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Abstract
Background: Metastasis is a major cancer-related cause of death. Recent studies have described metastasis pathways. 
However, the exact contribution of each pathway remains unclear. Another key feature of a tumor is the presence of 
hypoxic areas caused by a lack of oxygen at the center of the tumor. Hypoxia leads to the expression of pro-metastatic 
genes as well as the repression of anti-metastatic genes. As many Affymetrix datasets about metastasis and hypoxia are 
publicly available and not fully exploited, this study proposes to re-analyze these datasets to extract new information 
about the metastatic phenotype induced by hypoxia in different cancer cell lines.

Methods: Affymetrix datasets about metastasis and/or hypoxia were downloaded from GEO and ArrayExpress. 
AffyProbeMiner and GCRMA packages were used for pre-processing and the Window Welch t test was used for 
processing. Three approaches of meta-analysis were eventually used for the selection of genes of interest.

Results: Three complementary approaches were used, that eventually selected 183 genes of interest. Out of these 183 
genes, 99, among which the well known JUNB, FOS and TP63, have already been described in the literature to be 
involved in cancer. Moreover, 39 genes of those, such as SERPINE1 and MMP7, are known to regulate metastasis. 
Twenty-one genes including VEGFA and ID2 have also been described to be involved in the response to hypoxia. Lastly, 
DAVID classified those 183 genes in 24 different pathways, among which 8 are directly related to cancer while 5 others 
are related to proliferation and cell motility. A negative control composed of 183 random genes failed to provide such 
results. Interestingly, 6 pathways retrieved by DAVID with the 183 genes of interest concern pathogen recognition and 
phagocytosis.

Conclusion: The proposed methodology was able to find genes actually known to be involved in cancer, metastasis 
and hypoxia and, thus, we propose that the other genes selected based on the same methodology are of prime 
interest in the metastatic phenotype induced by hypoxia.

Background
One of the major causes of death by cancer is metastasis.
Determining the mechanisms of metastasis initiation and
growth should thus improve therapy. Cancer cells have
developed many mechanisms to detach from the primary
tumor, invade surrounding tissues, migrate and colonize
distant organs. These mechanisms include changes in
cell-cell and cell-matrix adhesion molecules, extracellular

matrix degradation enzymes, cytoskeleton regulation fac-
tors and cell-cell communication through cytokines, for
example [1]. Recently, high-throughput studies per-
formed in several cancer cell lines identified specific
metastasis pathways [2]. However, the exact contribution
of these pathways in cell migration and tissue invasion
still remains unclear.

Another key feature of a tumor is the presence of
hypoxic areas. Hypoxic areas within a tumor are the
result of the progressively increasing distance between
cells and blood vessels as the tumor is growing, as well as
of the abnormal new vasculature. Tumor hypoxia is a
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marker for poor prognosis. Several hypotheses have been
proposed to explain this observation: (i) hypoxia initiates
adaptation mediated by the transcription factor HIF-1
which enhances cancer cell survival [3]; (ii) this adapta-
tion also triggers the angiogenesis process; (iii) hypoxia
leads to less effective radiotherapy and chemotherapy [4]
and (iv) more and more experimental data suggest that
hypoxia improves metastasis and/or selects cancer cells
with high metastatic potential [5]. Changes in gene
expression induced by hypoxia and leading to a migratory
and invasive phenotype of tumor cells have been identi-
fied. The genes involved code for example for cadherins,
plasminogen activators and their receptors, and matrix
metalloproteinases [6].

DNA microarrays appeared more than a decade ago
and are now one of the most common tools in many
molecular biology and medical laboratories. The tech-
nique allows the assessment of transcript levels for thou-
sands of genes in one single experiment. Nowadays,
thanks to progress in sequencing, an entire genome can
be represented on one single microarray [7,8]. In short, a
microarray is a physical support to which oligonucle-
otides (the probes) representing the genes are attached.
Then, the labelled mRNAs from a biological sample are
incubated with the microarray, thus enabling the labelled
mRNAs to hybridize to the probes. The signal is then
scanned and several experimental conditions are com-
pared to determine which genes are differentially
expressed under a particular condition. Microarrays can
differ in the way the probes are attached to the surface, in
the length of the probes and in the number of probes per
gene, but the principle is always the same.

Affymetrix GeneChips are the most popular type of
microarrays. Affymetrix GeneChips display probes that
are synthetized in situ by photolithography [9]. Typically,
each gene in a genome is represented by 11 to 20 perfect
match probes of 25 nucleotides and by the same number
of mismatch probes differing only in the central nucle-
otide [10].

Since their release, Affymetrix GeneChips and DNA
microarrays in general have encountered many difficul-
ties. The first derives from the fact that if there is only one
replicate per condition, no statistical test can be per-
formed at the gene level. Results thus only rely on ratio
(fold change) between expression values obtained from
different conditions [11]. On the other hand, when sev-
eral replicates are available, the question can be
addressed from a statistical point of view [12]. As one sta-
tistical test is performed for each gene, thousands of tests
are performed on a single array. This leads to a very large
number of false positives (genes detected as differentially
expressed when they are not) and false negatives (genes
undetected when they are actually differentially
expressed), compromising interpretation of the results

[13]. When applied, a correction for multiple testing
decreases the threshold of significance at such a low level
that the number of false negatives increases dramatically.
Many statistical methods have recently emerged to solve
this problem, from the classical Student t-test [14] to
more sophisticated tests which fine-tune the estimate of
gene variance [15-20]. However, the problem still remains
fundamentally unsolved and a large number of expensive
replicates are needed to gain in positive and negative pre-
dictive power.

Another issue tackled over the past few years concerns
the Chip Definition File (CDF), which is involved
upstream of the statistical analysis. A CDF is a file devel-
oped by Affymetrix that links several probes (probe set)
to a given gene name. The probes representing the gene
reflect the status of genomic databases several years ago.
Since then, genomic information and thus the arguments
used to assign given probes to a given probe set have
evolved and "alternative" CDFs have emerged [21-23].

Other steps before the statistical processing itself con-
cern pre-processing of the data. Pre-processing steps
include background correction within each array of a
same experiment, normalization (rescaling) of values
between replicates [24-26] and summarization of probe
values to obtain a unique expression value per probe set
[27]. Scores of methods are available for each pre-pro-
cessing step [28,29] and a combination of these methods
can potentially generate thousands of pre-processings.

A technique's lack of biological reproducibility is not
the least of the problems encountered in DNA microar-
ray experiments [30]. Few genes are common to the top
gene lists from several experiments, even between sub-
samples of a same large dataset. Due to the small number
of replicates generally used in an experiment and the very
large number of genes tested, varying variance estimates
lead to differences in the p values associated with any sta-
tistical test such that a given gene can randomly move
from the first to the thousandth place in the top list.

The fact that there are numerous methods which con-
tinue to evolve, combined with the observation of unsta-
ble results, constitutes an attractive challenge which can
now be tackled thanks to the emergence of public data-
bases such as Gene Expression Omnibus (GEO) [31] and
ArrayExpress [32] which collect millions of pieces of
expression data. Datasets can be reanalysed from scratch
with new parameters (including alternative CDFs) and by
combining several datasets relative to the same biological
question in one same analysis.

