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Abstract
Background Physiologic MRI-based tumor habitat analysis has the potential to predict patient outcomes by 
identifying the spatiotemporal habitats of glioblastoma. This study aims to prospectively validate the cut-off for tumor 
progression obtained from tumor habitat analysis based on physiologic MRI in ascertaining time-to-progression (TTP) 
and the site of progression in glioblastoma patients following concurrent chemoradiotherapy (CCRT).

Methods In this prospective study (ClinicalTrials.gov ID: NCT02613988), we will recruit patients with IDH-wild type 
glioblastoma who underwent CCRT and obtained immediate post-operative and three serial post-CCRT MRI scans 
within a three-month interval, conducted using diffusion-weighted imaging and dynamic susceptibility contrast 
imaging. Voxels from cerebral blood volume and apparent diffusion coefficient maps will be grouped using k-means 
clustering into three spatial habitats (hypervascular cellular, hypovascular cellular, and nonviable tissue). The 
spatiotemporal habitats of the tumor will be evaluated by comparing changes in each habitat between the serial 
MRI scans (post-operative and post-CCRT #1, #2, and #3). Associations between spatiotemporal habitats and TTP will 
be analyzed using cox proportional hazard modeling. The site of progression will be matched with spatiotemporal 
habitats.

Discussion The perfusion- and diffusion-derived tumor habitat in glioblastoma is expected to stratify TTP and may 
serve as an early predictor for tumor progression in patients with IDH wild-type glioblastoma.

Trial registration ClinicalTrials.gov ID: NCT02613988.
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Background
Glioblastoma, known for its intratumoral heterogene-
ity, exhibits complex spatial variations in gene expres-
sion, histopathology, and macroscopic structure [1]. This 
heterogeneity is associated with a poor prognosis due 
to varied treatment responses and the development of 
therapy resistance in different tumor regions [2]. Physi-
ological MRI techniques, such as cerebral blood volume 
(CBV) and apparent diffusion coefficient (ADC) map-
ping, enable the detection of distinct tumor regions that 
exhibit variations in metabolism, vascularity, and cel-
lularity [3]. ADC provides insights into cell density and 
necrosis [4], while CBV correlates with vessel density [5]. 
While several imaging techniques, such as histograms, 
texture analysis, and radiomics, have been employed to 
quantify intratumoral heterogeneity based on imaging 
parameters, these methods often overlook spatial infor-
mation, preventing the grouping of similar voxels [6, 7].

To overcome this limitation, tumor habitat analysis has 
emerged as a promising approach to distinguish subre-
gions within a heterogeneous tumor by identifying voxels 
that share common tumor biology [8]. By utilizing voxel-
wise clustering, this novel approach identifies multiple 
subregions within a tumor that share common tumor 
biology, offering valuable clinical insights into tumor sub-
regions associated with progression, therapy resistance, 
and potential therapeutic targets [9]. Thus, clustering of 
multiparametric physiologic MRI, including diffusion-
weighted and perfusion-weighted MRI, can reflect spa-
tial habitats of post-treatment glioblastoma following 
concurrent chemoradiation therapy (CCRT). Further-
more, analyzing the temporal changes in spatial habitats 
derived from multiparametric physiologic MRIs could 
provide valuable insights into both spatial and temporal 
heterogeneity in post-treatment glioblastoma.

Recent research [10] has identified three spatial habi-
tats within post-treatment glioblastoma: hypervascular 
cellular tumor, hypovascular cellular tumor, and nonvi-
able tissue. Among these spatial habitats, an immedi-
ate increase in the hypovascular cellular tumor domain 
was strongly associated with poor prognosis following 
CCRT. Further, the localization of the hypovascular cel-
lular tumor site also correlated with the site of disease 
progression. However, the true clinical performance of 
physiological MRI-based tumor habitat analysis in pre-
dicting patient outcomes has not been demonstrated in 
prospective studies. It is also necessary to compare this 
approach with the widely adopted RANO-based assess-
ment for predicting time-to-progression (TTP).

Our ongoing clinical study therefore aims to prospec-
tively validate physiologic MRI-based tumor habitat 
analysis in predicting TTP and identifying the site of 
progression after CCRT in patients with IDH-wild type 
glioblastoma.

