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Abstract
Background: Epigallocatechin-3-gallate (EGCG), one of the major catechins in green tea, is a potential 
chemopreventive agent for various cancers. The aim of this study was to examine the effect of EGCG on the expression 
of heat shock proteins (HSPs) and tumor suppression.

Methods: Cell colony formation was evaluated by a soft agar assay. Transcriptional activity of HSP70 and HSP90 was 
determined by luciferase reporter assay. An EGCG-HSPs complex was prepared using EGCG attached to the cyanogen 
bromide (CNBr)-activated Sepharose 4B. In vivo effect of EGCG on tumor growth was examined in a xenograft model.

Results: Treatment with EGCG decreased cell proliferation and colony formation of MCF-7 human breast cancer cells. 
EGCG specifically inhibited the expression of HSP70 and HSP90 by inhibiting the promoter activity of HSP70 and 
HSP90. Pretreatment with EGCG increased the stress sensitivity of MCF-7 cells upon heat shock (44°C for 1 h) or 
oxidative stress (H2O2, 500 μM for 24 h). Moreover, treatment with EGCG (10 mg/kg) in a xenograft model resulted in 
delayed tumor incidence and reduced tumor size, as well as the inhibition of HSP70 and HSP90 expression.

Conclusions: Overall, these findings demonstrate that HSP70 and HSP90 are potent molecular targets of EGCG and 
suggest EGCG as a drug candidate for the treatment of human cancer.

Background
Epigallocatechin-3-gallate (EGCG), one of the most
abundant polyphenols in green tea, inhibits cell prolifera-
tion and induces apoptosis in a variety of human cancer
cells [1-3]. Previous studies have suggested that EGCG
produces anti-cancer effect by modulating the activity of
mitogen-activated protein kinases (MAPKs), IGF/IGF-1
receptor, Akt, NF-κB, and CDKs [4-7]. EGCG also has
other effects such as the inhibition of growth factor
receptor, proteasome inhibition, mitochondrial depolar-
ization, and the inhibition of fatty acid synthase [8-11].
Some studies have demonstrated that EGCG can inhibit
the transcriptional activity of aryl hydrocarbon receptor
(AhR) through the mechanism that involves direct bind-
ing of EGCG to the C-terminal region of heat shock pro-
tein 90 (HSP90) [12]. EGCG also modifies the association
of HSP90 with several co-chaperones such as p23 and

Hsc70, and functionally inhibits Glucose-regulated pro-
tein 78 (Grp78), a member of HSP70 family, by compet-
ing with ATP for binding to Grp78's active site [13,14].
Recent studies have implicated EGCG in the inhibition of
estrogen receptor alpha (ERα), multidrug resistance pro-
tein 1 (MDR1), and telomerase in human breast cancer
cells and drug-resistant breast cancer cells, leading to the
suppression of cell viability and induction of apoptosis
[15-17]. However, the mechanisms and signaling path-
ways underlying the potential anti-cancer effects of
EGCG in breast cancer cells remain unclear.

Stress response upon variety of physiological and envi-
ronmental stimulus including hypoxia, radiotherapy, and
chemotherapy is important for cell survival [18]. HSPs are
a class of stress-inducible proteins that play critical roles
in stress response. HSPs function as molecular chaperone
and protect cells against proteotoxic damages [19,20].
The overproduction of HSPs results in the increased inci-
dence of cell transformation and is clinically correlated
with poor prognosis and resistance to apoptosis in a wide
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range of human cancers [21-24]. Therefore, understand-
ing the regulatory mechanism of HSPs and its response
against anti-cancer therapies is important for the devel-
opment of anti-cancer strategy.

The aim of this study was to evaluate the effects of
EGCG on the expression and activity of HSPs. Here we
reports that the anti-tumor activity of EGCG is mediated
by the targeting of HSP70 and HSP90 in vitro and in vivo
and suggests the potential value of EGCG as a therapeutic
agent for cancer treatment.

Methods
Cell culture
The human breast cancer MCF-7 cells, mouse breast can-
cer 4T1 cells, and mouse colon carcinoma CT26 cells
were cultured at 37°C with 5% CO2 in DMEM supple-
mented with 10% fetal bovine serum, 100 units/ml of
penicillin, and 100 μg/ml of streptomycin.

