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Abstract 

Background  Muscle-invasive bladder cancer (MIBC) is a prevalent and aggressive malignancy. Ferroptosis 
and cuproptosis are recently discovered forms of programmed cell death (PCD) that have attracted much attention. 
However, their interactions and impacts on MIBC overall survival (OS) and treatment outcomes remain unclear.

Methods  Data from the TCGA-BLCA project (as the training set), cBioPortal database, and GEO datasets (GSE13507 
and GSE32894, as the test sets) were utilized to identify hub ferroptosis/cuproptosis-related genes (FRGs and CRGs) 
and develop a prognostic signature. Differential expression analysis (DEA) was conducted, followed by univariate 
and multivariate Cox’s regression analyses and multiple machine learning (ML) techniques to select genetic features. 
The performance of the ferroptosis/cuproptosis-related signature was evaluated using Kaplan–Meier (K–M) survival 
analysis and receiver-operating characteristics (ROC) curves. Mutational and tumour immune microenvironment 
landscapes were also explored. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) 
experiments confirmed the expression patterns of the hub genes, and functional assays assessed the effects of SCD 
knockdown on cell viability, proliferation, and migration.

Results  DEA revealed dysregulated FRGs and CRGs in the TCGA MIBC cohort. SCD, DDR2, and MT1A were identi-
fied as hub genes. A prognostic signature based on the sum of the weighted expression of these genes demon-
strated strong predictive efficacy in the training and test sets. Nomogram incorporating this signature accurately 
predicted 1-, 3-, and 5-year survival probabilities in the TCGA cohort and GSE13507 dataset. Copy number variation 
(CNV) and tumour immune microenvironment analysis revealed that high risk score level groups were associated 
with immunosuppression and lower tumour purity. The associations of risk scores with immunotherapy and chemical 
drugs were also explored, indicating their potential for guiding treatment for MIBC patients. The dysregulated expres-
sion patterns of three hub genes were validated by RT-qPCR experiments.

Conclusions  Targeting hub FRGs and CRGs could be a promising therapeutic approach for MIBC. Our prognostic 
model offers a new framework for MIBC subtyping and can inform personalized therapeutic strategies.

Keywords  Muscle-invasive bladder cancer, Ferroptosis, Cuproptosis, TCGA​, Nomogram, Prognostic model

*Correspondence:
Yong Qin
hhyyqinyong@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-024-12741-5&domain=pdf


Page 2 of 22Hao et al. BMC Cancer          (2024) 24:958 

Introduction
Bladder cancer stands as the most common malignancy 
within the urinary system [1]. In the U.S., it ranks as 
the sixth most prevalent cancer, with 83,190 new cases 
annually, and is the ninth leading cause of cancer-related 
deaths [2]. Men are notably more affected by this dis-
ease than women [1, 2]. Muscle-invasive bladder cancer 
(MIBC) is an aggressive form of urothelial carcinoma 
(UC) characterized by tumour invasion into the detrusor 
muscle [3]. It exhibits significant heterogeneity and prog-
nostic variability, posing considerable challenges to cur-
rent therapeutic approaches [4]. Despite the application 
of multiple treatment modalities including surgical resec-
tion, chemotherapy, and radiotherapy, the 5-year survival 
rate for MIBC remains at only 40–60% [5]. Therefore, 
there is an urgent need to develop a validated prognostic 
model and discover novel therapeutic targets.

Recent advancements in programmed cell death 
(PCD), particularly ferroptosis and cuproptosis, have 
greatly enhanced our understanding of cancer progres-
sion [6–8]. Ferroptosis is an iron-dependent cell death 
marked by lipid peroxidation [9, 10], while cuproptosis 
involves copper-induced protein aggregation and cell 
death [11, 12]. The crosstalk between these two cell death 
pathways suggests that targeting both types of cell death 
could enhance the effectiveness of cancer treatments 
[13]. A study on hepatocellular carcinoma identified a 
signature combining ferroptosis-related or cupropto-
sis-related genes (FRGs, CRGs) (G6PD, NRAS, RRM2, 
SQSTM1, SRXN1, TXNRD1, and ZFP69B) for progno-
sis and therapy prediction [14]. In breast cancer, another 
study established a prognostic model based on five CRGs 
and FRGs (ANKRD52, HOXC10, KNOP1, SGPP1, and 
TRIM45). These genes are significantly associated with 
immune infiltration and can predict patient outcomes 
[15]. However, the combined effect of ferroptosis and 
cuproptosis on MIBC survival and treatment outcomes 
remains unclear.

Given the heterogeneity of MIBC and the urgent need 
for effective treatment options, immunotherapy, includ-
ing immune checkpoint inhibitors (ICIs), has gathered 
widespread attention as a novel anti-tumour strategy. 
The expression of programmed death-ligand 1 (PD-L1) 
in UC patients is a significant predictive biomarker for 
improved overall survival (OS) with immune checkpoint 
inhibitors (ICIs) compared to chemotherapy, particularly 
in PD-L1–positive patients [16, 17].

Multi-omics approaches, encompassing genomics, 
transcriptomics, proteomics, and metabolomics, have 
been proven to be pivotal in advancing cancer research 
[18]. By analysing transcriptomics and genomics data, 
researchers identified a ferroptosis/cuproptosis-related 
signature, which was used to develop a prognostic model 

for patients with MIBC. Integrating multi-omics analysis 
techniques, this study investigates the roles of ferropto-
sis and cuproptosis in MIBC progression. Furthermore, 
it evaluates the signature’s predictive value for immuno-
therapy efficacy and drug activity, thereby improving dis-
ease management.

Methods
The workflow of this study is shown in Additional file 1: 
Figure S1.

Patient cohorts
Transcriptional gene expression matrix (RNA-sequenc-
ing [RNA-seq] data) and clinical information of patients 
in The Cancer Genome Atlas (TCGA)-BLCA project 
were obtained from the Genomic Data Commons (GDC) 
Data Portal (https://​portal.​gdc.​cancer.​gov/). The segmen-
tal CNV data of the TCGA-BLCA cohort were simul-
taneously downloaded from the cBioPortal for Cancer 
Genomics software platform (https://​www.​cbiop​ortal.​
org/) [19]. Two probe intensity datasets, GSE13507 [20] 
and GSE32894 [21], were accessed through the Gene 
Expression Omnibus (GEO) repository (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/). Detailed data sources, sample 
inclusion–exclusion criteria, and data processing meth-
ods are provided in Additional file  2. The final TCGA 
cohort (training cohort 1) included a total of 384 tumour 
samples (segmental CNV profiles: 380 tumour samples) 
and 17 histologically normal adjacent tumour (NAT) tis-
sues. GSE13507 dataset comprised 165 primary bladder 
cancer patients, and GSE32894 dataset consisted of 224 
UC cases.

Cell culture
Human bladder cancer cell lines T24 and UM-UC-3, 
along with the normal human uroepithelial cell line SV-
HUC-1, were obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). These cell lines 
were cultured in media supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin/streptomycin, 
under a 5% CO2 atmosphere at 37 °C. The specific media 
used were Roswell Park Memorial Institute medium 
(RPMI)-1640 for T24 cells, Minimum Essential Medium 
(MEM) for UM-UC-3 cells, and F12K for SV-HUC-1 
cells. Each cell line was tested using three samples, and 
all experiments were carried out in triplicate.

RT‑qPCR experiment
Total RNA from T24, UM-UC-3, and SV-HUC-1 cells 
was extracted using the FastPure Cell/Tissue Total RNA 
Isolation Kit V2. Reverse transcription was performed 
with the HiScript® III 1st Strand cDNA Synthesis Kit 
(+ gDNA wiper). The real-time quantitative reverse 
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transcription polymerase chain reaction (RT-qPCR) 
assays utilized the Taq Pro Universal SYBR qPCR Master 
Mix, purchased from Vazyme (Nanjing, China). GAPDH 
served as an internal control. Primer sequences for SCD, 
DDR2, MT1A, and GAPDH are listed in Table 1.