In this study we have tried to find genes, and possibly
pathways, that were not previously known to be involved
in the metastasis induced by hypoxia. The objective of
this paper is to increase our understanding of the disease
using new methods to exploit the huge amount of DNA
microarrays publicly available. Since the mechanisms
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underlying the metastatic phenotype are identical in
every cancer cell type [33], this work considered all data-
sets on metastasis, regardless of the cancer cell type. Our
methodology combines well-known published steps from
classical analysis with new approaches to analyze several
datasets at once. A similar study performed at a smaller
scale on breast cancer has been published recently [34],
thus validating the feasibility of this type of approach.

Methods
Datasets
All the datasets used in this study were downloaded from
two databases (ArrayExpress [32] and Gene Expression
Omnibus [31]) and are all generated with Affymetrix
platforms. Most of the raw data in .CEL files format were
publicly available. If not, the authors were contacted
directly. Datasets containing more than one GeneChip
model and/or containing more than two conditions were
split into sub-datasets. Table 1 presents detailed informa-
tion about these datasets.

Individual analyses
To process the datasets, we used alternative CDFs from
AffyProbeMiner [23]. One CDF is needed per GeneChip
model and three packages are needed per CDF. We used
Version 1.8.0 of the "CDF distribution" packages. We
used Version 1.0.0 of the "PROBE distribution" packages.
We used Version 1.1.0 of the "Annotation distribution"
packages. The CDFs used were "transcript-consistent", so
each probe of a probe set maps to the same set of tran-
scripts. We did not choose "gene-consistent" CDFs
(probes of a probe set mapping to transcripts of the same
set of genes) to avoid inconsistencies as recommended by
Liu et al. [23]. The CDFs were chosen based on RefSeq
and GeneBank information. The minimal size of a probe
set was set to five probes as recommended by Liu et al.
[23]. Pre-processing was performed with GCRMA [29]
with the default parameters. Processing was performed
with the Window Welch t test [35]. Due to a low number
of conditions or of replicates to be statistically useful,
datasets GSE4843 and GSE6369 could not be analyzed
individually.

These individual analyses provided one gene list for
each dataset or sub-dataset. For each gene list, we ranked
the genes in ascending order of the p values of their dif-
ferential expression, such that the most significantly over-
or under- expressed genes are located at the top of the
list.

Intersections
The results from the individual analyses were grouped
into 33 groups. For each group, the 50 most significant
genes common to all datasets of the group were selected.

Union intersections
The results from the individual analyses for the 17 metas-
tasis datasets were grouped into 30 groups, while the
results from the individual analyses for the 3 hypoxia
datasets were grouped in one group. Each metastasis
group was considered with the hypoxia group. For each
couple of groups, the 50 most significant genes common
to at least one dataset of the metastasis group and to at
least one dataset of the hypoxia group were selected.

Meta-analyses
The 22 datasets were merged into 14 meta-datasets.
Alternative CDFs from AffyProbeMiner [23] were used.
The meta-datasets were pre-processed with GCRMA
[29] and processed with the Window Welch t test [35].
For each meta-dataset, the 50 most significant genes were
selected.

Visualization
Genes were thus selected by three approaches: intersec-
tions, union intersections and meta-analyses. Some were
selected by two or three approaches. Those particular
genes were submitted to the webtool DAVID (Database
for Annotation, Visualization and Integrated Discovery)
[36,37], version 6. The parameters of the "Functional
Annotation Tool" were set to retrieve pathway maps from
KEGG [38] and Biocarta [39]. And the parameters of the
"Functional Annotation Clustering" (a part of the "Func-
tional Annotation Tool") were set to the lowest level of
stringency in order to obtain the largest number of maps.

Computer and bioinformatic resources
Individual analyses, intersections, union intersections
and meta-analyses were all run with the R statistical soft-
ware [40] versions 2.4.0 and 2.6.0 and packages from Bio-
conductor [41] on a 64-bit computer with 4 gb of DDR
(biprocessor dual-core Xeon 5160 3.0 Ghz, 8 × 500 gb
RAID). Detailed scripts for every approach are provided
as additional files (additional files 1, 2, 3, 4 and 5). How-
ever, brief descriptions for the individual analyses, inter-
sections, union intersections and meta-analyses are
provided here.

For each individual analysis, expression sets were
obtained with the function justGCRMA (with default
parameters) from the GCRMA [29] package. The expres-
sion sets were converted into a matrix with the function
exprs, then split in two: condition A and condition B. P
values were calculated with the Window Welch t test [35]
with the pegase function from the Pegase package. Pegase
is a package created by our laboratory that is not yet pub-
licly available. Its function is to process microarray data
after pre-processing. It requires an expression set as input
and returns lists of p values for every well-known pro-
cessing method as output. Here, pegase was run with
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Table 1: The datasets retrieved from GEO and ArrayExpress

Data set accession 
numbers

GeneChip models Databases Availability Experimental conditions

E-GEOD-1323 HG-U133A AE Available 3 human colorectal cancer derived 
from a primary tumor VS. 3 
corresponding lymph node 
metastases

E-GEOD-2280 HG-U133A AE Available 8 squamous cell carcinoma of the oral 
cavity VS. 19 corresponding lymph 
node metastases

E-MEXP-44 HG-U95Av2 AE Available 15 head and neck squamous cell 
carcinoma VS. 3 corresponding lymph 
node metastases

HG-UgeneFL AE Available 12 head and neck squamous cell 
carcinoma VS. 11 corresponding 
lymph node metastases

GSE1056 HG-U95Av2 GEO Not available 2 human hepatocellular carcinoma 
under hypoxia for 2 hours VS. 2 control 
human hepatocellular carcinoma

HG-U95Av2 GEO Not available 2 human hepatocellular carcinoma 
under hypoxia for 24 hours VS. 2 
control human hepatocellular 
carcinoma

GSE2280 HG-U133A GEO Available 22 squamous cell carcinoma of the 
oral cavity VS. 5 corresponding lymph 
node metastases

GSE2603 HG-U133A GEO Available 100 primary breast cancer VS. 21 lung 
metastases

GSE3325 HG-U133Plus2.0 GEO Available 7 primary prostate cancer VS. 6 
metastases

GSE4086 HG-U133Plus2.0 GEO Available 2 human Burkitt's lymphoma under 
hypoxia VS. 2 control human Burkitt's 
lymphoma

GSE468 HC-G110 GEO Available 13 primary medulloblastomas VS. 10 
metastatic medulloblastomas

GSE4840 HG-U133A GEO Not available 3 samples from normal melanocyte 
culture VS. 12 samples from culture of 
cutaneous metastasis of melanoma

HG-U133B GEO Not available 3 samples from normal melanocyte 
culture VS. 12 samples from culture of 
cutaneous metastasis of melanoma
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default parameters. Fold changes were also calculated in
the individual analyses.