Cell proliferation assay
A total of 3 × 105 MCF-7 cells were cultured in the pres-
ence or absence of EGCG (Sigma Chemical Co., Saint
Louis, MO) for 24 h. After the respective medium was

removed, the cells were incubated with MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)
solution (5 mg/ml in phosphate-buffered saline, PBS) for
3 h, and the absorbance was measured using an auto
ELISA plate reader at 570 nm.

Flow cytometric analysis
Cells were harvested and fixed with 70% ethanol for 1 h at
4°C. After washing with cold PBS, cells were incubated
with DNase-free RNase and propidium iodide at 37°C for
30 min. Cells were then analyzed by flow cytometry using
Cell Lab Quanta™ SC (Beckman Coulter Inc, Fullerton,
CA).

Cell colony formation assay
The inhibition of the colony formation of MCF-7 cells
following treatment with EGCG was measured by soft
agar assay. Briefly, cells (8 × 103 cells/ml) were treated
with various concentrations of EGCG in 0.3% Basal
Medium Eagle (BME) agar containing 10% FBS, 2 mM L-
glutamine, and 25 μg/ml gentamicin. The cultures were
maintained at 37°C with 5% CO2 atmosphere for 10 days.
Cell colonies were scored using conventional microscope.

Figure 1 EGCG inhibits cell proliferation and induces the G2/M phase cell cycle arrest in MCF-7 cells. (A) The cells were treated with increasing 
concentrations of EGCG and cell viability was assessed by MTT assay. Asterisk, P < 0.05, significantly different from control. (B) To determine the effect 
of EGCG on cell cycle progression, cells were treated with 100 μM of EGCG for 24 h. Cell cycle distribution was monitored by flow cytometry.
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Western blotting
Cells were treated with EGCG for 24 h. Cells were then
washed with PBS and harvested in lysis buffer. Samples
containing an equal amount of proteins were loaded into
each lane of a SDS-polyacrylamide gel for electrophoresis
and subsequently transferred onto a polyvinylidene diflu-
oride membrane. After blocking, the membranes were
incubated with antibodies against HSP27, HSP40, HSP60,
HSP70, HSP90, HSP110, HSF1, HSF2, and β-actin (Santa
Cruz Biotechnology, Santa Cruz, CA).

Luciferase reporter assay
The promoter region of HSP70 was amplified by PCR
according to the published sequence [25] and inserted
into pGL3-basic luciferase reporter vector (Promega,
Madison, WI). Reporter vector containing HSP90 pro-
moter (pXP2-HSP90) was kindly provided by Wu K.J.
(NYMU, Taipei). Plasmids were transfected into MCF-7
cells using FuGene 6 reagent (Roche Molecular Biochem-
icals, Indianapolis, IN) according to the manufacturer's
instructions. After 24 h, cells were heat shocked at 42°C
for 1 h. Finally, the cells were treated with or without
EGCG for 24 h and lysed using lysis buffer. Luciferase
activity was measured using a TriStar LB 941 multimode
microplate reader (Berthold Technologies, Germany).

EGCG-Sepharose 4B generation and in vitro EGCG pull-
down assay
EGCG was conjugated with cyanogen bromide (CNBr)-
activated Sepharose 4B (Sigma Chemical Co.). Briefly,
EGCG (2.5 mg) was dissolved in 500 μl of coupling buffer

(0.1 M NaHCO3 and 0.5 M NaCl, pH 6.0). The CNBr-
activated Sepharose 4B was swelled and washed in 1 mM
HCl on a sintered glass filter, then washed with the cou-
pling buffer. CNBr-activated Sepharose 4B beads were
added to the EGCG-containing coupling buffer and incu-
bated at 4°C for 24 h. The EGCG-conjugated Sepharose
4B was washed with three cycles of alternating pH wash
buffers (buffer 1, 0.1 M acetate and 0.5 M NaCl, pH 4.0;
buffer 2, 0.1 M Tris-HCl and 0.5 M NaCl, pH 8.0). EGCG-
conjugated beads were then equilibrated with binding
buffer (0.05 M Tris-HCl and 0.15 M NaCl, pH 7.5). The
control unconjugated CNBr-activated Sepharose 4B
beads were prepared as described above in the absence of
EGCG. The cell lysate was mixed with EGCG-conjugated
Sepharose 4B in the absence or presence of ATP at 4°C
for 3 h. The beads were then washed three times with
binding buffer. The bound proteins were eluted with SDS
loading buffer. The proteins were then resolved by SDS-
PAGE followed by immunoblotting with antibodies
against HSP70 and HSP90 (Santa Cruz Biotechnology).

