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CYP1A1 gene polymorphisms increase lung
cancer risk in a high-incidence region of Spain: a
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Abstract

Background: A rural region in south-west Spain has one of the highest lung cancer incidence rates of the country,
as revealed by a previous epidemiological 10-year follow-up study. The present work was undertaken to ascertain
the role of CYP1A1 gene polymorphisms and their interaction with tobacco smoking in the development of the
disease in this location.

Methods: One-hundred-and-three cases of lung cancer and 265 controls participated in the study. The participants
were screened for the presence of four CYP1A1 polymorphisms, namely MspI, Ile462Val, T3205C, and Thr461Asn.
Lung cancer risk was estimated as odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic
regression models adjusting for age, sex, and smoking.

Results: The distribution of the variant CYP1A1 alleles was different from that described for other Caucasian
populations, with CYP1A1*2A showing an uncommonly high frequency (p < 0.01). The CYP1A1*2B allele (carrying
MspI and Ile462Val mutations) was strongly associated with high lung cancer risk (OR = 4.59, CI:1.4-12.6, p <0.01).
The Ile462Val polymorphism was also shown to increase the risk for the disease (OR = 4.51, CI:1.8-11.9; p <0.01)
and particularly for squamous-cell (OR = 5.01; CI: 1.6-14.3, p < 0.01) and small-cell lung carcinoma (SCLC) (OR =
6.97, CI: 1.2-81.3; p = 0.04). Moreover, the Thr461Asn polymorphism was found to be associated with SCLC in a
Caucasian population for the first time to our knowledge (OR = 8.33, CI: 1.3-15.2, p = 0.04).

Conclusion: The results suggest that CYP1A1 polymorphisms contribute to increase lung cancer susceptibility in an
area with an uncommon high incidence rate.

Background
In the late eighties, a group of oncologists working at
the Merida hospital, which is located in an agricultural
region situated in south-west Spain, started to notice
the unusually high number of lung cancer patients being
diagnosed. This prompted the creation of a local lung
cancer registry in accordance with the guidelines issued
by the International Agency for Research on Cancer
(IARC) and the International Association of Cancer
Registries (IACR). Quite shockingly, in a 10-year follow-
up this registry revealed one of the highest standardized

incidence rates of male lung cancer in Spain (58 cases
per 100 000 inhabitants in the 1986-1990 period, Caba-
nillas et al., unpublished observations). This figure,
which has remained high over the years that followed
[1], is much higher than the Spanish mean (43 cases/
100 000 inhabitants in the same period) and similar to
that of heavily industrialized and mining areas of north-
ern Spain.
Tobacco smoking has long been established as a risk

factor for lung cancer, even though fewer than 20% of
smokers develop the disease. Tobacco smoke contains
several carcinogens including polycyclic aromatic hydro-
carbons (PAHs), N-nitrosamines, and heterocyclic
amines [2], which undergo biotransformation via a num-
ber of metabolic routes. Cytochrome P450 (CYP)
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isozymes activate these environmental pollutants to yield
highly reactive substances that bind to DNA, forming
adducts involved in the initiation of carcinogenesis [3,4].
Within the CYP system, CYP1A1 plays a major role as a
carcinogen activating enzyme. Unlike most CYP
enzymes, CYP1A1 is mainly expressed in extrahepatic
tissues, including the lung, where it metabolizes and is
markedly induced by PAHs [5,6]. Elevated CYP1A1
inducibility is associated with pulmonary PAH-related
DNA adduction [7] and high lung cancer risk [8,9].
Both the formation of these PAH-DNA adducts and
CYP1A1 expression in human lung tissue are highly
variable [10-13], possibly due to differing exposure to
environmental factors and to genetic polymorphisms
affecting the CYP1A1 gene locus.
A number of CYP1A1 allele variants have been asso-