Methods
Study design
This study is designed as a single-center, open-label, sin-
gle-arm trial conducted at Asan Medical Center, a uni-
versity-affiliated 2700-bed tertiary medical center located 
in Seoul, Republic of Korea. Enrollment of participants 
will continue until December 2025, with eligible partici-
pants being recruited from the hospital. The study pro-
tocol has received approval from the Institutional Review 
Board (IRB) of Asan Medical Center (2019 − 1259), and 
written informed consent will be obtained from each par-
ticipant prior to enrollment. The imaging protocol was 
previously released as Early Response Assessment Using 
on 3T Advanced MR Imaging as Predictor of Long-term 
Treatment Response in Newly Diagnosed Glioblasto-
mas (NCT02613988). This will be a validation study for 
imaging biomarker (tumor habitat analysis) obtained 
from a prospective imaging protocol enrollment from 
NCT02613988, utilizing voxel-wise clustering method of 
DWI and DSC imaging to represent tumor cellularity and 
vascularity with high generalizability.

Eligibility criteria
All study participants will be required to meet the fol-
lowing inclusion criteria and provide informed consent. 
Patients who do not meet the inclusion criteria will be 
excluded from the study. The flow of participant inclu-
sion is schematically shown in Fig. 1.

Inclusion criteria
(1) Adult patients aged over 18 years.
(2) Patients who were histologically diagnosed with 

IDH wild-type glioblastoma according to the World 
Health Organization classification 2021 [11].

(3) Patients scheduled for current standard treatment: 
maximum safe surgical resection followed by concurrent 
TMZ (75 mg/m2/day for 6 weeks) and RT (60  Gy in 30 
fractions) and then six maintenance cycles of TMZ (150–
200 mg/m2/day for the first 5 days of a 28-day cycle—
TMZ) [12].

(4) Patients who provide written informed consent 
prior to any study-specific procedures.

Exclusion criteria
(1) Patients unable to receive MRI brain scan.
(2) Patients with no evidence of a measurable contrast-

enhancing lesion of more than 1 × 1 cm2 on the first post-
CCRT examination.

MRI acquisitions
The brain tumor imaging protocol will utilize a 3-T scan-
ner (Ingenia 3.0 CX, Philips Healthcare) and will include 
both structural and physiologic sequences: T2-weighted 
imaging (T2WI), fluid-attenuated inversion recovery 
(FLAIR) imaging, T1-weighted imaging (T1WI), DWI, 
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DSC perfusion imaging, and contrast-enhanced (CE) 
T1WI.

The DWI parameters are as follows: repetition time 
(TR)/echo time (TE) at 3,000/56 ms, diffusion gradient 
encoding with b values of 0 and 1,000 s/mm2, field of view 
(FOV) of 250 × 250 mm, matrix dimensions of 256 × 256, 
and a slice thickness/gap of 5/2 mm. ADC images will be 
calculated based on the DWI images acquired with b val-
ues of 1,000 and 0 s/mm2.

DSC imaging will be conducted using a gradient-echo 
echo-planar imaging protocol. A preload of 0.01 mmol/
kg gadoterate meglumine (Dotarem; Guerbet) will be 
administered, followed by a dynamic bolus of a standard 
dose of 0.1 mmol/kg gadoterate meglumine at a rate of 
4 mL/second using an MRI-compatible power injector 
(Spectris; Medrad). Subsequently, 20 mL of saline will be 

injected at the same rate. The DSC imaging parameters 
are set as follows: TR/TE of 1,808/40 ms, a flip angle of 
35°, FOV of 24 × 24  cm, slice thickness/gap of 5/2  mm, 
matrix dimensions of 128 × 128, and a total acquisition 
time of 1  min and 54  s. The dynamic acquisition will 
have a temporal resolution of 1.5 s, capturing a total of 60 
dynamics. The DSC imaging will cover the entire tumor 
volume with the same section orientation as conven-
tional MRI.