Xenograft model and EGCG treatment
Six-week-old male BALB/c mice were obtained from
Samtako (Korea). CT26 cells (5 × 106 cells/200 μl) were
injected subcutaneously and permitted to grow until pal-
pable (4 days). When tumors reach the size of 50~150
mm3, the mice were randomly grouped and treated with
EGCG (10 mg/kg) by daily intraperitoneal injection for 7
days. Control animals received an injection of PBS in vol-
umes equivalent to those used for injection of EGCG (n =
5 for each group). The mice were observed daily for
tumor growth. The tumor volume was calculated by the
formula: V = (ab2)/2, in which 'a' is the longest diameter
and 'b' is the shortest diameter of the tumor.

Immunohistochemistry assay
The excised tumors were fixed in 10% formalin and
embedded in paraffin. For immunohistochemical stain-
ing, avidin-biotin complex method was performed using
anti-HSP70, anti-HSP90, and anti-PCNA antibodies
(Santa Cruz Biotechnology). The immune reactions were
visualized by immersing the sectioned tissues in 3,3'-
diaminobenzidine tetrahydrochloride. Counterstaining
was performed with hematoxylin.

Statistical analysis
All statistical analyses were carried out using Excel soft-
ware. The significance of the differences was determined
using an independent-samples t-test. A p-value < 0.05
was regarded as statistically significant.

Results
EGCG induces the G2/M phase cell cycle arrest in MCF-7 
cells
The effect of EGCG on MCF-7 human breast cancer cells
was examined by increasing concentrations of EGCG. As

Figure 2 EGCG inhibits colony formation of MCF-7 cells on soft 
agar. Cell suspensions were mixed with 0.3% agar in the culture medi-
um with EGCG. After 10 days of incubation at 37°C in a 5% CO2 incuba-
tor, colonies were counted. Representative phase contrast images are 
shown. The data are represented of the average number of colonies 
per plate as determined from three separate experiments. Asterisk, P < 
0.001, significantly different from control.
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shown in Figure 1A, treatment with EGCG (10 ~ 200 μM)
inhibited the growth of MCF-7 cells in a dose-dependent
manner with an IC50 of 150 μM. Extensive inhibition of
cell growth was observed in the cells treated with high
concentration (200 μM) of EGCG. Cell cycle distribution
analysis of MCF-7 cells treated with EGCG (100 μM)
showed that the cells were mainly arrested at the G2/M
phase (Figure 1B).

EGCG inhibits cell colony formation of MCF-7 cells
MCF-7 cells were plated on a soft agar matrix, treated
with EGCG, and incubated at 37°C in a 5% CO2 incubator.
After 10 days, the number of colonies was counted. As
shown in Figure 2, EGCG inhibited colony formation in a

dose-dependent manner, suggesting that EGCG is a criti-
cal inhibitor of MCF-7 cell proliferation.

EGCG inhibits the expression of HSP70 and HSP90 in MCF-7 
cells
Several reports have revealed that HSPs are important
mediators of chemotherapy resistance. Therefore, we
investigated the effect of EGCG on the expression of vari-
ous HSPs. MCF-7 cells were incubated with increasing
concentrations of EGCG (10 ~ 200 μM) for 24 h. As
shown in Figure 3A and 3B, the levels of protein and
mRNA of HSP70 and HSP90 were decreased by 100 μM
of EGCG, while the other HSPs (HSP110, HSP60, HSP40,
and HSP27) were unaffected. In addition, EGCG inhib-