ciated with a higher inducibility and/or activity of the
enzyme, and hence higher pulmonary PAH-related DNA
adduction [7]. The first variant allele identified was
CYP1A1*2A (also known as MspI or m1 polymorphism)
and is found in 5% of Caucasians [14]. CYP1A1*2C
(Ile462Val or m2 polymorphism) is rare in Caucasians
and is mostly detected in linkage disequilibrium with
CYP1A1*2A [15]. The combination of both variants is
referred to as CYP1A1*2B (for a complete list of
CYP1A1 variant alleles see http://www.cypalleles.ki.se/
cyp1a1.htm). CYP1A1*3, consisting of a T3205C base
change (m3), also seems to confer enhanced enzyme
activity, although it is extremely uncommon in Cauca-
sians [14]. Finally, CYP1A1*4, a Thr461Asn (m4)amino
acid change that is detected in Caucasians with a fre-
quency of roughly 3%, has also been related to greater
enzyme catalytic efficiency [16].
These CYP1A1 polymorphisms have been extensively

studied with regard to lung cancer risk. However,
whereas some studies report increased risk in the pre-
sence of some of the mutations [17-21], there are many
other contradictory results and ethnic differences
[22-25], which has led to the perception that the find-
ings have been inconsistent [22].
The goal of the present study was therefore to deter-

mine whether CYP1A1 polymorphisms and their inter-
action with smoking may play a role in the
aforementioned extraordinarily elevated lung cancer
incidence in our population.

Methods
Study design
We conducted a case-control study in the health district
of Merida (Spain), which gives health coverage to a
population of 156 000, in order to establish whether
CYP1A1 polymorphisms may contribute to the elevated
prevalence of lung cancer in the region. Cases were
Caucasian patients first diagnosed with lung cancer at

the Merida hospital. This hospital is the only referral
cancer health centre for the region, and thus all cancer
disease diagnoses and patient follow-up are carried out
in this hospital. The diagnosis was based on histological
analyses of endoscopic biopsies and/or surgical resection
specimens. The patients were selected by non-probabil-
ity consecutive sampling with no restrictions for age,
sex, or tumour grade (Eastern Cooperative Oncology
Group, ECOG). Information on tumour extension, grade
and histological type was extracted from clinical records
and the files of the Merida Hospital Pathological Anat-
omy Service. Controls were cancer-free individuals
admitted to the Hospital Trauma Service and matched
to the cases by sex and age (± 5 years). All the partici-
pants were interviewed by trained Hospital personnel to
collect data on anthropometric characteristics, family
history and details of smoking habits.
Each subject was aware of the purpose of the study,

and gave oral and written informed consent for partici-
pation. The study was approved by the Ethics Commit-
tee of the University of Extremadura (Badajoz, Spain)
and was conducted in accordance with the Declaration
of Helsinki and its subsequent revisions

Genotyping
Blood samples were drawn from all participants and
immediately stored at -80°C until genotype analysis.
Genomic DNA was isolated from peripheral blood leu-
kocytes in 2-ml aliquots of the whole-blood sample with
a Qiagen blood midi kit (Qiagen Inc., Chatsworth, CA).
The MspI polymorphism was detected by PCR ampli-

fication followed by digestion with MspI restriction
enzyme as described by Cascorbi et al [26]. In order to
identify the Ile462Val and Thr461Asn mutations, a sin-
gle PCR amplicon was digested with BsrDI or BsaI
restriction enzymes, respectively [26]. Finally, the
T3205C polymorphism was detected following the
method reported by Hayashi and co-workers [27].
Previously sequenced samples were used as negative and

positive controls to rule out possible genotyping errors.
Likewise, the analysis all mutant homozygous samples and
20% of heterozygotes was duplicated and confirmed by
direct sequencing with 100% concordance (ABI3700 DNA
Analyzer; Perkin-Elmer/Applied Biosystems).

Statistical analyses
Power analysis retrieved a sample size of 94 cases and
94 patients necessary to detect an OR of 4 with a dou-
ble-tale significant level of a = 0.05 and c2 = 0.80,
assuming a global prevalence of heterozygotes for the
CYP1A1*2B and CYP1A1*2A alleles of 6.4% and 10.5%
respectively in Caucasian population [14].
Hardy-Weinberg equilibrium was tested for the differ-