Cell Transfection
Three siRNAs targeting SCD and a negative con-
trol siRNA (si-NC) were procured from GenePharma 
(China). Cell transfection was executed using jetPRiME 
(Polyplus, NY, USA) following the manufacturer’s 
instructions. Sequences for the siRNAs targeting SCD 
are provided in Table 2.

CCK‑8 Assay
Cells were seeded in 96-well plates at a density of 1000 
cells per well. CCK-8 solution (10  μL) at a 1:10 dilu-
tion with Dulbecco’s modified eagle medium (DMEM) 
(100 μL) was added to each well for measuring cell viabil-
ity and proliferation rate. Cell proliferation was assessed 
at 0, 24, 48, and 72 h post-seeding using a microplate 
reader to measure optical density at 450 nm.

Transwell assay
Cell invasion assays were conducted using 24-well 
Transwell chambers (Corning, NY, USA). Approxi-
mately 40,000 cells, suspended in serum-free medium, 
were placed into the upper chamber, while the lower 
chamber was filled with medium containing 20% FBS as 
a chemoattractant. Migrated cells were fixed with poly-
formaldehyde, stained with crystal violet, and photo-
graphed under a fluorescent microscope.

Wound healing assay
Cells were seeded in 12-well plates at a density of 
3 × 105 cells per well and grown to confluence. A scratch 
was made in the monolayer using a tip, and cells were 
then washed with PBS to remove detached cells. Cells 
were cultured in complete medium. The representative 
of the scratch, from the same field, was photographed 
at 0 and 24 h post-scratch.

Statistical analysis
Statistical analyses were conducted using R (v. 4.3.2, 
R Foundation for Statistical Computing, Vienna, Aus-
tria). All p-values were derived from two-sided tests. 
Detailed descriptions of the statistical methodologies 
are available in Additional file 2.

Comparison of baseline characteristics
Bivariate associations between OS status and patients’ 
baseline characteristics in the three datasets were 
tested. Pearson’s chi-squared test was used for differ-
ential analysis of categorical variables, and Yates’ con-
tinuity correction was applied if at least one expected 
cell count was less than 5 but greater than or equal to 
1 (for 2 × 2 contingency table only). Fisher’s exact test 
was used when at least one expected cell count was less 
than 1.

Identification of DEGs and co‑expressed genes
The FRGs and CRGs are detailed in Additional file  3: 
Tables S1 and S2. After running voom on TCGA count 
matrix, differentially expressed genes (DEGs) between 17 
MIBC biopsies and 17 NAT tissues were detected using 
the “limma” package. DEGs were defined based on an 
absolute log2(fold-change) [log2(FC)] greater than 2 and a 
false discovery rate (FDR)-adjusted p-value below 0.001.

Co-expression relationships were assessed using 
Spearman’s rank correlation coefficient from the 
“Hmisc” package [22]. This analysis was performed on 
a log2-transformed matrix of tumour samples, with 

Table 1  List of primer sequences for SCD, DDR2, MT1A, and 
GAPDH (housekeeping gene)

Gene Sequence Length (bp)

SCD Forward CCC​GAC​GTG​GCT​TTT​TCT​TC 20

Reverse GCC​AGG​TTT​GTA​GTA​CCT​CCTC​ 22

DDR2 Forward GTT​GGG​GAA​ACG​CAG​TGG​AT 20

Reverse GGT​CTC​CCT​TGA​TGG​AGG​TTTC​ 22

MT1A Forward CTC​TTG​CTG​TTG​CTG​ATG​GG 20

Reverse TCG​TGA​GAC​CTT​CGC​TCT​TGT​ 21

GAPDH Forward GAC​AGT​CAG​CCG​CAT​CTT​CT 20

(house-
keeping 
gene)

Reverse GCG​CCC​AAT​ACG​ACC​AAA​TC 20

Table 2  List of primer sequences for three siRNAs targeting SCD 
and a negative control siRNA (si-NC)

NC Negative control

Gene Sequence Length (bp)

si-#1 Sense 5’-CUU​CGU​UUG​AAG​CAA​GAA​UTT-3’ 21

Antisense 5’-AUU​CUU​GCU​UCA​AAC​GAA​GTT-3’ 21

si-#2 Sense 5’-CAA​GUC​CUC​UAC​CGA​AUG​ATT-3’ 21

Antisense 5’-UCA​UUC​GGU​AGA​GGA​CUU​GT-3’ 20

si-#3 Sense 5’-GAU​GAG​CAG​UCC​AAA​GCA​UTT-3’ 21

Antisense 5’-AUG​CUU​UGG​ACU​GCU​CAU​CT-3’ 20

si-NC Sense 5’-UUC​UUC​GAA​CGU​GUC​ACG​UTT-3’ 21

Antisense 5’-ACG​UGA​CAC​GUU​CGG​AGA​ATT-3’ 21
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significance defined as a p-value below 0.05 and an abso-
lute correlation coefficient (|r|) above 0.4.

Establishment of ferroptosis/cuproptosis‑related signature
To screen for hub genetic features, univariate and mul-
tivariate Cox’s proportional hazards (PH) regression and 
machine learning (ML) techniques were employed to 
analyse the normalized TPM expression matrix through a 
rigorous selection process. The ML methods included the 
least absolute shrinkage and selection operator (LASSO)-
penalized Cox’s model, support vector machine-recursive 
feature elimination (SVM-RFE), and bidirectional step-
wise regression. Details are shown in Additional file 2.

Expression data of hub genes were used to perform a 
multivariate Cox’s regression analysis to compute an 
individualized genetic risk score for each patient in the 
training cohort and test set. The risk score was calculated 
using the following equation:

where risk scorei represents the risk score for sample i, 
j represents the number of hub gene, βij represents the 
multivariate Cox’s regression coefficient value of each 
hub gene, and exprij stands for the normalized TPM value 
of each gene in sample i.

Correlations between the expression levels of hub 
BMGs and the risk scores were examined using the 
“Hmisc” package [22]. Patients were then categorized 
into low and high risk score level groups based on the 
median value. Expression of hub genes between the two 
groups was compared using independent t-test. This 
method was also applied to external validation datasets 
(GSE13507 and GSE32894), adjusting the cutoff points 
due to differences in sequencing platform.

Development and validation of nomogram‑based 
prognostic model
Univariate Cox’s regression analysis was utilized to assess 
the associations between the ferroptosis/cuproptosis-
related signature and patients’ demographic and clinical 
characteristics. Significant variables were then selected 
for further evaluation using bidirectional stepwise 
regression from the “stats” package [23]. TNM stage was 
excluded after that to prevent multicollinearity. These 
significant predictors, alongside the ferroptosis/cuprop-
tosis-related signature, informed the development of a 
nomogram-based prognostic model for predicting OS.

The associations between the expression level of each 
hub gene and the risk score and independent demo-
graphic and clinical predictors were examined. Two-sam-
ple independent t-test was employed for variables with 

(1)Riskscorei =

n

j−1

βij × exprβij

normal distribution, while Wilcoxon’s rank-sum test was 
utilized for variables that did not follow a normal distri-
bution. The performance of the nomogram-based predic-
tive model was assessed using various metrics, including 
C-index for discrimination, integrated Brier score (IBS) 
for prediction accuracy, and calibration curves for model 
calibration. Additionally, decision curve analysis (DCA) 
[24] was used to evaluate utility of models.

Construction of biological interaction networks
To seek potential interactions between DEGs, a protein–
protein interaction (PPI) network was constructed using 
the STRING (Search Tool for the Retrieval of Interact-
ing Genes/Proteins) database (v. 12.0, https://​string-​db.​
org/) [25]. In the network, the nodes stand for the pro-
teins and the edges represent the interactions. The mini-
mum interaction score was set to a medium confidence 
level of 0.400 to ensure the reliability of the interactions. 
Additionally, the STRING database was used to perform 
overrepresentation analysis (ORA) using KEGG path-
way gene sets (herein referred to as “ORA–KEGG”). Sig-
nificant pathways associated with cancer (FDR-adjusted 
p < 0.05) were visually distinguished in the PPI network 
by assigning distinct colours to the corresponding nodes 
for clear annotation. In addition to the PPI networks, 
resultant links between pairs of co-expressed DEFRGs 
and DECRGs from correlation analysis were integrated to 
generate a co-expression network.