Reference standard for final diagnosis and endpoints
A final diagnosis of pseudoprogression (treatment-related 
change) or true progression will be confirmed pathologi-
cally by surgery when clinically indicated. In cases where 
second-look operations are not performed, consecu-
tive clinicoradiological diagnoses will be established by 

Fig. 1 Flow chart of the study. Abbreviations: CCRT, chemoradiotherapy; TMZ, temozolomide
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consensus between two experts: J.H. Kim, with 26 years 
of experience in neuro-oncology practice, and a neurora-
diologist, H.S. Kim, with 21 years of experience in neuro-
oncologic imaging. These diagnoses will be based on the 
RANO criteria [13]. Progression will be defined as the 
occurrence of any new lesion outside the radiation field 
or a gradual increase in the size of the contrast-enhanc-
ing lesion observed in more than two subsequent follow-
up MRI examinations conducted at 2–3-month intervals, 
necessitating a prompt change in treatment. A diagnosis 
of progression will not be made if the increase was caused 
by comorbid conditions or concurrent medication). For 
enlarged contrast-enhancing lesions, the size criterion 
was an increase of more than 25% in the size of a mea-
surable (> 1  cm) enhancing lesion according to the sum 
of the products of the perpendicular dimensions between 
the pre-CCRT and first post-CCRT MR images. This was 
modified from the RANO criteria for progressive disease 
[13] less than 12 weeks after CCRT completion.

On the other hand, pseudoprogression will be defined 
when no change in treatment is required at least 6 
months after the end of CCRT. This diagnosis allows for 
a mild increase in contrast-enhancing lesions, as long as 
there is no treatment change during this time period. The 
cases of pseudoprogression will be classified as “non-pro-
gression”. The time of first progression will be calculated 
as the date of true progression for these cases.

The primary endpoint of the study is TTP, calculated 
from the day of initial diagnosis to the day of first docu-
mented progression. The secondary endpoint is the site 
of progression.

Mask segmentation and advanced image processing
To process the three-dimensional contrast-enhanced 
T1-weighted imaging (3D CE T1WI) and FLAIR data, 
a skull stripping algorithm optimized for heteroge-
neous MRI data will be employed (https://github.com/
MIC-DKFZ/HD-BET). Lesion segmentation masks will 
be generated using a 3D UNet-based method (https://
github.com/MIC-DKFZ/nnUNet; ref. 20) from the 
PyTorch package version 1.1 in Python 3.7 (www.python.
org).

For the DSC analysis, pharmacokinetic map calculation 
will be performed using Nordic ICE (NordicNeuroLab). 
The integrated DSC module incorporates a relative CBV 
(rCBV) leakage correction algorithm and manual noise 
thresholding to quantify the amount of blood in a given 
volume of tissue, expressed as mL per 100 mL tissue. The 
Weisskoff-Boxerman method, which calculates pixel-
wise concentration-time curve deviations from a refer-
ence curve, will be used for calculations assumed to be 
unaffected by leakage [14]. The rCBV maps will be nor-
malized based on the normal-appearing white matter to 
create normalized CBV (nCBV) maps.

To analyze changes across consecutive scans, the 3D 
CE T1WI images obtained from each patient will be 
coregistered and resampled to have isometric-voxel sizes. 
Subsequently, FLAIR, nCBV, and ADC images will be 
coregistered and resampled to the iso-voxel CE T1WI 
images using rigid transformations with six degrees of 
freedom in the SPM package (version 12, www.fil.ion.ucl.
ac.uk/spm/). This step ensures continuous slices without 
gaps and facilitates voxel-wise analysis for tracking habi-
tats. The final voxel classifications based on nCBV and 
ADC values will be implemented using a k-means clus-
tering module in the scikit-learn python package.

Multiparametric physiologic MRI-based spatiotemporal 
habitat analysis
Population-level clustering based on previous research
Using two distinct feature maps, three clusters will be 
established: cluster 1 representing the “hypervascular 
cellular tumor” characterized by a high CBV value and 
low ADC value, cluster 2 representing the “hypovascular 
cellular tumor” with low CBV value and low ADC value, 
and cluster 3 representing the “nonviable tissue” exhibit-
ing low CBV value and high ADC value. The range for the 
boundary of the pre-trained and retrospectively validated 
spatial physiologic habitats was previously reported as 
4.37–4.44 for nCBV and 150–187 (×10− 6 mm2/s) for 
ADC [10].