ent CYP1A1 genotype frequencies in controls using
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Pearson’s chi-squared test with one degree of freedom.
In order to estimate the association between CYP1A1
variant alleles and lung cancer risk, a stepwise condi-
tional multiple logistic regression analysis was per-
formed with enrolled threshold a ≤ 0.20 and excluded
threshold a ≥ 0.05. The odds ratios (OR) with 95% con-
fidence intervals (CI) were thus calculated for each sig-
nificant risk factor. The models were adjusted for age,
sex, and cumulative tobacco consumption unless stated
otherwise. To avoid collinearity in the regression analy-
sis of the risk, and to enhance the statistical power of
the study, participants were divided into 4 genotype
groups according to the mutations carried. Group 1
consisted of the homozygous wild-type subjects
(CYP1A1*1/*1 genotype), Group 2 of subjects with the
MspI polymorphism (CYP1A1*1/*2A genotype), Group 3
of subjects with the Ile462Val mutation (CYP1A1*1/*2B,
CYP1A1*3/*2B, and CYP1A1*1/*2C genotypes), and
Group 4 of subjects with the Thr461Asn polymorphism
(CYP1A1*1/*4, CYP1A1*4/*4, and CYP1A1*2A/*4 geno-
types). The CYP1A1*1/*3 genotype was present in only
one case and two controls, and hence was eliminated
from the statistical analysis.
Cumulative tobacco consumption was quantified in

pack-years (defined as the number of packs of 20 cigar-
ettes smoked per day multiplied by the number of years
of smoking). The median of pack-years (50) was used as
cut-point for the stratification analysis. Subjects with a
pack-years value above 50 were considered heavy smo-
kers, subjects with values less than or equal to 50 mod-
erate smokers, and subjects with values less than 0.2
pack-years or who had never smoked were considered
non-smokers. Finally, subjects who had quit smoking
more than a year before the diagnosis (cases) or inter-
vention (controls) were regarded as previous smokers.
Quantitative variables such as age and cumulative

tobacco consumption (pack-years) were compared by
Student’s t-test. The chi-squared or Fisher’s exact tests
were used to compare categorical variables between
cases and controls (sex, smoking status, family history of
tumours, and allele and genotype frequencies).
Statistical analyses were conducted using the SPSS

software package version 9.0 for Windows (SPSS Chi-
cago, IL) and Statistical Analysis System version 9.1.3
(SAS Institute). In all instances, results were considered
significant at the two-sided p < 0.05 level.

Results
In the period of study, 427 subjects (115 cases and 312
controls) fulfilled the inclusion criteria. Fifty-nine of
them rejected participating in the study, therefore a
total of 368 individuals (103 cases and 265 controls)
were finally included. Mean age was 2.1 years lower in
control subjects (66.0 ± 10.7 vs 63.9 ± 12.9; p = 0.019),

whereas the percentage of men was similar between
both study groups (95.1% vs 95.9%; p = 1).
Table 1 shows that the proportion of current and

heavy smokers and the number of pack-years was signif-
icantly higher among cases (p < 0.001). In addition,
patients who were former smokers had quit smoking
more recently than controls (11.3 ± 9.6 vs 17.2 ± 12.1
years, p = 0.03). Lastly, a history of first-degree family
cancer was also reported more frequently among cases
(p < 0.001, Table 1).
With regard to the genotype analysis, the frequencies

of the 4 mutations in the control group (9.9%, 1.1%,
0.5%, and 3.9% for MspI, Ile462Val, T3205C, and
Thr461Asn, respectively) were similar to those pre-
viously described in Caucasians [26]. However, the dis-
tribution of the variant alleles was different. In the
control group, CYP1A1*2A had a frequency that was
uncommonly high for Caucasians (8.5%, p < 0.01 vs
other Caucasian populations [14,26]). In contrast,
CYP1A1*2B and CYP1A1*2C alleles were under-repre-
sented although the difference did not reach statistical
significance.
The analysis of differences between cases and controls

showed the CYP1A1*2B allele to be associated with
increased lung cancer risk (OR = 4.59; CI: 1.4-12.6,
p < 0.01, Table 2).
Nine different CYP1A1 genotypes were detected in the

study population (Table 3). Their frequencies were con-
sistent with Hardy-Weinberg equilibrium in the control

Table 1 Characteristics of the 103 lung cancer patients
and 265 controls.