Functional enrichment analysis
To evaluate the enrichment of DEGs among functional 
terms, ORA was conducted using Gene Ontology (GO) 
annotation (hereinafter referred to as “ORA–GO”). 
The Reduce and VIsualize Gene Ontology (REVIGO) 
web tool (http://​revigo.​irb.​hr/) was used to remove any 
redundancy of top 30 significantly enriched GO terms 
[26]. Based on semantic similarities, after merging and 
replacing the representative subset, non-redundant GO 
terms were displayed in a semantic space with a cutoff 
value C of 0.7.

Moreover, gene set enrichment analysis (GSEA) was 
carried out on Hallmark gene sets (hereinafter referred 
to as “GSEA–Hallmark”) and KEGG gene sets (herein-
after referred to as “GSEA–KEGG”), with genes ranked 
either by log2(FC) or Spearman’s r for single-gene GSEA. 
The top 20 enriched Hallmark terms, ordered by their 
|enrichment scores|, were visualized as a facet dot plot 
using the “ggplot2” package [27]. The KEGG pathway 
database comprises a set of pathway maps drawn by 
hand. For human (Homo sapiens) species, these maps are 
divided into six distinct types: metabolism, genetic infor-
mation processing, environmental information process-
ing, cellular processes, organismal systems, and human 
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diseases [28]. KEGG pathways categorized under the 
human diseases category were excluded from this analy-
sis. Subsequently, the “aPEAR” package [23] was used to 
leverage similarities between the significantly enriched 
KEGG pathways. Afterwards, the “ggraph” package [29] 
and “ggforce” package [30] was utilized to represent the 
result as a network of interconnected clusters. Enrich-
ment analysis was conducted utilizing the “clusterPro-
filer” package [31]. A functional term or pathway was 
deemed statistically significant with an FDR-adjusted 
p-value less than 0.25 and p-value less than 0.05.

GSVA
The gene set variation analysis (GSVA) algorithm pro-
vided by the “GSVA” package [32] was used to meas-
ure the activity of the top 20 significant gene sets from 
GSEA–Hallmark (hereinafter referred to as GSVA–Hall-
mark). Additionally, the immune infiltration score (IIS) 
was determined based on 24 immune cell types, which 
included various subsets of macrophages, dendritic cells 
(DCs), B cells, cytotoxic cells, eosinophils, mast cells 
(MCs), neutrophils, nature killer (NK) cells, and T cells. 
This score, derived from the research of Senbabaoglu 
et al. [33]., aimed to estimate the abundance and infiltra-
tion of these immune cells within the tumour environ-
ment. The GSVA scores for these 24 immune cells were 
calculated using the “GSVAutils” package [34]. Further-
more, the antigen processing and presenting machin-
ery (APM) score was calculated from mRNA expression 
levels of APM genes to evaluate the efficiency of antigen 
processing and presentation, a critical factor influencing 
ICI response. Finally, the tumour immunogenicity score 
(TIGS) [34] was computed by integrating the APM score 
with the tumour mutational burden (TMB), providing 
a comprehensive assessment of the tumour’s potential 
responsiveness to immunotherapy.

Exploration of gene mutation pattern
Analysing MAF (MAF) files is crucial in cancer genom-
ics to encapsulate and summarize mutation data across 
various samples. Oncoplots were created to visualize the 
somatic mutation landscape of the top 20 mutated genes 
within cohorts stratified by risk score level using the 
“ggplot2” package [27]. Tumour mutation burden (TMB) 
was calculated by summing up all missense, insertion/
deletion, and frameshift variants within each tumour 
sample using the following equation [34]:

CNVs are pivotal in the oncogenesis and progression of 
malignant tumours [35], necessitating detailed analyses 
of gene-level and segmental CNVs across 384 samples. To 

(2)TMB = 1n

(

wholeexomemutation

38
+ 1

)

depict the genomic landscapes of CNVs and their associ-
ations with OS, a lollipop was visualized via the “ggplot2” 
package [27] and a circos diagram using the circos tool (v. 
0.69–9; tools version: 0.23) [36]. Moreover, the GISTIC 
(Genomic Identification of Significant Targets in Can-
cer) 2.0 algorithm [37], provided by the GenePattern tool 
(https://​cloud.​genep​attern.​org/) [38], was applied to pin-
point significant genomic regions underpinning cancer, 
highlighting amplified or deleted segments through GIS-
TIC scores and q-values. These focal regions were fur-
ther intersected with the Gencode GTF file (gencode.v43.
annotation.gtf.gz) using Bedtools (v. 2.27.1) [39] to align 
genomic data with gene annotations effectively. Gene 
mapping to position on the chromosome was performed 
using the genome reference consortium human build 38 
(GRCh38/hg38).

Analysis of tumour microenvironment
Cells in tumour microenvironment consist of tumour 
cells, stromal cells and immune cells [40]. The Estimation 
of STromal and Immune cells in MAlignant Tumours 
using Expression data (ESTIMATE) method was applied 
using the “tidyestimate” package [41] to analyse these 
components in 384 MIBC samples from the TCGA data-
base. The ESTIMATE method provided scores reflecting 
immune and stromal cell infiltration, overall ESTIMATE 
scores, and tumour purity estimates. Additionally, the 
Cell-type Identification By Estimating Relative Subsets 
Of RNA Transcripts (CIBERSORT) algorithm was used 
to analyse the gene expression matrix constructed from 
TPM data, employing the CIBERSORT R script (v. 1.04, 
Stanford University, CA, USA) [42] with 1000 permuta-
tions, offering a detailed profile of immune cell composi-
tion within the TME.

These scores and immune cell profiles were statistically 
analysed between two risk score groups using Wilcoxon’s 
rank sum test via the “rstatix” package [43]. The associa-
tion between expression levels of hub genes and immune 
cell fractions differing in two risk score level groups was 
assessed using Spearman’s rank correlation analysis with 
the help of “Hmisc” package [22]. All statistical analy-
ses were performed with a significance threshold set at 
a p-value of less than 0.05 to ensure robustness of the 
findings.

Prediction of immunotherapy efficacy and drug activity
Tumours that respond well to ICIs are referred to as 
immunologically “hot” tumours, while those that do not 
respond favourably are termed immunologically “cold” 
tumours. The Tumour Immune Dysfunction and Exclu-
sion (TIDE) score for each sample in the TCGA cohort 
was calculated using the TIDE database (http://​tide.​
dfci.​harva​rd.​edu/) [44]. TIDE and TIGS scores were 
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compared between two risk groups using Wilcoxon’s 
rank sum test provided by the “rstatix” package [43]. 
Correlations between the risk score, immune infiltra-
tion score (IIS), and 17 immune checkpoints (detailed 
in Additional file  4: Table  S3) were examined using the 
“correlation” package [45], with a significance level set at 
a p-value below 0.05.

Additionally, drug activity prediction was performed 
based on the data from the RNAactDrug database (http://​
bio-​bigda​ta.​hrbmu.​edu.​cn/​RNAac​tDrug), an extensive 
resource for exploring drug activity and RNA expression 
level correlations, integrating data from GDSC, CellM-
iner, and CCLE databases [46]. The analysis focused on 
the association between RNA molecules and drug activ-
ity, selecting records with an FDR-adjusted p-value below 
0.25 and a p-value less than 0.05. Compounds showing at 
least two significant correlations with hub genes were vis-
ualized as bubble plots using the “ggplot2” package [27].

Differential analysis of RT‑qPCR data
Gene expression was presented using a modification of 
the 2−ΔΔCt method. To analyse the differential relative 
expression of the hub genes and si-SCD in cancer and 
normal cell lines, p-values from pairwise t-test for inde-
pendent groups were calculated and then adjusted using 
the FDR method by the “rstatix” package [43]. Ct val-
ues in samples for each mRNA were visualized as a bar 
plot using the “ggplot2” package [27]. An FDR-adjusted 
p-value less than 0.05 was considered significant for 
mRNA, and less than 0.0001 for siRNA.