Figure 3 FEGCG suppresses the expression of HSP70 and HSP90 in MCF-7 cells. (A) The cells were treated with EGCG for 24 h and the expression 
levels of heat shock proteins were determined by Western blot analysis. (B) The levels of HSP90, HSP70, and HSP60 mRNA were detected by RT-PCR 
analysis. GAPDH was used as an internal control. (C) The cells were harvested 24 h after EGCG treatment. Cell lysates were subjected to Western blot 
analysis for Akt and Bcl-2. (D), (E) MCF-7 cells were transfected with pGL3-HSP70 (D) or pXP2-HSP90 (E) reporter vector. After 24 h, cells were heat 
shocked at 42°C for 1 h followed by recovery at 37°C for 24 h with EGCG (100 μM). Cells were harvested and the cell extracts were subjected to lu-
ciferase assay. The results were represented as the mean ± SD of three independent experiments. Asterisk, P < 0.05, significantly different from control. 
(F) The cells were treated with indicated concentrations of EGCG for 24 h. The expression levels of HSF1 and HSF2 were monitored by Western blot 
analysis.
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ited the expression of HSP90-regulated Akt and Bcl-2 in
MCF-7 cells (Figure 3C).

To examine the effect of EGCG on the promoter activ-
ity of HSP70 and HSP90, we performed the luciferase
reporter assay. Consistent with the previous studies, heat
shock (42°C for 1 h) induced transcriptional activity of
HSP70 and HSP90 (Figure 3D and 3E). However, heat
shock-induced promoter activity was suppressed by
EGCG.

To understand the molecular changes associated with
HSP70 and HSP90 inhibition, we examined the protein
levels of HSP transcription factors. As shown in Figure
3F, EGCG significantly decreased the levels of heat shock
transcription factor 1 (HSF1) and HSF2 in a dose-depen-
dent manner. These data suggest that EGCG suppresses

the expression of HSP70 and HSP90 by inhibiting the
expression of their transcription factors, HSF1 and HSF2.

EGCG competes with ATP for binding to the ATPase domain 
of HSP70 and HSP90
It was previously shown that EGCG antagonizes the
function of the HSP70 family protein, Grp78, by directly
competing with ATP for binding to the ATPase domain of
Grp78 [14]. To investigate this possibility, we assessed the
interaction between the HSPs and EGCG using EGCG-
conjugated Sepharose 4B beads. EGCG-conjugated Sep-
harose pull-down assay confirmed that both HSP70 and
HSP90 interact efficiently with EGCG (Figure 4A). Then,
we examined the competition between EGCG and ATP
for the ATPase binding pockets of HSP70 and HSP90. As
shown in Figure 4B, the binding of EGCG with HSP70 or
HSP90 was decreased with increasing amount of ATP.
These data demonstrate that EGCG competes with ATP
for binding to the ATPase domain of HSP70 and HSP90.

Stress sensitivity is increased in EGCG-treated MCF-7 cells
Next, we examined whether EGCG has effect on the cell
viability upon heat shock or H2O2 treatment. MCF-7 cells
were pretreated with EGCG for 24 h and the cells were
heat shocked (44°C, 1 h) or treated with H2O2 (500 μM,
24 h). Upon stress, cell viability was decreased approxi-
mately 20% in MCF-7 cells (Figure 5A and 5B). Interest-
ingly, pretreatment of cells with EGCG strongly reduced
the cell viability after heat shock or H2O2 treatment com-
pared with single treatment with EGCG or stress (Figure
5A and 5B). The inhibition of cell growth was increased
depending on the EGCG concentration. In addition, heat
shock- and H2O2-induced HSP70 and HSP90 expression
were significantly inhibited in the cells pretreated with
EGCG (Figure 5C and 5D). These results indicate that
EGCG increases the stress sensitivity of MCF-7 cells
through the suppression of HSP70 and HSP90 expres-
sion.

EGCG suppresses tumor growth in xenograft model
The anti-tumor efficacy of EGCG was examined on a
mouse xenograft model using CT26 colon cancer cells.
CT26 cells were injected subcutaneously in BALB/c mice.
After the palpable tumors were appeared (4 days after
injection), EGCG (10 mg/kg) was injected intraperitone-
ally every day for 7 days. As shown in Figure 6A, the
administration of EGCG caused a 70% decrease in tumor
volume compared with PBS-treated control mice. The
toxicity of EGCG was assessed by mouse survival and
careful monitoring of body weight. The EGCG treatment
did not alter body weight compared with PBS-treated
control mice (Figure 6B).