Cases, N (%) Controls, N p value

Smoking status < 0.001 ξ

Never 6 (5.8) 69 (26.1)

Former 36 (34.9) 128 (48.2)

Current 61 (59.2) 68 (25.7)

Pack-years (PY) 61.2 ± 28.5 29.9 ± 21.4 < 0.001 ‡

Current and Former Smoking < 0.001 ξ

Moderate (≤50 PY) 30 (29.1) 137 (51.8)

Heavy (>50 PY) 67 (65) 59 (22.1)

Family history of tumours < 0.001 ξ

Yes 47 (45.6) 66 (24.9)

No 56 (54.4) 199 (75.1)

Histological tumour type

Squamous cell carcinoma 49 (47.6)

Large cell carcinoma 23 (22.3)

Adenocarcinoma 16 (15.5)

Small cell carcinoma 15 (14.6)

* Plus-minus values are means ± standard deviation. Because of rounding,
percentages may not total 100.
‡ Student’s t test.
ξ Pearson’s c2 analysis.
gFirst-degree family.
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group (c2= 0.58, p = 0.91). A total of 189 (71.3%) con-
trols and 68 (66.0%) cases were carriers of the homozy-
gous wild-type genotype. The two commonest variant
genotypes were CYP1A1*1/*2A and CYP1A1 *1/*2B, the
latter being four times more frequent in cases (10.7%)
than in controls (2.6%, p < 0.01, Table 3). There were
no subjects who were homozygous for the CYP1A1*2A,
*2B, or *3 alleles, and only 1 case and 1 control carried
the CYP1A1*4/*4 genotype.
After adjusting for age, sex, and smoking, those sub-

jects harbouring the Ile462Val mutation (*2B/*1, *2B/*3
and *2C/*1 genotypes) were at higher lung cancer risk,
whether considering all cases combined (OR = 4.51, CI:
1.8-11.9; p < 0.01), or the small-cell lung carcinoma
(SCLC) (OR = 6.97, CI: 1.2-81.3; p = 0.04), and squa-
mous-cell carcinoma subgroups (OR = 5.01, CI: 1.6-
14.3; p < 0.01) (Table 4). Finally, subjects carrying the
Thr461Asn polymorphism (CYP1A1*4 allele) were also
associated with a higher risk of SCLC (OR = 8.33, CI:
1.1-15.2, p = 0.04) (Table 4).
After stratification of the population according to

cumulative tobacco dose (non-smokers, moderate smo-
kers, and heavy smokers), none of the 4 different

genotype groups analyzed was significantly associated to
higher lung cancer risk. In moderate smokers the
observed OR (CI) were 0.61 (0.03-2.0), 3.98 (0.3-43.8)
and 1.11 (0.1-8.0) for subjects carrying the MspI, Ile462-
Val and Thr461Asn polymorphisms, respectively. With
regard to heavy smokers, OR (CI) values for the same
genotype groups were 1.08 (0.1-7.5), 3.12 (0.4-24.9) and
2.5 (0.2-19.7), respectively. The low number of non-
smokers did not allow performing risk analyses for any
of the genotype groups.

Discussion
This study was designed to determine whether genetic
polymorphisms in the CYP1A1 gene, an activator of car-
cinogens present in tobacco smoke, could play a role in
the extremely high lung cancer incidence rate observed
in a rural region of Southern Spain.
Results show that the pattern of combinations of

mutations yielding the different CYP1A1 variant alleles
in the present study differs from that reported for Cau-
casians. Several Spanish populations have been shown in
the past particularities regarding the presence of poly-
morphisms in other CYP enzymes [28,29]. The reason
seems to be the occurrence of gene flow from North
Africa across the Strait of Gibraltar that has caused
greater intermingling of gene pools than in most Eur-
opean-derived populations [30,31]. Thus, the
CYP1A1*2A mutant allele frequency in our population
was significantly greater than that observed in 2 pre-
vious large-scale studies with Caucasians [14,26]. It is
noteworthy that CYP1A1*2A is far commoner in Afri-
cans, in whom its frequency is over 20% [14], so that
the aforementioned gene flow could be behind the high
frequency observed in our population. Furthermore, the
CYP1A1*2B and CYP1A1*2C frequencies in the controls
were lower than those reported for Caucasians (although
the differences did not reach statistical significance), but
mirrored those observed in Africans [14].
We then tried to determine whether these particulari-