Analysis of repeated‑measures data
Linear mixed-effects model (LMM) provided by the 
“mmrm” [47] was introduced to fit linear mixed-effects 
models. Then, “emmeans” [48] package was utilized to 
assess the differential impact on cell viability (%) exerted 
by three siRNAs targeting SCD in cancer cell lines against 
that of si-NC. An FDR-adjusted p-value less than 0.0001 
at the time point of 72 indicated a statically significant 
effect of the SCD-targeting siRNAs on cell viability com-
pared to the control.

Results
Baseline characteristics of participants
The TCGA cohort consisted of 384 participants diag-
nosed with MIBC, including 102 females (26.56%) and 
282 males (73.44%). The median age of the participants 
was 68.00 [IQR: 60.00, 76.00] y/o. Of these, 213 partici-
pants (55.47%) were alive at the time of analysis, while 
171 (44.53%) had succumbed to the disease. The analysis 
of survival rates revealed no statistically significant dif-
ference between female and male participants (p > 0.05). 
Additional file 5: Tables S4–6 provide a comprehensive 

summary of the demographic and pathological details 
for MIBC patients in the TCGA cohort (training set), 
as well as for the GSE13507 dataset (test set 1) and the 
GSE32894 dataset (test set 2).

Identification of DEFRGs and DECRGs between tumour 
samples and NATs
Differential expression analysis (DEA) between 17 MIBC 
specimen and 17 paired NAT tissues from the TCGA 
cohort revealed 833 down-regulated and 470 up-regu-
lated genes (p < 0.001 and |log2(FC)|> 2). Out of these, 21 
DEFRGs were up-regulated and 15 were down-regulated 
(Fig. 1A and Additional file 6: Table S7). Three DECRGs 
exhibited down-regulation (Fig. 1B and Additional file 6: 
Table  S8). In Figs.  1A and 1B, volcano plots depict the 
results of DEA for FRGs and CRGs respectively. In 
Fig. 1C, the heatmap colours show the expression of each 
DEG across 34 samples.

REVIGO was applied to summarize long lists of GO 
terms from DEGs in the training cohort. Relevant biolog-
ical processes identified include regulation of keratino-
cyte differentiation, response to hypoxia, regulation of 
collagen metabolic process, and positive regulation of cell 
cycle G1/S phase transition (Fig. 1D).

Spearman’s correlation analysis (Fig.  1E and Addi-
tional file  7: Table  S9) explored the interconnections 
among these genes, revealing a co-expression network 
of 32 genes, including 29 differentially expressed FRG 
(DEFRGs) and 3 differentially expressed CRG (DECRGs). 
All correlation pairs exhibited positive correlations, 
with genes such as ZEB1 (DECRG, 17 partners) and IL6 
(DEFRG, 15 partners) demonstrating higher connectivity.

The PPIs were analysed for the known and predicted 
interactions between DEGs. The PPI network (Fig.  1F 
and Additional file  8: Table  S10) comprised 37 nodes 
(proteins) and 75 edges (interactions). ATF3 (FRG) 
demonstrates the highest number of significant correla-
tions with 10 partners. Notably, the connection between 
AURKA (DEFRG, 9 partners) and MYCN (DEFRG, 6 
partners) had an exceptionally high combined score, 
indicating a potentially crucial role in cellular ferropto-
sis. Besides, the interaction between MT1A (DECRG, 
1 partner) and MT1M (DECRG, 1 partner) may reflect 
a co-evolved function in cuproptosis. PPI analysis also 
revealed significant enriched KEGG pathways, including 
the microRNAs in cancer and transcriptional misregula-
tion cancer.

Selection of hub genes
Univariate Cox’s regression analysis was performed on 
DECRGs and DEFRGs in the training set. Genes with 
statistical significance (p < 0.05) and a C-index greater 
than 0.5 were identified as DECRGs and DEFRGs 

http://bio-bigdata.hrbmu.edu.cn/RNAactDrug
http://bio-bigdata.hrbmu.edu.cn/RNAactDrug
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associated with OS. Ten genes, including AOC3, MEG3, 
EGR1, SCD, CAV1, CDO1, CREB5, DDR2, MT1A, and 
ZEB1, were found to have significant impacts on OS 
(Additional file 9: Table S11).

Chromosomal distribution and CNV frequencies of 
the ten DECRGs and DEFRGs associated with OS were 
analysed (Figs.  2A and 2B). Notably, DDR2, located on 
chromosome 1, had the highest copy number gain at 

Fig. 1  Identification of differentially expressed ferroptosis-related (DEFRGs) and cuproptosis-related genes (DECRGs). A Volcano plot depicting 
DEFRGs. B Volcano plot showing DEFRGs. DEGs (down-regulated and up-regulated genes) were determined in 17 MIBC specimens vs. 17 paired 
normal adjacent tumour (NAT) tissues using a threshold of |log2(FC)|> 2 and a false discovery rate (FDR)-adjusted p-value < 0.001. C Heatmap 
illustrating expression pattern of 36 DEFRGs and 3 DECRGs across 17 MIBC specimens and 17 paired NAT tissues. The rows of the heatmap represent 
genes, and the columns represent samples. Each cell is colourized based on the level of expression of that DEFRG or DECRG in that sample. 
D Bubble plot showing the GO cluster representatives in a two-dimensional space. Each circle indicates a representative cluster. The colour 
of the circles represents -log10(FDR) value of the GO analysis. The size of each circle indicates the count of genes involved in the GO term. E 
Co-expression network of DEFRGs and DECRGs (blue: down-regulated, red: up-regulated, size: degree; sky blue: negative, tomato red: positive 
correlation). F PPI network composed of 37 nodes (proteins) and 75 edges (interactions) from STRING (confidence: 0.400, p < 0.0001; sky blue halo: 
down-regulated, tomato red halo: up-regulated).*** p < 0.001, **** p < 0.0001
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66.93% and the lowest loss at 0.78%. CREB5, located on 
chromosome 7, also demonstrated a substantial gain of 
63.54% with a loss of 1.30%. Interestingly, MEG3, located 
on chromosome 14, showed no copy number variations, 
indicating stability in its genomic copy number.

Two ML methods with fivefold cross-validation were 
used for gene selection, enhancing robustness and pre-
venting overfitting. LASSO-penalized Cox’s regres-
sion identified nine genes with non-zero coefficients at 
the optimal penalty parameter (λ = 0.032) (Figs.  2C and 
2D). The SVM-RFE algorithm further refined the selec-
tion to six genes based on their maximal mean AUC 
value (Figs.  2E and 2F). The genetic features identified 
by both ML methods were subsequently considered as 
candidates in a multivariate Cox’s PH regression analysis. 

Bidirectional stepwise selection identified SCD, DDR2, 
and MT1A as hub genes, which are the most contributive 
predictors for OS (Additional file 10: Table S12).

Establishment of ferroptosis/cuproptosis‑related 
prognostic signature
The development of a ferroptosis/cuproptosis-related 
prognostic signature was confirmed through a mul-
tivariate Cox’s PH model using data from the TCGA 
cohort. The risk score calculation was based on a lin-
ear weighted combination of hub gene expression lev-
els: Risk  score = (0.18362 × SCD expr) + (0.16029 × DDR2 
expr) + (0.12655 × MT1A expr). The multivariate Cox’s 
regression coefficients for each hub gene were displayed 
using a forest plot in Fig.  3A. The links between risk 

Fig. 2  Selection of hub genes. A Lollipop chart illustrating CNV frequencies of DEFRGs and DECRGs in association with overall survival (OS). 
Bar length shows copy number gain/loss percentage. B Circos plot demonstrating chromosomal CNV distribution of 21 DEFRGs and DECRGs 
in association with OS. Tracks from outer to inner: genomic locations, percentage of copy number gain, percentage of copy number loss, 
-log10(p-value) from univariate Cox’s analysis. C Plot indicating the best penalty parameter (optimal λ = 0.032) selection by cross-validation (CV) 
partial likelihood deviance (PLD) of the least absolute shrinkage and selection operator (LASSO)-penalized Cox’s regression. D Plots showing 
LASSO-penalized Cox’s regression coefficients over different values of ln(λ). E Mean discriminatory performance of feature subsets of each size 
selected by linear support vector machine recursive feature elimination (SVM-RFE) regression model. CV mean area under the curve (AUC) 
was plotted against subset size. The red dot represents that the optimal number of selected variables is six. F Lollipop plot showing the normalized 
importance value of each of the six selected features in the linear SVM model. y/o Years old
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score and gene expression were visualized through circos 
charts in Fig. 3B. All of three hub genes had a strong cor-
relation with the risk score.