To examine whether EGCG is able to inhibit the
expression of HSP70 and HSP90 in vivo, the tumor tis-

Figure 4 EGCG binds to the ATPase domain of HSP70 and HSP90. 
(A) Whole cell lysates were incubated with EGCG-conjugated Sephar-
ose 4B. After precipitation, the levels of bound HSP70 or HSP90 were 
monitored by Western blot analysis. (B) Whole cell lysates were incu-
bated with EGCG-Sepharose 4B in the absence or presence of ATP. The 
levels of bound HSP70 or HSP90 in precipitates were monitored by 
Western blot analysis.
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Figure 5 EGCG increases the stress sensitivity of MCF-7 cells. The 
cells were treated with EGCG for 24 h and then heat shocked (44°C for 
1 h) or treated with H2O2 (500 μM, 37°C for 24 h). (A), (B) Cell viability 
was measured by MTT assay. Asterisk, P < 0.005, significantly different 
from the cells treated with heat shock or H2O2 alone. (C), (D) The levels 
of HSP70 and HSP90 were monitored by Western blot analysis.
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sues were excised. Immunohistochemistry assay showed
that the levels of HSP70 and HSP90 were decreased in
EGCG-treated mice compared with control (Figure 7A).
The expression of PCNA, a proliferation biomarker, also
significantly decreased (approximately 50%). Western
blot analysis showed that the expression levels of HSP70
and HSP90 were decreased in EGCG-treated mice com-
pared with control (Figure 7B).

Discussion
EGCG is an anti-oxidant that plays an important role in
preventing cancer and cardiovascular disease [26].
Although many different molecules and signaling path-
ways have been demonstrated in various cell lines, the
exact action mechanism of EGCG is unknown.

Ciocca et al. reported that the expression of three main
HSPs, HSP27, HSP70, and HSP90, are elevated in breast
cancer [21]. It is known that the levels of the HSPs are ele-
vated in many cancers, and elevated HSP expression pro-
vides cellular resistance to anti-cancer therapies [21].

Some studies have shown that EGCG inhibits tumor
growth by suppressing the HSP27, HSP70, HSP90, and/or
HSP90 client proteins [13,27,28]. Grp78, a member of
HSP70 family, is one of the target proteins of EGCG.
Grp78 plays critical role as a molecular chaperone and
promotes tumor cell proliferation, survival, and metasta-
sis [14]. Therefore, HSPs could be a possible candidate to
improve the efficacy of anti-cancer therapy.

Our data demonstrated that EGCG has an anti-prolif-
erative effect on MCF-7 cells. In addition, EGCG specifi-
cally reduced the expression of HSP70 and HSP90
without affecting the levels of other HSPs. We also
observed that EGCG inhibits the expression of HSP90 cli-
ent protein, Akt. Previously, it was reported that HSP90
directly interacts with Akt and this process is essential for
the stability and function of Akt [29]. Although we did
not directly observe the inhibition of Akt signaling by
HSP90 inhibition, EGCG-induced cell cycle arrest may
associate with the inhibition of HSP90/Akt signaling.
Additionally, we observed that EGCG binds with HSP70

Figure 6 EGCG represses the growth of tumor in mice. BALB/c mice were subcutaneously injected with 5 × 106 colon carcinoma CT26 cells into 
the right flank. After 4 days, the mice were given daily dose of PBS or EGCG (10 mg/kg) through intraperitoneal injection for 7 days as described in 
"Methods" section. (A), (B) Serial tumor volumes and body weights were measured everyday. Values represent mean ± SD. (C) Representative images 
of xenograft tumors.
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and HSP90 by using an EGCG-Sepharose 4B pull-down
assay. We also found clear evidence that EGCG competes
with ATP for binding to the ATP binding pocket of
HSP70 and HSP90 in human breast cancer cells.
Although Li et al. reported that EGCG has no effect on
ATP binding to HSP90 [13], several studies have reported
that EGCG interacts with the ATPase domain of HSP90
and Grp78 and inhibits their functions by competing with
ATP for binding to the ATP binding domain in hepatoma
and pancreatic cancer cells [12,14]. Collectively, these
results suggest that EGCG is likely to affect signaling
pathways of cell growth and survival by inhibiting the
expression of HSP70 and HSP90 and/or by binding to the
HSP70 and HSP90.