A data frame was built for each dataset. The resulting
data frames contained the AffyProbeMiner's probe set
IDs for every probe set of the chip. They also contained
the Entrez Gene IDs [42] corresponding to the probe sets
as well as the p values and the fold changes. Since several
Entrez Gene IDs can sometimes correspond to the same
probe set, these particular probe sets as well as the corre-
sponding p values and fold changes were repeated in the
data frames with a different Entrez Gene ID each time.

For each data frame, the probe sets (and therefore the
gene IDs and the fold changes) were ranked in ascending
order of the p values of their differential expression.
Intersections were created with the intersect func-
tion applied to the top lists of data frames previously
described. For groups of datasets where only one
GeneChip model was used, intersections were created at
the probe set level. But for groups of datasets where sev-
eral GeneChip models were used, intersections were cre-
ated at the gene ID level.

Since the group of hypoxia datasets was built with two
GeneChip models and was involved in every union inter-

section, union intersections were all created at the gene
ID level. For each union intersection, gene IDs of the top
lists of metastasis data frames were combined into a vec-
tor and gene IDs of the top lists of hypoxia data frames
were combined into another one. Then, the intersect
function was applied to those two vectors.

For meta-analyses, expression sets were obtained with
the justGCRMA function (with default parameters). The
expression sets were converted into a matrix with the
exprs function, then split in two: condition A and con-
dition B. P values were calculated with the Window
Welch t test [35] (with default parameters) with the
pegase function. The probe sets were then ranked in
ascending order of the p values of their differential
expression, and the 50 most significant ones were
selected.

Results and discussion
DNA microarrays and particularly Affymetrix
GeneChips are widely used to measure the transcriptome
of samples. Since the raw data can now be stored in
numeric format, public databases have appeared and re-
analysis of archived datasets has become common prac-

GSE4843 HG-U133Plus2.0 GEO Not available 45 samples from culture of cutaneous 
melanoma metastasis

GSE6369 HG-U133Plus2.0 GEO Available 1 primary prostate carcinoma VS. 1 
metastatic prostate carcinoma

GSE6919 HG-U95Av2 GEO Available 65 primary prostate tumors VS. 25 
metastatic prostate tumors

HG-U95B GEO Available 66 primary prostate tumors VS. 25 
metastatic prostate tumors

HG-U95C GEO Available 65 primary prostate tumors VS. 25 
metastatic prostate tumors

GSE7929 HG-U133A GEO Available 11 poorly metastatic melanoma VS. 21 
highly metastatic melanoma

GSE7930 HG-U133A GEO Available 3 poorly metastatic prostate tumors 
VS. 3 highly metastatic prostate 
tumors

GSE7956 HG-U133A GEO Available 10 poorly metastatic melanoma VS. 29 
highly metastatic melanoma

GSE8401 HG-U133A GEO Available 31 primary melanoma VS. 52 
melanoma metastasis

The GEO or ArrayExpress accession numbers with the corresponding GeneChip model and the experimental conditions.

Table 1: The datasets retrieved from GEO and ArrayExpress (Continued)
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tice. Moreover, an increasing number of articles describe
analyses combining several datasets. Specific methodolo-
gies for such meta-analyses are even published regularly
[43-45]. While some of them are large-scale meta-analy-
ses, others target more specific issues especially in the
field of oncology. Here, we also provide a strategy for the
meta-analysis of specific archived datasets, but the origi-
nality of this work is that it combines two different, but
intimately related, biological processes: metastasis and
hypoxia.

After individual analysis of the datasets retrieved from
GEO [31] and ArrayExpress [32] (table 1), the results
were combined in an approach called intersections. At
each intersection, the 50 most significant genes common
to several datasets were selected (figure 1). This arbitrary
limit actually represents our upper limit for future in vitro
validations. Like all statistical thresholds, this figure is
arbitrary and is an attempted compromise. Indeed, a
higher threshold would generate a number of genes that
would be more difficult to interpret. Moreover, a higher
threshold would lead to the selection of genes that are not
statistically significant in the individual analyses. On the
other hand, a lower threshold would allow for selection of
a number of genes that would be easier to validate further
and more statistically significant, but would also lead to a
larger number of false negative genes. Thus, the threshold
of 50 genes allows biological interpretation without
selecting non significant genes. Since 33 different inter-
sections were designed (Additional file 6), 1650 (33 × 50)
different genes could potentially be selected. However,
only 704 unique occurrences were obtained because
some of them appeared in two or more lists. One advan-
tage of this approach is that it uses the results from differ-
ent GeneChip models. However, only few genes are
common to all GeneChip models. For example, in this
study, 8 GeneChip models were used but only 29 genes
are represented on all 8 GeneChip models. This is due to
some GeneChip models like HC-G110, HG-U133B, HG-
U95B and HG-U95C in which few and/or poorly charac-
terized genes are represented. So, intersections combin-
ing a large number of GeneChip models need to take a
large number of genes into account to obtain the 50 most
significant genes common to all the datasets considered.

A second approach combining the results from the
individual analyses was the union intersections. By this
approach, the 50 most significant genes common to at
least one metastasis dataset and to at least one hypoxia
dataset were selected at each union intersection. Thirty
different union intersections were designed (Additional
file 7), each combining a group of metastasis datasets and
a group of hypoxia datasets. This approach ensures that
every combination of results from the individual analyses
takes the hypoxia datasets into account. This step was
necessary since fewer hypoxia datasets than metastasis

datasets were available. Moreover, union intersections do
not require that a large number of genes be taken into
account to obtain the 50 most significant genes as fewer
are required for a gene to be selected. Out of the 1500 (30
× 50) possible genes, 269 unique occurrences were
obtained.

The last approach, called meta-analysis, was not based
on the results from the individual analyses. Here, several
datasets were merged into single datasets to artificially
increase the number of replicates and thus increase the
statistical power. Fourteen meta-datasets were designed
(Additional file 8). A regular analysis was run on each
meta-dataset and the 50 most significant genes were
selected (figure 2). Since the meta-analyses were run
from scratch, only datasets using the same GeneChip
model could be combined. Again, a certain number of
genes were present in more than one list: hence, meta-
analyses provided 406 different genes out of the 700 (14 ×
50) possible genes.

The genes selected by these three approaches are repre-
sented in a Venn's diagram (figure 3). The 183 genes
selected by more than one approach are considered as the
genes of interest. They are listed in the Additional file 9.
As six datasets or sub-datasets contain data obtained
from melanomas and six others are from the prostate,
two supplementary Venn's diagrams have been built
based only on these datasets or sub-datasets (additional
files 10 and 11). They highlight some genes within the
183 genes of interest. It is interesting to note that, even
when half of the datasets are taken into account, so few
genes are selected. This shows that the methodology is
enriched by the number of datasets and thus by the diver-
sity of information. Interestingly, 99 of the 183 genes of
interest are described in the literature to be involved in
cancer (figure 4, Additional file 9). For example, the
methodology was able to find genes such as JUNB, FOS
and ATF3, all members of the AP-1 complex. AP-1 is a
transcription factor involved in cell proliferation and dif-
ferentiation. It has often been described as a "double-
edged sword" since its effect can be the repression as well
as the promotion of tumorigenesis [46]. Indeed, AP-1
transcription factors are dimers composed of the JUN,
FOS and ATF protein families. Depending on the exact
AP-1 composition, it promotes or represses tumorigene-
sis. JUNB acts as a repressor of cell proliferation through
its repression activity on the cyclin D1, an essential ele-
ment in the cell cycle [47,48]. On the contrary, FOS and
ATF3 induce oncogenic transformation [49]. Another
well-described gene in cancer selected by the methodol-
ogy is TP63. TP63 is a transcription factor sharing a large
degree of homology with TP53. It is involved in the devel-
opment of stratified epithelial tissues [50]. TP63 has two
different promoters and is the target of alternative splic-
ing events leading to the existence of several isoforms.
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For example, TAp63 is a tumor suppressor while ΔNp63
is an oncogene since it antagonizes TAp63 [51].