Performance evaluation of the prognostic signature
The performance evaluation of the prognostic signature 
was conducted across multiple datasets, including TCGA 

Fig. 3  Establishment of the ferroptosis/cuproptosis-related signature and validation of its prognostic value. A Bar plot showing multivariate 
Cox’s regression coefficient for each hub gene. B Chord diagram of Spearman’s correlation between expression level of hub genes and risk 
score. The distribution of each patient’s risk score ordered from low to high in (C) TCGA cohort, (H) GSE13507 dataset, and (M) GSE32894 dataset. 
Patients in each dataset were divided into two risk score level groups based on each dataset’s median. Scatter diagram of overall survival (OS) 
time against patients’ rank of risk score in (D) TCGA cohort, (I) GSE13507 dataset, and (N) GSE32894 dataset. Boxplot depicting the expression 
level of each hub gene was significantly different between the two risk score level groups in (E) TCGA cohort, (J) GSE13507 dataset, and (O) 
GSE32894 dataset. The independent sample t-test was applied for comparing the differences, and the p-values were FDR-adjusted. Low risk score 
level tissues marked in blue colour and high risk score level samples marked in red. Kaplan–Meier (K–M) plot demonstrating elevation in OS 
probability in (F) TCGA cohort, (K) GSE13507 dataset, and (P) GSE32894 dataset. Plots of the time-dependent receiver-operating characteristics 
(ROC) curves for the risk score prognostic model for 1-, 3-, and 5-year OS and the corresponding area under the curve (AUC) values in (G) TCGA 
cohort, (L) GSE13507 dataset, and (Q) GSE32894 dataset. (R) Plots of the time-dependent ROC curves for the risk score prognostic model in each 
age and gender subgroups of the TCGA cohort for 1-year and the corresponding AUC values. Each AUC value is represented in the legend 
as the estimated value [95% CI]. * p < 0.05, *** p < 0.001, **** p < 0.0001
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and two GEO datasets (GSE13507 and GSE32894). The 
distribution of risk scores is presented in an ascending 
order, aligned with patient rankings in the training set 
(Fig.  3C) and the two test sets (Figs.  3H, and 3M). Risk 
score cutoff was set based on the median risk score of 
each cohort, classifying samples into low and high risk 
score level groups. Samples with a risk score below the 
threshold were categorized into the low risk score level 
group, and those above into the high risk level group. The 
model’s discrimination capability between different OS 
outcomes was effectively showcased through scatter dia-
grams, which plotted the OS-time against patients’ risk 
score rankings. This demonstrated strong discrimination 
within the TCGA cohort, as shown in (Fig. 3D), and was 
further validated in the datasets represented in (Figs. 3I 
and 3N). Significant differences in the expression levels of 
the three hub genes between high and low risk score level 
groups were consistently observed across all datasets, as 
shown in Figs. 3E, 3J, and 3O.

K–M survival analysis confirmed the effectiveness of 
the risk score level in predicting survival across all data-
sets (Figs. 3F, 3K, and 3P). The performance of the uni-
variate model incorporating risk score performance 
was further assessed using time-dependent ROC curves 
(Figs.  3G, 3L, and 3Q), demonstrating strong predictive 
efficacy. Additionally, this signature also exhibited good 
discriminatory ability across demographic subgroups of 
MIBC patients, as illustrated in Fig. 3R.

Development and validation of nomogram‑based model
In the establishment and validation of a nomogram-based 
model, univariate and bidirectional stepwise multivari-
ate Cox’s PH regression analyses identified variables sig-
nificantly associated with OS. The multivariate analyses 
revealed that older age (≥ 60 y/o vs. < 60 y/o, HR = 1.608 
[95% CI: 1.030–2.512], p = 0.0367), higher T stage (High 
vs. Low, HR = 1.531  [95% CI: 1.068–2.194], p = 0.0205), 
lymph node metastasis (Positive vs. Negative, HR = 1.776 
[95% CI: 1.301–2.423], p = 0.0003), and high risk score 
level (High vs. Low, HR = 1.655 [95% CI: 1.211–2.261], 
p = 0.016) were significantly associated with worse OS 
in the TCGA cohort. The results of univariate and mul-
tivariate Cox’s PH regression analyses are summarized in 
Fig. 4A.

A nomogram (Fig.  4B) was developed utilizing these 
independent prognostic factors to predict 1-, 3-, and 
5-year OS probabilities for MIBC patients. This nomo-
gram demonstrated excellent discrimination and calibra-
tion in both training and test datasets, with a C-index of 
0.660 [95% CI: 0.639–0.681] for the training cohort and 
an integrated Brier score (IBS) of 0.206 [95% CI: 0.185–
0.227]. The performance in the test dataset was consist-
ent, with a C-index of 0.752 [95% CI: 0.724–0.781] and an 

IBS of 0.166 [95% CI: 0.151–0.181]. The 1000-resampling 
calibration plots for the training cohort and validation set 
1 (GSE13057) at 1, 3, and 5 years demonstrated minimal 
deviations from the 45° reference line, indicating robust 
model performance (Figs. 4C–E).

Further internal and external validation showed that 
the nomogram provided better predictive accuracy than 
other established Cox’s PH regression models. The time-
independent C-index of the nomogram model consist-
ently outperformed other models at any time point, 
indicating superior discrimination (Fig.  4F). Decision 
curves confirmed that the nomogram model had the 
highest net benefit for predicting 1-, 3-, and 5-year OS 
probability, surpassing all other options (Figs. 4G–I). The 
orange bar in each decision curve analysis (DCA) plot 
represents a threshold probability range where the nom-
ogram model outperforms other models, disregarding 
random noise [24].

The differential analysis performed on the TCGA 
cohort, investigating the disparities in risk scores and 
the expression of hub genes across demographic and 
clinical subgroups, yielded substantial findings (Addi-
tional file 11: Tables S13–15). Firstly, gender did not sig-
nificantly impact the risk score or gene expression levels. 
In contrast, age demonstrated a marked influence, with 
patients under 60 showing lower risk score levels and 
reduced expression of SCD and MT1A genes compared 
to those aged 60 and above. Higher T stage was associ-
ated with elevated risk scores and increased expression of 
DDR2 and MT1A in advanced T stages. Lastly, the pres-
ence of lymph node metastasis correlated with elevated 
risk scores and DDR2 expression but not with SCD and 
MT1A.

Enriched Hallmark Terms and KEGG Pathways
Figure  5A shows the top 20 enriched terms from the 
GSEA-Hallmark analysis (FDR-adjusted p < 0.25 and 
p < 0.05). All of these terms were activated in the high 
risk score level group. The GSVA method was used to 
estimate the pathway activity by transforming the input 
gene-sample expression data matrix into a correspond-
ing gene set-sample expression data matrix (i.e., pathway 
expression score matrix). Figure 5B is the heatmap illus-
trating the GSVA scores of the top 20 enriched Hallmark 
pathways across 384 TCGA samples. Both figures indi-
cate the upregulation of these terms in relation to higher 
risk of death for MIBC patients. Among them, angiogen-
esis, IL6-JAK-STAT3, IL2/STAT5, complement system, 
interferon gamma response, and G2M checkpoint, are 
crucial for tumour growth, inflammation, and immune 
system evasion.

The clustering of significant pathways from the GSEA–
KEGG in Fig. 5C has identified several groups based on 
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their functional similarities. This analysis highlights the 
interconnected nature of biological pathways, underscor-
ing how various aspects of cellular functioning are closely 
related. For instance, pathways involving PI3K-Akt sign-
aling, ECM-receptor interactions, and focal adhesions 
cluster together, suggesting a shared role in processes 
such as cell migration, proliferation, and survival. Simi-
larly, the close grouping of the cytokine-cytokine recep-
tor interaction, chemokine signaling pathway, and viral 
protein interactions with cytokines and their receptors 

indicates a concerted involvement in immune response 
and inflammation.