Here we demonstrated, for the first time, that EGCG
suppresses the expression of HSF1 and HSF2. A luciferase
reporter assay showed that EGCG inhibits heat shock- or
oxidative stress-induced promoter activity of HSP70 and
HSP90. These results demonstrate that EGCG can inhibit
the upstream regulator of HSP70 and HSP90. Previous
studies suggested that the level of HSF1 become elevated
in a number of cancer cells, and the elevated HSF1 is
implicated in tumorigenesis through the expression of

the HSP70 family proteins and the inhibition of apoptotic
pathways [30]. Induction of HSPs by HSF1 is essential for
the growth of many tumor cells. Furthermore, inhibition
of HSF1 leads to the induction of cell death and tumor
regression [31-33]. Therefore, HSF1 is an attractive target
for cancer treatment. Unlike HSF1, the role of HSF2 in
tumor progression is unclear. Recent studies have shown
that HSF1 can physically associate with HSF2 and their
interaction is enhanced by heat shock [34,35]. Therefore,
the interplay between HSF1 and HSF2 may regulate their
function and play an important role on tumor progres-
sion by activating target genes.

It is widely accepted that HSPs play an important role
in cell protection during cellular stress [18,36]. In this
study, we examined the effect of EGCG on heat shock- or
oxidative stress (H2O2)-treated MCF-7 cells. Heat shock
and H2O2 inhibited cell viability approximately 20% and
induced the expression of HSP70 and HSP90. Pretreat-
ment with EGCG further suppressed cell viability after
heat shock or H2O2 treatment. And the stress-induced
expression of HSP70 and HSP90 was suppressed by
EGCG pretreatment in a dose-dependent manner. These

Figure 7 Histological and immunohistochemical appearance of tumors from CT26 cell-injected mice. Mice were subcutaneously injected with 
CT26 cells into the right flank. Four days later, mice were treated with either PBS (control) or EGCG for 7 days. (A) H & E staining and immunohistochem-
ical staining of PCNA, HSP70, and HSP90 for tumor sections. (B) The levels of HSP70 and HSP90 in the lysates of tumor tissues were analyzed by Western 
blot analysis. Western blot data were quantified by densitometry. The data were expressed as the mean ± SD of three individual experiments.

H&E

PCNA

HSP70

HSP90

Control               EGCG
A

HSP70

HSP90

%
 o

f 
c
o

n
tr

o
l

Control           EGCG
B

160

140

120

100

80

60

40

20

0

1      2      3     4      5      6      7     8

1    2    3   4   5    6    7   8

HSP70

HSP90

Actin

Control                   EGCG



Tran et al. BMC Cancer 2010, 10:276
http://www.biomedcentral.com/1471-2407/10/276

Page 8 of 9
results suggest that EGCG enhances stress sensitivity of
cells by suppressing the expression of HSP70 and HSP90.

Several studies have shown that the anti-tumor activity
of EGCG in xenograft model [37,38]. Here we showed
that EGCG inhibits tumor formation in CT26 cell inocu-
lated BALB/c mice. Immunohistochemical staining
showed decreased levels of PCNA, HSP70, and HSP90 in
the tumors from EGCG treated mice. We also examined
the effect of EGCG in xenograft model using 4T1 murine
breast cancer cells. In our study, CT26 cells were more
sensitive to EGCG than 4T1 cells in vivo (data not
shown). Because different types of tumor cells have dif-
ferent genetic alterations and characteristics, the molecu-
lar targets of EGCG may be different in different cell
lines. The role of HSPs in tumorigenesis is supported by
the experimental data showing high expression levels of
HSPs are required for the growth of tumor xenografts.
Furthermore, high level of HSPs correlates with poor
therapeutic outcome in human breast cancer suggesting
the inhibition of HSPs can be therapeutically useful
[39,40].

In this study, we demonstrate that the anti-tumor activ-
ity of EGCG is mediated by the inhibition of HSP70 and
HSP90 and suggests EGCG as a potent candidate for the
anti-tumor agent.

Conclusion
In this study, we demonstrated that the treatment of
EGCG decreased cell proliferation and colony formation
of MCF-7 human breast cancer cells. In addition, EGCG
specifically inhibited the expression of HSP70 and HSP90
by inhibiting their promoter activity. Pretreatment with
EGCG increased the stress sensitivity of MCF-7 cells
upon heat shock or oxidative stress. Moreover, treatment
with EGCG in a xenograft model resulted in delayed
tumor incidence and reduced tumor size, as well as the
inhibition of HSP70 and HSP90 expression. These results
suggest that HSP70 and HSP90 could be a potential
molecular target of EGCG.
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