Of the 99 genes known to be involved in cancer, 39 have
been described to regulate metastasis (figure 4, Addi-
tional file 9). For example, the gene SERPINE1, coding for
plasminogen activator inhibitor 1 (PAI-1), was selected
by the methodology. SERPINE1 plays a central role in
several key steps of metastasis. First, it is able to catalyse
degradation of the extracellular matrix to allow penetra-
tion of metastatic cancer cells into tissues. Second, when
PAI-1 is bound to the plasminogen activator, it is able to
modulate cell adhesion by decreasing its affinity for vit-
ronectin and increasing its affinity for endocytic recep-
tors, thus enabling cell migration. Moreover, SERPINE1
enhances cell proliferation [52]. Another example of a
gene selected by the methodology and well described as
involved in the metastatic process is the gene coding for
matrix metalloproteinase 7 (MMP7). Matrix metallopro-
teinases are enzymes that cleave the extracellular matrix
in normal processes such as morphogenesis, angiogenesis
and tissue repair. It was also often described in recent
years to be involved in cancer processes such as tumori-
genesis, invasion and metastasis [53-55].

Lastly, 21 genes of the 183 selected by the methodology
are linked to hypoxia (figure 4, additional file 9). VEGFA
is probably the best example of such a gene selected by
the methodology. VEGFA has been largely described to
act on endothelial cells to promote the development of
vasculature in embryos. Moreover, through the transcrip-
tion factor HIF-1, hypoxia induces the production of
VEGFA to stimulate angiogenesis in newly-formed
organs. The same mechanisms are triggered during
tumor growth. Indeed, when the tumor size increases, it
becomes hypoxic, thus leading to the stabilization of HIF-
1 that promotes the transcription of VEGFA. VEGFA
then stimulates angiogenesis in the tumor [56,57]. ID2 is
another example of genes selected by the methodology
and known to be responsive to hypoxia. ID2 belongs to
the family of ID proteins which are transcriptional regu-
lators that inhibit basic helix-loop-helix transcription fac-
tors in processes such as proliferation, differentiation,
development and angiogenesis. It is interesting to note
that ID2 is able to inhibit VEGFA and thus limit metasta-
sis [58]. Surprisingly, however, ID2 is a target of HIF-1
since there are two HIF-1 binding sites within ID2 gene
regulatory sequences. Besides, studies have shown that
ID2 expression is induced under hypoxic conditions [59].

Figure 1 Example of an intersection. In each dataset, the probe sets were ranked in ascending order of the p values. The dark grey area is where 
the 50 most significant genes common to the three datasets of this particular intersection are found.
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Another strong argument in favor of the proposed
methodology is the ability of DAVID [36,37] to classify
179 of the 183 genes in 24 different pathways. It is note-
worthy that 8 of these pathways are clearly involved in
cancer (table 2). For example, "glioma" was one of the
pathways retrieved by DAVID [36,37]. Gliomas are can-
cer which initiate with the oncogenic transformation of a
brain or spinal cord cell. There are several types of
gliomas which vary in the type of cell transformed. The
most common types are those which affect ependymal
cells, astrocytes and oligodendrocytes [60]. Another
example is "prostate cancer". Prostate cancer is one of the
most frequent types of cancer in men. It often develops in
patients over the age of 50. This type of cancer is subject
to metastasis, particularly in the bones and lymph nodes
[61]. "Colorectal cancer" was also retrieved by DAVID
[36,37]. This type of cancer is also one of the most com-
mon and one of the main cancer-related cause of death.
Oncogenic transformation occurs in the adenomatous
polyps in the colon and cancer cells can metastasize to
the liver, principally [62].

Five other pathways retrieved by DAVID [36,37] are
related to proliferation and cell motility (table 2): "focal
adhesion", "MAPK signalling pathway", "VEGF signalling
pathway", "ErbB signalling pathway" and "regulation of
actin cytoskeleton". The focal adhesions are macromolec-
ular structures at the contact points between the cell and
the extracellular matrix [63]. They enable tissue remodel-

ling, cell migration and embryogenesis through regula-
tion of the structure of the cytoskeleton, cell adhesion
sites and membrane protrusions [64]. The mitogen-acti-
vated protein kinase (MAPK) signalling pathway is a cas-
cade involved in the regulation of cellular processes such
as cell proliferation, differentiation and stress response
[65]. This regulation occurs through the phosphorylation
of key proteins in these processes [66]. The VEGF signal-
ling pathway is activated to ensure proliferation and
migration of endothelial cells during normal processes
such as vasculogenesis as well as pathological processes
such as tumor growth [67]. The ErbB signalling pathway
is actually composed of several transmembrane receptors
able to trigger several signalling pathways when they bind
to an extracellular growth factor molecule. These signal-
ling pathways themselves regulate biological processes
such as proliferation, differentiation, cell motility and sur-
vival [68,69]. The regulation of actin cytoskeleton
includes mechanisms which allow for the functions of
microfilaments. Microfilaments are responsible for cell
shape, intracellular transport and cell motility [70].

As a first negative control, 183 genes were randomly
selected. Only 62 of those random genes were found in
the literature to be involved in cancer, among which 11
are described to regulate metastasis and 8 are linked to
hypoxia. And as a second negative control, 1000 selec-
tions of 183 random genes were run. These 1000 lists of
random genes were submitted to DAVID to see how

Figure 2 Result of a meta-analysis. The 50 most significant genes were selected in each volcano plot (log2 of the fold changes on the X axis and -
log10 of the p values on the Y axis) resulting from the meta-analyses.
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many pathways would be highlighted by chance. This was
done for the total number of pathways, for the number of
pathways directly involved in cancer and for the number
of pathways involved in proliferation and cell motility
(figure 5). For the total number of pathways, only two
tests gave better results than the 183 genes of interest
selected by the methodology. For the number of pathways
directly involved in cancer, only nine tests gave equal or
better results than the 183 genes of interest selected by
the methodology. Lastly, for the number of pathways
involved in proliferation and cell motility, only five tests
gave equal or better results than the 183 genes of interest
selected by the methodology. This indicates that the
probability of obtaining the results observed with the 183
genes of interest by chance is between 0,01 and 0,001.
Taken together, these results indicate that the methodol-

ogy is able to find genes actually involved in a particular
biological process or even genes involved in a combina-
tion of processes (here metastasis and hypoxia).