Somatic mutation and segmental CNV in patients 
with different risk score levels
In the low risk score level group, 93.75% samples dis-
played somatic mutation (Fig.  6A). The most frequently 
mutated gene was TP53, a well-known tumour sup-
pressor gene, followed by TTN. Other significant genes 
affected by somatic mutation include KMT2D, KDM6A, 

Fig. 4  Development, and internal and external validation of nomogram-based prognostic model incorporating the ferroptosis/cuproptosis-related 
signature. A Forest plot of uni- and multi multivariate Cox’s model for overall survival (OS) based on the TCGA cohort (training set). B A nomogram 
for predicting 1, 3, and 5-year OS possibilities in the MIBC patients relying on the TCGA population. The steps for using the nomogram are (1) 
determine the individual patient’s point for each predictor (T stage, Lymph node status, and risk score level), (2) draw a straight line upwards 
from each predictive value to the top point reference line, (3) sum the points from each predictive variable, (4) locate the sum on the total points 
reference line, and (5) draw a straight line from total points line down to the bottom probability lines to obtain the patient’s likelihood of 1-, 3-, 
and 5-year OS. The diagram also prints how many linear predictor units there are per point and the number of points per unit change in the linear 
predictor (lp). Calibration curves of Kaplan–Meier (K–M) vs nomogram predicted (C) 1-, (D) 3-, and (E) 5-year OS for TCGA cohort (red) and GSE13507 
dataset (green). (F) Time-dependent c-index curves for the “Clinical”, “Risk Score Level”, and “Nomogram” models. DCA for the “Clinical”, “Risk Score 
Level”, and “Nomogram” models built to predict (G) 1-, (H) 3-, and (I) 5-year OS probability based on records of patients in TCGA cohort (Orange 
bar: range where the Nomogram model performs better others, deep blue bar: range not relevant to the Nomogram model). ns not significant, * 
p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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and MUC16, which are involved in chromatin modifica-
tion, histone demethylation, and cell adhesion, respec-
tively. In the high risk score level group, genetic changes 
were evident in 92.19% of the samples (Fig.  6B). These 
mutations encompassed missense mutations, nonsense 
mutations, splice site alterations, as well as frame shift 
insertions and deletions. The TP53 gene had the highest 
frequency of mutation, followed by TTN and ARID1A. 
Other genes that frequently underwent mutations 
include MUC16, KMT2D, KDM6A, PIK3CA, and RB1.

The data from chromosomal CNVs for both high and 
low risk score level groups reveal distinct genomic altera-
tions. Participants in the low risk score level group pri-
marily displayed deletions, including genes such as 
PEX14, RPS6KA1, and ARID1A (Fig. 6C and Additional 
file  12: Table  S16). Conversely, patients in the high risk 
score level group exhibited a mix of deletions and ampli-
fications across various chromosomal segments, includ-
ing genes like SLC9A1, HSPA5P1, and MACF1 (Fig. 6D 
and Additional file 12: Table S17).

Fig. 5  Enriched gene sets associated with risk score level in the gene set enrichment analysis (GSEA) performed on TCGA data. A Dot plot depicted 
the 20 most significantly enriched Hallmark terms ranked by gene ratio. Dot size is proportional to the number of overlapping genes. p-values 
are colour-coded according to the colour scale. B Heatmap plots of gene set variation analysis (GSVA) scores across 384 TCGA samples for the 20 
most significantly enriched Hallmark gene sets. Red label: activated Hallmark terms. C Clustering network of significantly enriched KEGG pathways 
in the GSEA analysis. The nodes represent the significant KEGG pathways and the edges represent similarity between them and are coloured 
by normalized enrichment score (NES). The lines connected similar pathways are coloured by similarity
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Immune cell landscape and immunotherapy response 
prediction
Differential analysis was conducted on the stromal score 

(Fig.  7A), immune score (Fig.  7B), ESTIMATE score 
(Fig.  7C), and tumour purity (Fig.  7D) calculated using 
the ESTIMATE algorithm. The high risk score level 

Fig. 6  Somatic mutation and copy-number alteration in association with risk score level. A MAF mutation oncoplot showing top 20 altered in 180 
(93.75%) of 192 low risk score level samples from TCGA cohort. B MAF mutation oncoplot showing top 20 altered in 177 (92.19%) of 192 high risk 
score level samples from TCGA cohort. C GISTIC amplification (up, red) and deletion (down, steel blue) plot of 191 TCGA low risk score level samples. 
D GISTIC amplification (up, red) and deletion (down, steel blue) plot of 189 TCGA high risk score level samples
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group exhibited significantly increased levels of stromal 
score, immune score, and ESTIMATE score. Conversely, 
tumour purity was observed to be lower in this group.

CIBERSORT was also applied to the gene expression 
matrix in order to infer the relative abundance of 22 
tumour-infiltrating immune cells for each sample in the 
TCGA cohort. Significant differences in the fractions of 
various immune cells were also observed between the 
two risk score level groups (Fig.  7E). Notably, the high 
risk score level group exhibits a significantly lower pro-
portion of B cells memory, T cells follicular helper, T cells 
regulatory (Tregs), T cells gamma delta, NK cells acti-
vated, monocytes, DCs resting, DCs activated, and eosin-
ophils (all p < 0.05). Conversely, a higher proportion of B 

cells naïve, T cells CD4 memory activated, macrophages 
M0, macrophages M1, macrophages M2, MCs activated, 
and neutrophils (all p < 0.05).

The correlation analysis between gene expression 
and CIBERSORT immune cell fractions reveals com-
plex interactions within the tumour microenvironment 
(Fig.  7F). The correlation analysis between gene expres-
sion and immune cells reveals significant interactions for 
hub genes. For SCD, notable correlations include a posi-
tive correlation with macrophages M0 and MCs activated 
(all p < 0.05), and negative correlations with monocytes, 
NK cells activated, T cells gamma delta, and T cells regu-
latory (Tregs) (all p < 0.05). For DDR2, significant positive 
correlations are seen with B cells naïve, macrophages M0, 

Fig. 7  Immune cell landscape. Boxplot reporting the different distributions of (A) stromal score, (B) immune score, (C) Estimation of STromal 
and Immune cells in MAlignant Tumours using Expression data (ESTIMATE) score, and (D) tumour purity between high (n = 192, yellow) and low risk 
score level groups (n = 192, green). E Bar plot showing composition of 22 infiltrating immune cells in two risk score level subgroups. Fraction values 
of CIBERSORT immune cells were determined for each patient; each bar represents one patient. F Box plot showing the differences in CIBERSORT 
fractions between tissues from the high risk score level patients (n = 192, yellow) and low risk score level participants (n = 192, green). G Heatmap 
showing the Spearman’s correlation coefficient between the expression of the three hub genes and immune cell fractions differing in two risk score 
level groups. ns not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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macrophages M1, macrophages M2, neutrophils, and T 
cells CD4 memory activated (all p < 0.05), while nega-
tive correlations include B cells memory, DCs activated, 
DCs resting, Monocytes, NK cells activated, and T cells 
follicular helper (all p < 0.05). For MT1A, positive cor-
relations are found with B cells naïve, macrophages M0, 
macrophages M1, Macrophages M2, MCs activated, neu-
trophils, and T cells CD4 memory activated (all p < 0.05), 
while negative correlations are observed with B cells 
memory, DCs activated, DCs resting, eosinophils, NK 
cells activated, T cells follicular helper, T cells gamma 
delta, and Tregs (all p < 0.05).