Calculation of spatiotemporal habitats
The analysis will utilize four consecutive MR examina-
tions: immediate post-operation (examination 1, post-
op), the first visit after CCRT (examination 2, post-CCRT 
#1), the second visit after CCRT (examination 3, post-
CCRT #2), and the third visit after CCRT (examination 
4, post-CCRT #3), with a 3-month interval between each 
examination. Firstly, changes in the number of voxels 
within the entire enhancing lesion and within each habi-
tat will be calculated between sequential examinations. 
Secondly, the percentage of each habitat relative to the 
contrast-enhancing lesion (CEL) volume will be calcu-
lated as the number of voxels in habitat 1 divided by the 
number of voxels in the CEL volume. We will then cal-
culate changes in these percentages between sequential 
examinations.

Analysis of site of progression
The site of progression will be analyzed based on the fol-
low-up examination at the time of progression. The vol-
ume of CEL at the time of progression will be matched 
with the habitats identified in examination 2 (post-
CCRT#1) and 3 (post-CCRT #2). The overlap between 
each spatiotemporal habitat and the CEL volume at the 
time of progression will be quantified using the DICE 
similarity coefficient, DICE = 2|P∩ R|

|P|+|R|  [15]. P represents 

https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
http://www.python.org
http://www.python.org
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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each spatiotemporal habitat and R represents the CEL 
volume at the time of progression. The DICE ranges 
between 0 (no overlap) and 1 (perfect agreement).

The entire overview of our study process is depicted in 
Fig.  2. Representative cases of tumor habitat analysis is 
shown in Fig. 3.

Statistical analysis
Baseline characteristics including sex, age, Karnofsky 
performance score (KPS; binary, score > 70 or ≤ 70), initial 
tumor volume, O6-methylguanine-DNA-methyltransfer-
ase (MGMT) promoter status, and extent of surgery will 
be analyzed using descriptive statistics.

Sample sizecalculation
The methodology written here adheres to the REMARK 
(Reporting Recommendations for Tumor Marker Prog-
nostic Studies) recommendations [16]. The sample size 
was calculated according to the Cox proportional haz-
ards regression model with nonbinary covariates [17]. 
An event rate (progression) of 0.5 ~ 1.0 represent 51 pro-
gressions, with a sample size between 51 and 102 patients 
yielding expected power of 80% and an alpha error of 5%. 

We aim to recruit 100 patients over a 3-year period, with 
a 2-year follow-up for clinical assessments.

Use of spatiotemporal habitat to predict TTP
To analyze the association between spatiotemporal habi-
tats and TTP, univariable analysis will be conducted 
using Cox proportional hazard regression or the Kaplan-
Meier method (log-rank test). Hazard ratios indicate rela-
tive change in hazard incurred by 1 unit increase in each 
parameter; 20,000 voxels (20k voxels) defined a single 
unit in a previous study [10]. Additionally, a multivariable 
Cox analysis will be performed, considering the spatio-
temporal habitat, age, KPS scores, extent of surgery, and 
initial tumor volume as factors predictive of TTP.

Risk stratification using spatiotemporal habitat
The habitat risk score, based on the discrete increase of 
the hypervascular and hypovascular cellular habitats 
will be calculated for the patients. The cutoff of a dis-
crete score was calculated previously [10]: when a patient 
showed an increase of both hypervascular cellular habitat 
(> 0 voxel) and hypovascular cellular habitat (> 130 voxel), 
the habitat risk score was 2. Habitat risk score stratifica-
tion between high-, intermediate-, and low-risk patients 

Fig. 2 Process of spatiotemporal tumor habitat analysis using K-means clustering for ADC and CBV, and prediction of time-to-progression and site of 
progression. Abbreviations: CEL, contrast enhancing lesion; ADC, apparent diffusion coefficient; CBV, cerebral blood volume; CCRT, chemoradiotherapy
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will be calculated using log-rank test. The log-rank test 
with p-value less than 0.05 would demonstrate that the 
risk score obtained from tumor habitat analysis success-
fully stratified patients with early progression (high-risk 
group).