Since the data on the involvement of the genes of inter-
est in cancer, metastasis and hypoxia support the meth-
odology, we propose that the 84 genes (183 - 99) not
known to be involved in cancer to be good candidates for
involvement in development of the cancer and in particu-
lar in metastasis induced by hypoxia. Obviously, further
analyses are required. However, it is already interesting to
note that 6 out of the 24 pathways retrieved by DAVID
[36,37] concern pathogen recognition and phagocytosis
(table 2): "pathogenic Escherichia coli infection - EPEC",
"pathogenic Escherichia coli infection - EHEC", "toll-like
receptor signalling pathway", "fMLP induced chemokine
gene expression in HMC-1 cells", "Fc epsilon receptor I

Figure 3 Summary of the methodology. The 22 datasets (or sub-datasets) were used to build several combinations in order to run intersections, 
union intersections and meta-analyses. These three approaches provided 704, 269 and 406 genes respectively. A Venn's diagram was then generated 
using this data.
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signalling in mast cells" and "T cell receptor signalling
pathway". Thus, we decided to further examine the genes
in these pathways and their involvement in cancer, metas-
tasis and hypoxia.

Enteropathogenic Escherichia coli (EPEC) and entero-
hemorrhagic Escherichia coli (EHEC) are two pathogens
characterized by their ability to cause attaching and effac-
ing lesions. This ability is mainly encoded by the locus of
the enterocyte effacement pathogenicity island which
includes four genes: Tir, Map, EspF and EspG. Interest-
ingly, Tir codes for a protein that allows for the accretion
of actin [71]. This pathway is thus related to regulation of
the actin cytoskeleton pathway identified by the method-
ology. These three pathways ("pathogenic Escherichia coli
infection - EPEC", "pathogenic Escherichia coli infection -
EHEC" and "regulation of actin cytoskeleton") could be
activated in metastasis to enable rearrangement of the
cytoskeleton and migration of the cell.

The toll-like receptor signalling pathway is composed
of a set of receptors able to recognize specific molecules

from pathogens. This recognition results in an innate
immune response by the activation of inflammatory
genes. However, every receptor is specific to a particular
signal and triggers a specific cellular response, so the
functions of the different toll-like receptors are not
redundant [72]. "fMLP-induced chemokine gene expres-
sion in HMC-1 cells" is a pathway activated in neutrophils
when a bacterial infection occurs. This pathway activates
NADPH oxidase that produces reactive oxygen species to
kill the bacteria. It also activates genes coding for
chemokines to attract other innate immune cells to fight
the infection [73]. "Fc Epsilon Receptor I Signalling in
Mast Cells" is a defence pathway against some parasites.
When activated, mast cells can trigger inflammation [74].
The "T Cell Receptor Signalling Pathway" is a pathway
activated when a T Cell Receptor binds to a peptide from
a foreign organism. This event activates T cells and
immunity [39].

Surprisingly, these pathways have no link with cancer,
metastasis or hypoxia, but were identified by our meth-

Figure 4 Number of genes involved in processes of interest. After the data mining in the literature, the 183 genes of interest were classified in 
several categories (light blue: known to be involved in hypoxia, red: known to be involved in cancer and hypoxia, yellow: known to be involved in 
cancer, green: known to be involved in cancer and metastasis, dark blue: known to be involved in cancer and metastasis and hypoxia, orange: not 
known to be involved in cancer or metastasis or hypoxia) in function of the combination of approaches (I for intersections, UI for union intersections 
and MA for meta-analyses).
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Table 2: DAVID information

Pathways Databases Genes

Cancer Prostate cancer KEGG MAPK1, IGF1, MAP2K1, CCNE2, 
NFKBIA

Chronic myeloid leukemia KEGG MAPK1, MAP2K1, NFKBIA

Colorectal cancer KEGG FOS, MAPK1, MAP2K1

Renal cell carcinoma KEGG VEGFA, MAPK1, MAP2K1, 
PAK6

Pancreatic cancer KEGG STAT1, VEGFA, MAPK1, 
MAP2K1

Bladder cancer KEGG VEGFA, MAPK1, MAP2K1

Glioma KEGG MAPK1, IGF1, MAP2K1

Melanoma KEGG MAPK1, IGF1, MAP2K1

Proliferation and cell motility Focal adhesion KEGG FLNC, VEGFA, MAPK1, SPP1, 
IGF1, MAP2K1, PAK6, LAMA3, 
MYL9

MAPK signalling pathway KEGG, BIOCARTA FLNC, NR4A1, FOS, MAPK1, 
DUSP1, MAP2K1, DUSP8, 
NFKBIA

VEGF signalling pathway KEGG VEGFA, HSPB1, MAPK1, 
MAP2K1

ErbB signalling pathway KEGG MAPK1, MAP2K1, PAK6, ERBB3

Regulation of actin 
cytoskeleton

KEGG ACTG2, MAPK1, MAP2K1, 
ACTC1, PAK6, MYL9

Pathogen recognition and 
phagocytosis

Pathogenic Escherichia coli 
infection - EPEC

KEGG YWHAZ, TUBB2B, TUBB2A, 
TUBB2C, TUBB4

Pathogenic Escherichia coli 
infection - EHEC

KEGG YWHAZ, TUBB2B, TUBB2A, 
TUBB2C, TUBB4

T Cell Receptor Signalling 
Pathway

BIOCARTA FOS, MAP2K1, NFKBIA

Toll-like receptor signalling 
pathway

KEGG STAT1, FOS, MAPK1, SPP1, 
MAP2K1, NFKBIA

fMLP induced chemokine 
gene expression in HMC-1 
cells

BIOCARTA MAPK1, MAP2K1, NFKBIA
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Fc Epsilon Receptor I 
Signalling in Mast Cells

BIOCARTA FOS, MAPK1, MAP2K1

Other Keratinocyte Differentiation BIOCARTA MAPK1, MAP2K1, NFKBIA

Gap junction KEGG TUBB2B, MAPK1, MAP2K1, 
TUBB2A, TUBB2C, TUBB4

NFAT and Hypertrophy of the 
heart

BIOCARTA MAPK1, IGF1, MAP2K1

Long-term depression KEGG MAPK1, IGF1, MAP2K1

Cadmium induces DNA 
synthesis and proliferation in 
macrophages

BIOCARTA FOS, MAPK1, MAP2K1, NFKBIA

DAVID classified 179 of the 183 genes of interest into 24 pathways from KEGG or Biocarta. Column 3 presents the genes involved in each 
specific pathway.