Additionally, the risk score positively correlated with 
several immune checkpoint molecules (IDO1, TNFRSF18 
[GITR], TNFRSF4 [OX40], PDCD1 [PD-1], CD274 
[PD-L1], LAG3, CTLA4 [CD152], CD27 [TNFRSF7], 
CD86 [B7-2], TNFRSF9 [CD137], PVR [CD155], CD28, 
HAVCR2 [TIM-3], and PDCD1LG2 [PD-L2]) (Fig.  8A) 
and IIS (Fig. 8B). The correlation analysis also revealed a 
positive association between the IIS and tumour purity 
(Fig.  8C). Meanwhile, the differential analysis revealed 

that the low risk score level group displayed lower TIDE 
and TIGS scores (Figs. 8D and E).

Candidate chemical drugs
The study extracted statistically significant correla-
tions between specific chemical compounds and RNA 
molecules from the RNAactDrug database, which have 
implications for chemical drug activity (Fig. 9). The data 
primarily originated from the GDSC database, with an 
exception for PF2341066, where information was derived 
from the CCLE. Noteworthy associations were found 
between the chemotherapy agent 5-fluorouracil and 
RNA molecules DDR2 and MT1A, suggesting a poten-
tial link in drug response. Similarly, the compound AR-42 
exhibited significant correlations with MT1A and SCD 
RNA molecules. The histone deacetylase inhibitor belin-
ostat (PXD101) [49] and PDK1 inhibitor BX-912 also 
displayed correlations with these RNA molecules. The 
microtubule inhibitor Docetaxel and the kinase inhibi-
tor FR-180204 were significantly associated with DDR2 
and SCD, as well as DDR2 and MT1A, respectively. 

Fig. 8  Spearman’s correlation analysis and differential analysis with regards to immune checkpoint inhibitor (ICI) therapy response prediction 
and tumour immune microenvironment. A Lollipop plot showing immune checkpoints that significantly correlate with risk score in TCGA patients. 
Scatter plot showing (B) risk score and (C) tumour purity, and immune infiltration score (IIS) correlate among TCGA patients. Beemswarm plot 
showing significant differences in (D) Tumour immunogenicity score (TIGS) and (E) Tumour Immune Dysfunction and Exclusion (TIDE) score 
between the high risk score level (n = 192, yellow) and low risk score level groups (n = 192, green). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001



Page 16 of 22Hao et al. BMC Cancer          (2024) 24:958 

Innovative compounds, such as Genentech Cpd 10 and 
GSK1070916, along with the PI3K inhibitor idelalisib, 
showed significant associations with MT1A and SCD. 
Notably, PF2341066 demonstrated significant correla-
tions with MT1A and SCD.

Biological experiments and single‑gene GSEA
The expression patterns of SCD, DDR2, and MT1A 
genes in both normal and cancerous human urothelial 
cells were investigated based on differential analysis of 
data from the qRT-PCR test. The results revealed that 
the expression level of SCD was significantly elevated 
in the T24 and UM-UC-3 cell lines compared to SV-
HUC-1 (Fig.  10A). In contrast, the expression levels of 
DDR2 (Fig. 10B) and MT1A (Fig. 10C) were lower in the 
T24 and UM-UC-3 cell lines than in SV-HUC-1. These 
RT-qPCR results align completely with the differential 
expression patterns observed between MIBC samples 
and NAT tissues in the TCGA cohort.

In MIBC tissues from the TCGA cohort, single-gene 
GSEA–Hallmark (Additional file  1: Figure S2a) and 
GSEA–KEGG (Additional file  1: Figure S2b) analyses 
for the SCD gene revealed significant activation of mul-
tiple pathways, including E2F targets, G2M checkpoint, 
mTORC1 signaling, MYC targets, unfolded protein 
response, protein secretion, cholesterol homeostasis, oxi-
dative phosphorylation, PI3K-Akt-mTOR signaling, lipid 
metabolism, and glycolysis. Notably, both analyses high-
lighted the enrichment of the mTOR signaling pathway, 
fatty acid metabolism, protein processing/secretion, and 

cell cycle regulation. To further explore the role of SCD 
in UC, RNA interference experiments targeting SCD 
were performed on the T24 and UM-UC-3 cell lines. The 
efficiency of gene silencing was verified by RT-qPCR, 
demonstrating that three distinct siRNA sequences suc-
cessfully knocked down the expression of SCD. The 
impact of SCD knockdown on cellular proliferation was 
assessed using CCK-8 assays. The results indicated a sig-
nificant reduction in cell proliferation rates in both T24 
(Figs. 10D and F) and UM-UC-3 cell lines (Figs. 10E and 
G) following SCD silencing. Additionally, the effects of 
SCD knockdown on cell migration abilities were evalu-
ated through Transwell and scratch assays. In both the 
T24 (Figs. 10H and J) and UM-UC-3 cell lines (Figs. 10I 
and K), the migratory capacity of cells was significantly 
impaired after SCD silencing, suggesting a critical role of 
SCD in the regulation of cell motility in UC.

Discussion
Through comparative analysis of MIBC samples and 
paired NAT tissues, 36 DEFRGs and 3 DECRGs were 
identified. GO enrichment analysis was performed on 
these DEGs. The results in Fig. 1D display significant key 
biological processes shared by DEGs, which underline 
the roles of cell death mechanisms, cell proliferation, dif-
ferentiation, and tumour microenvironment adaptation 
in MIBC’s progression.

The interplay between ferroptosis and cuproptosis, two 
recently identified forms of non-apoptotic cell death, has 
become an increasingly prominent topic in the field of 

Fig. 9  Bubble plot illustrating the correlation between hub genes (y-axis) and compounds (x-axis). Each point’s size is proportional to the false 
discovery rate (FDR), while the colour gradient indicates the Spearman’s r, representing the correlation between the two variables. The correlation 
data between drug activity and mRNA expression in cell lines was sourced from RNAactDrug
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cancer research [13, 15, 50]. Spearman’s correlation anal-
ysis revealed that all three DECRGs were significantly 
correlated with at least one DEFRG in MIBC. Addition-
ally, DEFRGs and DECRGs were involved in some KEGG 
pathways associated with cancer.

Disruptions in their metabolic functions can lead to 
lethal consequences for cancer cells, triggering both 
ferroptosis and cuproptosis [50]. The mechanism of 

copper-dependent cell death is closely linked to mito-
chondrial activity. Cuproptosis often occurs when 
copper binds to lipoylated proteins in the TCA cycle, 
leading to protein aggregation, loss of iron-sulfur clus-
ter proteins, and proteotoxic stress, ultimately caus-
ing cell death [11, 51, 52]. In addition, a connection 
between mitochondrial copper accumulation and the 
initiation of ferroptosis has been established. The intri-
cate interaction mechanisms between ferroptosis and 

Fig. 10  Biological experimental validation and the impact of SCD on cell proliferation, migration, and invasion of human bladder cells. A–C Bar plot 
showing the relative expression level of the three hub genes in a normal cell line (SV-HUC-1) and two bladder cancer cell lines (T24 and UM-UC-3). 
(A) SCD was up-regulated in two cancer cell lines compared to the normal cell line, while (B) M1TA and (C) DDR2 were down-regulated. The RNA 
transcription levels of hub genes were evaluated by using the 2.−ΔΔCt method. GAPDH was used as an internal control. Time course of (F) T24 and (G) 
UM-UC-3 cell viability after acute treatment with CCK-8. Morphology of migrating (H) T24 and (I) UM-UC-3 cells after transfecting siRNA#1, siRNA#2, 
siRNA#3, and si-NC from the microscopy of the Transwell assay. Fluorescent microscope photos to evaluate wound healing in vitro in the scratch 
assay using (J) T24 and (K) UM-UC-3 cells after transfecting siRNA#1, siRNA#2, siRNA#3, and si-NC. Knockdown of SCD may inhibit the proliferation, 
invasion, and migration of bladder cancer cells. Error bars indicate SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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cuproptosis in MIBC indeed call for further investiga-
tion through experimental studies [50].

