as GvHD [28]. Based on the similarities between
MSC and TStrC, we asked if there is a direct contribu-
tion of TStrC towards a potential immunosuppressive
effect of human tumour stroma. This aspect is of critical
importance as there are numerous immunotherapeutic
approaches currently being implemented in oncological
therapy. The presence of immunosuppressive cells may
interfere with successful immune surveillance. In ana-
logy to MSC, we found TStrC to exert an anti-prolifera-
tive effect on PBMC of healthy donors. This in vitro
model correlates with the observation that in vivo
immune cells can be found predominantly in contact to
stromal cells within solid tumours without mounting a
protective immune response [3]. Thus, recruitment of
stromal cells in large numbers such as in pancreatic
adenocarcinoma, where TStrC often make up as much
as 90% of the total tumour volume, may be part of an
immune escape strategy [29].

In our experiments we have shown that TStrC do not
only affect the proliferative capacity of immune cells,
but also their function. NK cells, which are known to be
potent protagonists of the innate tumour defence, dis-
play a reduced cytotoxicity after coculture with TStrC.
Further analyses revealed that the compromised cytoly-
tic function may be due to downregulation of the acti-
vating receptors NKp44 and NKp46, which have been
reported to increase the anti-tumour cytotoxicity of NK
cells [30,31]. In line with these findings, NK cells
derived from native lung tumours have been shown to
display an altered receptor expression compared to NK
cells from the peripheral blood [3]. Similar observations
were also made for renal cell carcinomas [32]. These
different tumour models indicate that the tumour
microenvironment may compromise the immune reac-
tion to promote cancer development [33,34]. Anatomi-
cally, TStrC are located adjacent to blood vessels and
establish contact with immune effector cells directly
upon extravasation of the latter. Our data indicate that
TStrC of paediatric tumours inhibit tumour-infiltrating
immune effector cells. More specifically, altered NK cell
receptor expression may be due to the tumour stroma
rather than the tumour cells themselves.

A recent study on NK cell receptor expression after
coculture with bone marrow-derived MSC parallels our
findings for TStrC [14,15]. Hence, the two populations of
TStrC and MSC not only share several phenotypic fea-
tures, but may influence effector cell populations such as
NK cells in a similar way. The issue in how far immuno-
modulatory effects of MSC are specific has recently been
addressed by Haniffa et al., who have argued that
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fibroblasts from skin or synovial fluid display anti-prolif-
erative effects on T cells [35]. By contrast, others could
not find an impact on immune cell proliferation by dif-
ferent stromal fibroblasts in coculture experiments [11].

Beyond the anti-proliferative effects of tumour stromal
cells on PBMC, the impact of the complex tumour micro-
environment on effector cell functions is well established
in the literature [7,36-38]. The excessive recruitment of
stromal cells to tumours and the resulting functional
impairment of invading immune cells may thus be part of
an immune escape strategy of paediatric tumours. Adding
to these in vitro findings, immune effector cells have been
found predominantly in the stromal compartment of
tumours [3]. These cells are dysfunctional and may not
reach the tumour cells themselves.

Conclusions

Our experiments reveal a crucial role of TStrC derived
from paediatric cancers in impeding immune cell func-
tions. Taken together, the tumour stroma represents an
important target for successful immunotherapeutic
approaches in the clinic.
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