Table 2: DAVID information (Continued)
Figure 5 Number of pathways detected by DAVID in negative controls. 1000 lists of 183 random genes were submitted to DAVID. The number 
of pathways detected per test is presented on the X axis and the logarithm of the frequency of the tests (+ 1 to avoid log (0)) is presented on the Y 
axis. The black dots show the total number of pathways detected per test and the black star indicates the total number of pathways detected with 
the 183 genes of interest selected by the methodology. The red dots show the number of pathways directly involved in cancer detected per test and 
the red star indicates the number of pathways directly involved in cancer detected with the 183 genes of interest selected by the methodology. The 
green dots show the number of pathways involved in proliferation and cell motility detected per test and the green star indicates the number of path-
ways involved in proliferation and cell motility detected with the 183 genes of interest selected by the methodology. Lastly, the blue dots show the 
number of pathways involved in pathogen recognition and phagocytosis detected per test and the blue star indicates the number of pathways in-
volved in pathogen recognition and phagocytosis detected with the 183 genes of interest selected by the methodology.
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odology. Moreover, the second negative control assessed
the number of pathways involved in pathogen recogni-
tion and phagocytosis and only two tests over 1000 trials
gave results equal to those with the 183 genes of interest
selected by the methodology (figure 5). In vitro confirma-
tion of their expression in cancer cell lines with high
potential would confirm the relevance of the methodol-
ogy we propose and the involvement of these genes and
pathways in the metastasis of cancer cells. Moreover,
functional analysis of the products of these genes should
provide new keys to the understanding of the mecha-
nisms involved in the developement of metastases.

Conclusion
We describe a methodology able to identify new genes
involved in specific conditions from several microarray
datasets. This statement is supported by the fact that this
methodology was able to identify genes already known to
be involved in the biological processes which we studied.
The next step will be in silico validation by analysing the
expression profile of our genes of interest in publicly
available expression profile datasets from different cancer
cell lines and in vitro validation by qRT-PCR.

The first to be investigated are the genes involved in
pathogen recognition and phagocytosis. Indeed, several
elements indicate that these pathways may be involved in
cancer and particularly in the metastatic process induced
by hypoxia. Not only the genes selected by the methodol-
ogy will be tested. We actually plan to test close neigh-
bouring genes inside the pathways in order to validate
large portions of pathways or entire pathways instead of
single genes.

This is likely to improve our understanding of the
mechanisms underlying this pathology and provide new
opportunities to fight it.

Additional material

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MP carried out all the experiments, AG and FB participated in the development
of the R scripts, BDM participated in the retrieval and the analysis of the infor-
mations from DAVID, BDH and EB participated in the selection and the retrieval
of the datasets from GEO and ArrayExpress, CM and ED conceived the study,
participated in its design and helped to draft the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
M. Pierre is supported by FRIA (Belgium), B. DeMeulder is supported by Televie 
(Belgium) and C. Michiels is research director of FNRS (Fonds National de la 
Recherche Scientifique, Belgium).
We thank J.J. LaPres (Biochemistry and Molecular Biology, Michigan State Uni-
versity, East Lansing) for providing the dataset GSE1056 and K.S. Hoek (Depart-
ment of Dermatology, University Hospital of Zürich, Zürich) for providing the 
datasets GSE4840 and GSE4843.

Author Details
1Molecular Biology Research Unit (URBM), University of Namur - FUNDP, Namur, 
Belgium and 2Cell Biology Research Unit (URBC), University of Namur - FUNDP, 
Namur, Belgium

References
1. Friedl P, Wolf K: Tumour-cell invasion and migration: diversity and 

escape mechanisms.  Nat Rev Cancer 2003, 3(5):362-374.
2. Pantel K, Brakenhoff RH: Dissecting the metastatic cascade.  Nat Rev 

Cancer 2004, 4(6):448-456.
3. Gordan JD, Simon MC: Hypoxia-inducible factors: central regulators of 

the tumor phenotype.  Curr Opin Genet Dev 2007, 17(1):71-77.
4. Vaupel P: The role of hypoxia-induced factors in tumor progression.  

Oncologist 2004, 9(Suppl 5):10-17.
5. Sullivan R, Graham CH: Hypoxia-driven selection of the metastatic 

phenotype.  Cancer Metastasis Rev 2007, 26(2):319-331.

Additional file 1 R script for individual analyses. The HG-U133A 
Affymetrix GeneChip was used in this example of script. The script is in R 
language. Some objects and values, symbolyzed here by X or Y, have to be 
replace according to the dataset analyzed. CDF packages can vary accord-
ing to the GeneChip model analyzed.
Additional file 2 R script for data frames. The HG-U133A Affymetrix 
GeneChip was used in this example of script. The script is in R language. 
Some objects and values like the length of some vectors have to be replace 
according to the GeneChip model analyzed. CDF packages can vary 
according to the GeneChip model analyzed.

Additional file 3 R script for intersections. The script is in R language. 
Some objects and values, symbolyzed here by X have to be replace accord-
ing to the datasets involved in the intersection.
Additional file 4 R script for union intersections. The script is in R lan-
guage. Some objects and values, symbolyzed here by X have to be replace 
according to the datasets involved in the union intersection.

Additional file 5 R script for meta-analyses. The HG-U133A Affymetrix 
GeneChip was used in this example of script. The script is in R language. 
Some objects and values, symbolyzed here by X or Y, have to be replace 
according to the meta-dataset analyzed. CDF packages can vary according 
to the GeneChip model analyzed.
Additional file 6 Intersections. 33 groups of datasets were designed 
based on the experimental conditions and/or the GeneChip model.

Additional file 7 Union intersections. 30 groups of metastasis datasets 
were designed based on the experimental conditions and/or the GeneChip 
model. All were compared to the group of hypoxia datasets.
Additional file 8 Meta-datasets. 14 meta-datasets were designed based 
on the experimental conditions.

Additional file 9 Table of references. This table reports the number of 
the references in the references section for all 183 genes of interest. These 
are the publications where those genes were shown to be involved in can-
cer (column 2), in metastasis (column 3) and/or in hypoxia (column 4).

Additional file 10 Venn's diagram for the prostate datasets. The 6 
prostate specific datasets (or sub-datasets) were used to run two intersec-
tions, two union intersections and one meta-analysis. These three 
approaches provided 87, 74 and 48 genes respectively. A Venn's diagram 
was then generated using these data.
Additional file 11 Venn's diagram for the melanoma datasets. The 6 
melanoma specific datasets (or sub-datasets) were used to run three inter-
sections, three union intersections and three meta-analyses. These three 
approaches provided 144, 97 and 63 genes respectively. A Venn's diagram 
was then generated using these data.

Received: 30 July 2009 Accepted: 30 April 2010 
Published: 30 April 2010
This article is available from: http://www.biomedcentral.com/1471-2407/10/176© 2010 Pierre et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Cancer 2010, 10:176

http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S4.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S5.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S6.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S7.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S8.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S9.PDF
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S10.PNG
http://www.biomedcentral.com/content/supplementary/1471-2407-10-176-S11.PNG
http://www.biomedcentral.com/1471-2407/10/176
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12724734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15170447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17208433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15591418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17458507


Pierre et al. BMC Cancer 2010, 10:176
http://www.biomedcentral.com/1471-2407/10/176

Page 14 of 15
6. Chan DA, Giaccia AJ: Hypoxia, gene expression, and metastasis.  Cancer 
Metastasis Rev 2007, 26(2):333-339.

7. DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic 
control of gene expression on a genomic scale.  Science 1997, 
278(5338):680-686.

8. Kronick MN: Creation of the whole human genome microarray.  Expert 
Rev Proteomics 2004, 1(1):19-28.

9. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D: Light-directed, 
spatially addressable parallel chemical synthesis.  Science 1991, 
251(4995):767-773.

10. Affymetrix: Affymetrix Microarray Suite User Guide version 5.0.  Santa 
Clara: Affymetrix Manual; 2001. 

11. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of 
gene expression patterns with a complementary DNA microarray.  
Science 1995, 270(5235):467-470.

12. Callow MJ, Dudoit S, Gong EL, Speed TP, Rubin EM: Microarray 
expression profiling identifies genes with altered expression in HDL-
deficient mice.  Genome Res 2000, 10(12):2022-2029.

13. Benjamini Y, Hochberg Y: Controlling the false discovery rate: A 
practical and powerful approach to multiple testing.  Journal of the 
Royal Statistical Society 1995, 57:289-300.

14. Student: The Probable Error of a Mean.  Biometrika 1908, 6:1-25.
15. Baldi P, Long AD: A Bayesian framework for the analysis of microarray 

expression data: regularized t-test and statistical inferences of gene 
changes.  Bioinformatics 2001, 17(6):509-519.

16. Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA: Improved statistical tests 
for differential gene expression by shrinking variance components 
estimates.  Biostatistics 2005, 6(1):59-75.

17. Jain N, Thatte J, Braciale T, Ley K, O'Connell M, Lee JK: Local-pooled-error 
test for identifying differentially expressed genes with a small number 
of replicated microarrays.  Bioinformatics 2003, 19(15):1945-1951.

18. Opgen-Rhein R, Strimmer K: Accurate ranking of differentially expressed 
genes by a distribution-free shrinkage approach.  Stat Appl Genet Mol 
Biol 2007, 6:Article9.

19. Smyth GK: Linear models and empirical bayes methods for assessing 
differential expression in microarray experiments.  Stat Appl Genet Mol 
Biol 2004, 3:Article3.

20. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays 
applied to the ionizing radiation response.  Proc Natl Acad Sci USA 2001, 
98(9):5116-5121.

21. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers 
RM, Speed TP, Akil H, et al.: Evolving gene/transcript definitions 
significantly alter the interpretation of GeneChip data.  Nucleic Acids Res 
2005, 33(20):e175.

22. Gautier L, Moller M, Friis-Hansen L, Knudsen S: Alternative mapping of 
probes to genes for Affymetrix chips.  BMC Bioinformatics 2004, 5:111.

23. Liu H, Zeeberg BR, Qu G, Koru AG, Ferrucci A, Kahn A, Ryan MC, Nuhanovic 
A, Munson PJ, Reinhold WC, et al.: AffyProbeMiner: a web resource for 
computing or retrieving accurately redefined Affymetrix probe sets.  
Bioinformatics 2007, 23(18):2385-2390.

24. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of 
normalization methods for high density oligonucleotide array data 
based on variance and bias.  Bioinformatics 2003, 19(2):185-193.

25. Li C, Wong WH: Model-based analysis of oligonucleotide arrays: 
expression index computation and outlier detection.  Proc Natl Acad Sci 
USA 2001, 98(1):31-36.

26. Schadt EE, Li C, Ellis B, Wong WH: Feature extraction and normalization 
algorithms for high-density oligonucleotide gene expression array 
data.  J Cell Biochem Suppl 2001:120-125.

27. Hochreiter S, Clevert DA, Obermayer K: A new summarization method 
for Affymetrix probe level data.  Bioinformatics 2006, 22(8):943-949.

28. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, 
Speed TP: Exploration, normalization, and summaries of high density 
oligonucleotide array probe level data.  Biostatistics 2003, 4(2):249-264.

29. Wu Z, Irizarry R, Gentleman R, Murillo F, Spencer F: A model-based 
background adjustment for oligonucleotide expression arrays.  Journal 
of the American Statistical Association 2004, 99:909-917.

30. Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed 
AI, White J, Li J, et al.: Within the fold: assessing differential expression 
measures and reproducibility in microarray assays.  Genome Biol 2002, 
3(11):research0062.

31. Gene Expression Omnibus   [http://www.ncbi.nlm.nih.gov/geo/]

32. Rocca-Serra P, Brazma A, Parkinson H, Sarkans U, Shojatalab M, Contrino S, 
Vilo J, Abeygunawardena N, Mukherjee G, Holloway E, et al.: ArrayExpress: 
a public database of gene expression data at EBI.  C R Biol 2003, 326(10-
11):1075-1078.

33. Hunter KW, Crawford NP, Alsarraj J: Mechanisms of metastasis.  Breast 
Cancer Res 2008, 10(Suppl 1):S2.

34. Chaudary N, Hill RP: Hypoxia and metastasis in breast cancer.  Breast Dis 
2006, 26:55-64.

35. Berger F, De Hertogh B, Pierre M, Gaigneaux A, Depiereux E: The "Window 
t test": a simple and powerful approach to detect differentially 
expressed genes in microarray datasets.  Central European Journal of 
Biology 2008, 3(3):327-344.

36. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki 
RA: DAVID: Database for Annotation, Visualization, and Integrated 
Discovery.  Genome Biol 2003, 4(5):P3.

37. Huang da W, Sherman BT, Lempicki RA: Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources.  Nat 
Protoc 2009, 4(1):44-57.

38. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto 
Encyclopedia of Genes and Genomes.  Nucleic Acids Res 1999, 
27(1):29-34.

39. Biocarta Pathways   [http://www.biocarta.com/genes/index.asp]
40. Ihaka R, Gentleman R: R: a language for data analysis and graphics.  

Journal of Computational and Graphical Statistics 1996, 5:299-314.
41. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, 

Gautier L, Ge Y, Gentry J, et al.: Bioconductor: open software 
development for computational biology and bioinformatics.  Genome 
Biol 2004, 5(10):R80.

42. Entrez Global Query Cross-Database Search System   [http://
www.ncbi.nlm.nih.gov/sites/gquery]

43. Gur-Dedeoglu B, Konu O, Kir S, Ozturk AR, Bozkurt B, Ergul G, Yulug IG: A 
resampling-based meta-analysis for detection of differential gene 
expression in breast cancer.  BMC Cancer 2008, 8:396.

44. Ma S, Huang J: Regularized gene selection in cancer microarray meta-
analysis.  BMC Bioinformatics 2009, 10:1.

45. Ochsner SA, Steffen DL, Hilsenbeck SG, Chen ES, Watkins C, McKenna NJ: 
GEMS (Gene Expression MetaSignatures), a Web resource for querying 
meta-analysis of expression microarray datasets: 17beta-estradiol in 
MCF-7 cells.  Cancer Res 2009, 69(1):23-26.