All statistical analyses will be conducted using the R 
Statistical Package (version 3.6.3, Institute for Statistics 
and Mathematics, http://www.R-project.org). A p-value 
less than 0.05 will be considered statistically significant.

Discussion
This study aims to prospectively validate the predic-
tive utility of physiological MRI-based tumor habitats in 
determining TTP and identifying the site of progression 
in patients with IDH-wild type glioblastoma after CCRT.

The inherent heterogeneity of post-treatment glio-
blastomas makes assessment using solitary quantitative 
parameters challenging [18]. Apart from changes induced 
by treatment, such as decreased perfusion and increased 
diffusion, the post-treatment glioblastoma tissues may 
demonstrate a spectrum of perfusion levels from low to 
high, along with decreased diffusion [19]. In this study, 
we hypothesize that ADC and CBV can more distinctly 
define the characteristics of glioblastoma after treatment, 
providing sensitive and specific information on tumor 
progression. Additionally, this approach may facilitate 
quantification of the initial pathophysiologic changes in 
post-treatment glioblastoma. Our previous research [10] 

categorized tumors into three groups: hypervascular cel-
lular tumor, hypovascular cellular tumor, and nonviable 
tumor. An increase in the hypovascular cellular habitat 
correlated with a poor patient outcome, indicating its 
potential as a reliable imaging biomarker for early tumor 
progression prediction.

In the context of recurrent glioblastoma, re-resection is 
limited [20], and the presence of spatial heterogeneity in 
post-treatment glioblastoma hinders the achievement of 
adequate lesion sampling for effective histological analy-
sis. Additionally, even with sufficient tissue sampling, 
explicit standards for histologic diagnosis of pseudopro-
gression, residual glioma, and recurrent glioma are cur-
rently lacking [21]. Therefore, we believe that utilizing 
advanced brain tumor imaging for radiographic guidance 
could facilitate optimal tissue sampling in cases of recur-
rent glioblastoma. Furthermore, if tumor habitat analysis 
enables non-invasive identification of the site of progres-
sion, its utility is anticipated to be significant.

In this study, we will analyze immediate post-operative 
and post-CCRT physiologic MRI scans in patients with 
IDH-wild type glioblastoma. Voxels from CBV and ADC 
maps will be grouped using k-means clustering into three 
spatial habitats. We will examine the temporal changes in 
these clusters and analyze the correlation between spa-
tiotemporal habitats and patient outcomes.

In conclusion, we believe that tumor habi-
tat analysis has the power to capture details of the 

Fig. 3 Representative case of tumor habitat analysis from a 64-year-old patient. The hypervascular cellular habitat (red color) shows high nCBV and low 
ADC, the hypovascular cellular habitat (green color) shows low nCBV and low ADC, and the nonviable tissue habitat (blue color) shows low nCBV and high 
ADC. (A) Spatial mapping shows an increase in both hypervascular and hypovascular cellular habitat in post-CCRT examinations. The confirmatory scan 
after 4 weeks indicates tumor progression. (B) Spatial habitats defined by clustered voxels. Between postop and post-CCRT #1 examinations, the hyper-
vascular cellular habitat increased by 104 voxels, and the hypovascular cellular habitat by 166 voxels, resulting in a habitat risk score of 2 points. Between 
post-CCRT first and second scans, hypervascular cellular habitat increased by 332 voxels, hypovascular cellular habitat by 1256 voxels, resulting in a habitat 
risk score of 2 points. Abbreviations: nCBV, normalized cerebral blood volume; ADC, apparent diffusion coefficient; CCRT, concurrent chemoradiotherapy
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spatiotemporal habitats of tumor vascularity and cellu-
larity. This enhanced insight into the tumor environment 
has the potential to stratify TTP and serve as a useful 
predictor for early tumor progression and clinical out-
comes in post-treatment glioblastoma patients.

Abbreviations
TTP  Time-to-progression
CCRT  Chemoradiotherapy
CBV  Cerebral blood volume
ADC  Apparent diffusion coefficient
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