ties regarding the presence of CYP1A1 variants were
translated into different susceptibilities to lung cancer in
our population. Most notably, subjects carrying the
462Val variant accounted for 12.7% of cases but only 3%
of controls. This polymorphism has consistently been
associated with lung cancer risk in Asian subjects
[32,33], while results in Caucasians have been more vari-
able [19-21,23,25,34]. The reason for the controversy in
the literature seems to be smoking, since the mutation
is believed to be important among light- and non-smo-
kers but not among heavy-smokers [19,20,23,35].
A limitation of the present study was the low number

of nonsmokers found among patients, which, for
instance, precluded a full assessment of the aforemen-
tioned interaction between smoking and the Ile462Val

Table 2 Distribution of CYP1A1 alleles in cases and
controls.

Allele Controls, N (%) Cases, N (%) OR (CI) p value

CYP1A1*1 452 (85.3) 168 (81.6) 1.0 (Ref.)

CYP1A1*2A 45 (8.5) 11 (5.3) 0.62 (0.3-1.2) 0.20

CYP1A1*2B 7 (1.3) 12 (5.8) 4.59 (1.4-12.6) < 0.01

CYP1A1*2C 1 (0.2) 1 (0.5) Nc

CYP1A1*3 2 (0.4) 2 (1) Nc

CYP1A1*4 23 (4.3) 12 (5.8) 1.32 (0.7-2.9) 0.29

N: Number of alleles

OR (CI): Odds ratio with 95% confidence interval

nc: Non-calculable

Table 3 CYP1A1 genotype frequencies observed.

Controls Cases

CYP1A1 genotype N (%) CI N (%) CI ξ p

*1/*1 189 (71.3) 65.5-76.7 68 (66.0) 55.9-75.1 0.371

*1/*2A 44 (16.6) 12.3-21.7 10 (9.7) 2.6-8.7 0.102

*1/*2B 7 (2.6) 1.1-5.4 11 (10.7) 2.7-9.4 < 0.01

*1/*2C 1 (0.4) 0-2.1 1 (1.0) 0-5.3 nc

*1/*3 2 (0.7) 0.1-2.7 1 (1.0) 0-5.3 nc

*1/*4 20 (7.6) - 9 (8.7) 4.1-15.9 0.829

*2A/*4 1 (0.4) 0-2.1 1 (1.0) 0-5.3 nc

*2B/*3 0 (0) - 1 (1.0) 0.5.3 nc

*4/*4 1 (0.4) 0-2.1 1 (1.0) 0.5.3 nc

Total 265 103

Because of rounding, percentages may not total 100.

N: Number of subjects

nc: non-calculable
ξ Pearson’s c2 analysis

San Jose et al. BMC Cancer 2010, 10:463
http://www.biomedcentral.com/1471-2407/10/463

Page 4 of 7



polymorphism. In addition, smoking is commonplace in
our rural population, which made the median of pack-
years used to stratify the subjects into moderate and
heavy smokers extremely high (50). In comparison, the
median in a similar Swedish study was 21 [25]. Thus,
the vast majority of participants in the study were smo-
kers who had been exposed to high amounts of tobacco
smoke throughout their lifetimes. The lack of patients
with low exposure to tobacco smoke in our region was
probably also the reason why none of the 4 genotype
groups assessed showed significant ORs after stratifica-
tion by cumulative tobacco dose.
In the present study, there was a particularly marked

impact of the 462Val mutation on the susceptibility to
SCLC, showing a significant OR of 6.97. This is coher-
ent with another case-control study that analyzed the
association of the Ile462Val polymorphism with several
lung cancer histological types, and found a slightly
higher OR (9.35) for SCLC [35]. Other reports, however,
indicate that the risk is higher for squamous-cell carci-
noma [19] (an association that was also observed in our
study) or non-small cell carcinomas [36]. It is of note,
however, that none of the two latter studies included
SCLC cases among the participants.