46. Eferl R, Wagner EF: AP-1: a double-edged sword in tumorigenesis.  Nat 
Rev Cancer 2003, 3(11):859-868.

47. Jochum W, Passegue E, Wagner EF: AP-1 in mouse development and 
tumorigenesis.  Oncogene 2001, 20(19):2401-2412.

48. Shaulian E, Karin M: AP-1 in cell proliferation and survival.  Oncogene 
2001, 20(19):2390-2400.

49. van Dam H, Castellazzi M: Distinct roles of Jun: Fos and Jun: ATF dimers 
in oncogenesis.  Oncogene 2001, 20(19):2453-2464.

50. Tomkova K, Tomka M, Zajac V: Contribution of p53, p63, and p73 to the 
developmental diseases and cancer.  Neoplasma 2008, 55(3):177-181.

51. Malaguarnera R, Vella V, Vigneri R, Frasca F: p53 family proteins in thyroid 
cancer.  Endocr Relat Cancer 2007, 14(1):43-60.

52. Fabre-Guillevin E, Malo M, Cartier-Michaud A, Peinado H, Moreno-Bueno 
G, Vallee B, Lawrence DA, Palacios J, Cano A, Barlovatz-Meimon G, et al.: 
PAI-1 and functional blockade of SNAI1 in breast cancer cell migration.  
Breast Cancer Res 2008, 10(6):R100.

53. Beeghly-Fadiel A, Shu XO, Long J, Li C, Cai Q, Cai H, Gao YT, Zheng W: 
Genetic polymorphisms in the MMP-7 gene and breast cancer survival.  
Int J Cancer 2009, 124(1):208-214.

54. Fang YJ, Lu ZH, Wang GQ, Pan ZZ, Zhou ZW, Yun JP, Zhang MF, Wan DS: 
Elevated expressions of MMP7, TROP2, and survivin are associated 
with survival, disease recurrence, and liver metastasis of colon cancer.  
Int J Colorectal Dis 2009, 24(8):875-884.

55. Liu D, Nakano J, Ishikawa S, Yokomise H, Ueno M, Kadota K, Urushihara M, 
Huang CL: Overexpression of matrix metalloproteinase-7 (MMP-7) 
correlates with tumor proliferation, and a poor prognosis in non-small 
cell lung cancer.  Lung Cancer 2007, 58(3):384-391.

56. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial 
growth factor (VEGF) and its receptors.  Faseb J 1999, 13(1):9-22.

57. Roskoski R Jr: Vascular endothelial growth factor (VEGF) signaling in 
tumor progression.  Crit Rev Oncol Hematol 2007, 62(3):179-213.

58. Tsunedomi R, Iizuka N, Tamesa T, Sakamoto K, Hamaguchi T, Somura H, 
Yamada M, Oka M: Decreased ID2 promotes metastatic potentials of 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17458506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15966795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1990438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11116096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15618528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17402924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16284200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15310390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17660211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11842437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16473874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12429061
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19091006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17473365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12734009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19131956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847135
http://www.biocarta.com/genes/index.asp
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/sites/gquery
http://www.ncbi.nlm.nih.gov/sites/gquery
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19116033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19118496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19117983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11402336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11402335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11402340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18348649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17395974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19055748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18798254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19421758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17728005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17324579


Pierre et al. BMC Cancer 2010, 10:176
http://www.biomedcentral.com/1471-2407/10/176

Page 15 of 15
hepatocellular carcinoma by altering secretion of vascular endothelial 
growth factor.  Clin Cancer Res 2008, 14(4):1025-1031.

59. Lofstedt T, Jogi A, Sigvardsson M, Gradin K, Poellinger L, Pahlman S, 
Axelson H: Induction of ID2 expression by hypoxia-inducible factor-1: a 
role in dedifferentiation of hypoxic neuroblastoma cells.  J Biol Chem 
2004, 279(38):39223-39231.

60. Chandana SR, Movva S, Arora M, Singh T: Primary brain tumors in adults.  
Am Fam Physician 2008, 77(10):1423-1430.

61. Kaliks RA, Del Giglio A: Management of advanced prostate cancer.  Rev 
Assoc Med Bras 2008, 54(2):178-182.

62. Alberts SR: Updated options for liver-limited metastatic colorectal 
cancer.  Clin Colorectal Cancer 2008, 7(Suppl 2):S58-62.

63. Petit V, Thiery JP: Focal adhesions: structure and dynamics.  Biol Cell 
2000, 92(7):477-494.

64. Mitra SK, Hanson DA, Schlaepfer DD: Focal adhesion kinase: in command 
and control of cell motility.  Nat Rev Mol Cell Biol 2005, 6(1):56-68.

65. Tanoue T, Nishida E: Docking interactions in the mitogen-activated 
protein kinase cascades.  Pharmacol Ther 2002, 93(2-3):193-202.

66. Biondi RM, Nebreda AR: Signalling specificity of Ser/Thr protein kinases 
through docking-site-mediated interactions.  Biochem J 2003, 372(Pt 
1):1-13.

67. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn 
EA: Vascular endothelial growth factor and angiogenesis.  Pharmacol 
Rev 2004, 56(4):549-580.

68. Holbro T, Hynes NE: ErbB receptors: directing key signaling networks 
throughout life.  Annu Rev Pharmacol Toxicol 2004, 44:195-217.

69. Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network.  Nat 
Rev Mol Cell Biol 2001, 2(2):127-137.

70. Pollard TD: The cytoskeleton, cellular motility and the reductionist 
agenda.  Nature 2003, 422(6933):741-745.

71. Kaper JB, Nataro JP, Mobley HL: Pathogenic Escherichia coli.  Nat Rev 
Microbiol 2004, 2(2):123-140.

72. Kawai T, Akira S: Antiviral signaling through pattern recognition 
receptors.  J Biochem 2007, 141(2):137-145.

73. Dewas C, Fay M, Gougerot-Pocidalo MA, El-Benna J: The mitogen-
activated protein kinase extracellular signal-regulated kinase 1/2 
pathway is involved in formyl-methionyl-leucyl-phenylalanine-
induced p47phox phosphorylation in human neutrophils.  J Immunol 
2000, 165(9):5238-5244.

74. Kitaura J, Xiao W, Maeda-Yamamoto M, Kawakami Y, Lowell CA, Kawakami 
T: Early divergence of Fc epsilon receptor I signals for receptor up-
regulation and internalization from degranulation, cytokine 
production, and survival.  J Immunol 2004, 173(7):4317-4323.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2407/10/176/prepub

doi: 10.1186/1471-2407-10-176
Cite this article as: Pierre et al., Meta-analysis of archived DNA microarrays 
identifies genes regulated by hypoxia and involved in a metastatic pheno-
type in cancer cells BMC Cancer 2010, 10:176

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18281534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15252039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18533376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18506331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19064408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11229600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12191611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12600273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15602010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11252954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12700767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15040260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17190786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11046057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15383560
http://www.biomedcentral.com/1471-2407/10/176/prepub

	Abstract
	Background
	Methods
	Datasets
	Individual analyses
	Intersections
	Union intersections
	Meta-analyses
	Visualization
	Computer and bioinformatic resources

	Results and discussion
	Conclusion
	Additional material
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References
	Pre-publication history