Another important finding of the present study was the
positive association of the Thr461Asn polymorphism
(CYP1A1*4 allele) with SCLC risk, since this variant was 3
times more frequent among these patients than in the
control group (OR = 8.33). This is the first time to our
knowledge that this allele has been related to high lung
cancer risk in a Caucasian population, since similar results
have only been observed in Indians [37], African-Ameri-
cans [38] or Hispanics [39]. In Caucasians, Vineis et al.
recently detected a positive allele-disease association, but
only where the variant occurred in combination with a
number of other CYP1A1 and GST polymorphisms [21].
Unlike our findings for the Ile462Val and Thr461Asn

polymorphisms, the results showed no association of the
MspI polymorphism (CYP1A1*2A allele) with lung can-
cer, which is consistent with earlier reports in Cauca-
sians [40-42]. Recent studies have found that an
increased risk may occur only in subjects homozygous
for the variant [20,43]. However, there were no
CYP1A1*2A homozygous carriers in our study popula-
tion, and therefore we cannot rule out a significant role
of this variant allele in the development of the disease
in our area until larger studies including homozygous
individuals are conducted.

Table 4 Odds ratios (OR)* and 95% confidence intervals (CI) for lung cancer risk according to CYP1A1 genotype
groups and stratification by histological types.

*1/*1 *1/*2a *1/2B
*2B/*3
*1/*2C

*1/*4
*4/*4
*2A/*4

Controls, N (%) 189 (71.9) 44 (16.7) 8 (3.0) 22 (8.4)

All cases, N (%) 68 (66.7) 10 (9.8) 13 (12.7) 11 (10.8)

OR (CI) 1.0 0.51 (0.3-1.2) 4.51 (1.8-11.9) 1.29 (0.6-2.9)

p 0.18 < 0.01 0.29

Squamous-cell, N (%) 35 (71.4) 5 (10.2) 7 (14.3) 2 (4.1)

OR (CI) 1.0 0.51 (0.2-1.6) 5.01 (1.6-14.3) 0.49 (0.1-2.4)

p 0.37 < 0.01 0.40

Adenocarcinoma, N (%) 10 (66.7) 1 (6.7) 2 (13.3) 2 (13.3)

OR (CI) 1.0 0.41 (0.04-2.91)) 4.71 (0.8-27.3) 1.62 (0.3-7.7)

p 0.51 0.10 0.65

SCLC, N (%) 9 (60) - 2 (13.3) 4 (26.7)

OR (CI) 1.0 nc 6.97 (1.2-81.3) 8.33 (1.1-15.2)

p nc 0.04 0.04

LCLC, N (%) 14 (60.9) 4 (17.4) 2 (8.7) 3 (13)

OR (CI) 1.0 1.01 (0.3-3.1) 2.7 (0.5-14.6) 1.68 (0.4-5.2)

p 1 0.24 0.75

*ORs were adjusted for age, sex, and smoking (non/moderate/heavy), taking the CYP1A1*1/*1 genotype as reference. Genotype groups were generated as
described in the Methods section.

SCLC: Small-cell lung carcinoma.

LCLC: Large-cell lung carcinoma.

nc: non-calculable.
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The main limitation of the study was the sample size,
as it made some subgroups too small to conduct any
statistical analysis. It also led to high upper limits of the
95% confidence intervals in the OR calculations. On the
other hand, it is of note that the hospital in which the
present study was carried out is the only cancer referral
centre in this high-incidence region. Therefore, that
allowed us to have access to all lung cancer patients, as
there were no more patients from this area than those
diagnosed and treated at this facility.

Conclusions
In summary, the results of this initial study show that 2
polymorphisms occurring at the CYP1A1 gene locus
(Ile462Val and Thr461Val) increase the risk to lung can-
cer in our population, and especially to SCLC. Moreover,
we have shown for the first time that Thr461Val
(CYP1A1*4) may be by itself a lung cancer risk factor in
Caucasians. However, there must be other factors besides
these polymorphisms, smoking, and the impact of a
family history of tumours contributing to maintaining
the observed uncommonly high lung cancer incidence. A
plausible hypothesis that would seem to merit additional
study might be the influence of the massive use of pesti-
cides due to intensive agriculture, which is the main eco-
nomic activity in this area. Other factors, such as dietary
habits in the region and their interaction with other
genetic polymorphisms have recently been identified as
well [44]. Further studies are necessary to fully ascertain
the role of gene polymorphisms in high-incidence areas
such as that described in the present work.
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