The application of multiple ML techniques and Cox’s 
regression analysis identified SCD, DDR2, and MT1A as 
hub genes for MIBC patients. SCD, also known as SCD1, 
is a key player in lipid metabolism. The regulation of the 
saturated fatty acids (SFAs) to monounsaturated fatty 
acids (MUFAs) ratio by SCD1 is not only vital for cellular 
homeostasis but also implicates its role in cell prolifera-
tion and survival [53]. Lipid metabolic reprogramming 
is considered a hallmark of cancer, and the role of SCD 
reveals the potential of targeting ferroptosis, a regulated 
cell death process, as a therapeutic strategy [54, 55]. 
Experimental evidence shows that targeting SCD with 
siRNA significantly reduces the proliferation and migra-
tion of bladder cancer cells, further confirming its role 
in cancer progression [56]. DDR2 is critical in bladder 
cancer progression, affecting proliferation, migration, 
invasion, metastasis, EMT, and chemotherapy resistance, 
and its abnormal expression and mutations are linked 
to aggressive cancer phenotypes, highlighting its poten-
tial as a therapeutic target [57, 58]. MT1A, a member of 
the metallothionein (MT) family, is involved in tumour 
development, progression, and drug resistance, essential 
for metal homeostasis and cellular stress protection, with 
its variable expression across cancer types indicating its 
potential as a biomarker for cancer diagnosis and prog-
nosis, as well as a target for therapeutic intervention [59].

By utilizing the multivariate Cox’s regression coef-
ficients for the three hub genes and their expression 
data, a risk score was developed to predict the survival 
probability of MIBC patients. The results from the two 
validation sets also confirmed that this variable exhib-
its good discriminative ability across different datasets. 
Subsequently, a prognostic model incorporating the fer-
roptosis/cuproptosis-related signature was developed. 
The internal and external validation indicated that this 
model can accurately distinguish between patients with 
high and low risk score levels. The ability to predict sur-
vival probability of the nomogram-based model and its 
robust performance were also confirmed. As such, the 
model can be used as an effective tool to assist clinicians 
in assessing the prognostic risk of MIBC patients.

The differential analysis revealed a significant cor-
relation between elevated SCD expression and more 
advanced T stages in MIBC patients from the TCGA 
database. This finding gains further support from the 
results of single-gene GSEA–KEGG and GSEA–Hall-
mark analyses, which revealed a significant enrich-
ment of genes associated with SCD expression in fatty 
acid metabolism pathways. This enrichment implies 
that SCD upregulation goes beyond a simple correla-
tion, indicating an active role in tumourigenesis by 

influencing lipid metabolism in a manner conducive to 
cancer proliferation.

In the TCGA cohort, both single-gene GSEA–Hall-
mark and GSEA–KEGG analyses suggest that the SCD 
gene may influence the pathogenesis and progression 
of MIBC by modulating cell cycle, lipid metabolism, 
and immune response. This emphasizes the potential of 
SCD upregulation to not only alter cellular metabolic 
processes but also engage in signaling cascades that are 
quintessential for cancer progression. SNORD88C acts 
as a non-invasive diagnostic biomarker for non-small 
cell lung cancer (NSCLC), promoting cancer progres-
sion by enhancing SCD1 translation through specific 
RNA modifications, which leads to inhibited autophagy 
and increased tumour growth and metastasis [60]. 
Furthermore, another line of research has interpreted 
the role of FGFR3 in bladder tumours. The increased 
activity of FGFR3 augments the demand for fatty acid 
desaturation, a fundamental process for maintaining 
membrane fluidity and effective cell signaling. This 
increased requirement is satisfied through the signaling 
via the PI3K-mTORC1 pathway, resulting in the upreg-
ulation of SREBP1 and, consequently, SCD [61].

The pathway enrichment analysis further elaborated on 
the biological significance of the identified DEGs between 
the two risk score level groups, revealing their involve-
ment in critical pathways that govern cancer progression 
and response to therapy. Notably, pathways associated 
with inflammation and immune response were promi-
nently enriched among these genes, highlighting their 
integral roles in modulating the cellular mechanisms 
central to MIBC pathogenesis. The results of enrich-
ment analyses provide a molecular blueprint, offering 
the potential of targeting these pathways for therapeutic 
intervention. At the same time, CNV analysis not only 
highlighted the mutational landscape of these critical 
genes but also underscored the genetic underpinnings 
that may contribute to the aggressive nature of MIBC.

Comparing the somatic mutation landscape of the two 
risk score level groups, TP53 mutations are predomi-
nant in both, suggesting its fundamental role in the dis-
ease regardless of risk level. The presence of additional 
mutations in genes such as ARID1A, PIK3CA, and RB1 
in the high risk group may provide insights into potential 
therapeutic targets or biomarkers for stratifying patients 
based on genetic risk. The GISTIC scores further reveal 
the potential involvement of these genomic regions in 
cancer pathogenesis. The segmental deletions in the 
tumour samples with high risk score level suggest a loss 
of function in pathways associated with a more aggres-
sive cancer phenotype when intact. The segmental CNVs 
in the tumour samples with high risk score level may 
indicate a more aggressive tumour phenotype or reflect 
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the genomic instability characterizing the high risk score 
level group.

Stratifying patients into high and low risk score level 
groups based on the ferroptosis/cuproptosis-related 
signature not only provides a wider perspective of the 
tumour’s biological behaviours and heterogeneity in 
mutational landscape, but also guides tailored therapeu-
tic interventions. Tumour purity refers to the propor-
tion of cancer cells within a given tumour tissue sample. 
Accurate assessment of tumour purity is essential for 
understanding the respective roles of malignant and non-
malignant cells within the tumour microenvironment 
[62]. Decreased tumour purity in the high risk score level 
group suggested the samples in this group had a higher 
proportion of non-tumour cells within their microenvi-
ronment. Low tumour purity was also associated with 
worse prognosis in MIBC [63]. Research has shown low 
purity tumours may signify chromosomal amplifications 
or deletions. Moreover, cancer patients with low tumour 
purity may not benefit from adjuvant chemotherapy [64].

As indicated in the immune infiltration differential 
analysis, different tumour immune microenvironments 
might influence tumour progression and patient progno-
sis. Tumours with high risk score level show decreased 
proportions of memory B cells, Tregs, T cells gamma 
delta, activated NK cells, and various DCs, indicating 
reduced immune surveillance. Meanwhile, these samples 
also exhibit increased naïve B cells, activated CD4 mem-
ory T cells, all macrophage subtypes, activated MCs, and 
neutrophils, suggesting a pro-tumorigenic environment. 
Gene-immune cell correlation analysis highlights the 
roles of SCD, DDR2, and MT1A in modulating immune 
cell infiltration. SCD correlates with increased mac-
rophages and activated mast cells but decreased mono-
cytes and NK cells. DDR2 and MT1A similarly influence 
a wide range of immune cells. The three hub genes may 
promote a pro-tumourigenic and immunosuppressive 
microenvironment.

The risk score was found to positively correlate with 
several immune checkpoint molecules, like PD-1, PD-L1, 
and CTLA-4. This suggests that a higher risk score might 
be indicative of increased immune checkpoint activity, 
potentially leading to immune evasion by tumours. While 
high expression of immune checkpoints often associ-
ates with poor prognosis for cancer patients [65, 66], this 
sign can indicate potential responsiveness to ICI [16, 17]. 
Moreover, innovative strategies such as the use of reac-
tive oxygen species (ROS)-responsive nanoparticles com-
bined with copper and elesclomol to induce cuproptosis, 
in conjunction with αPD-L1, have shown enhanced can-
cer immunotherapy outcomes, further emphasizing the 
importance of targeting immune evasion mechanisms in 
cancer treatment [67].

IIS, which quantifies the extent and type of immune 
cell infiltration within the tumour, was positively corre-
lated with risk score in MIBC. Tumours with higher risk 
score level not only tended to possess increased expres-
sion of immune checkpoints, but also exhibited a more 
substantial immune cell proportion. This dual character-
istic might indicate a complex immune landscape where 
the immune system is actively engaged yet simultane-
ously suppressed by the tumour’s immune evasion strate-
gies. The low risk score level group has lower TIGS and 
TIDE scores compared to another group. Lower TIGS 
score reflects a lower level of tumour immunogenic-
ity, which has been associated with better survival out-
comes in patients not treated with immunotherapy [34]. 
On the other side, positive TIDE score signifies ICI non-
response [34]. It can be concluded that patients in the 
low risk score level group may have a more favourable 
immunological profile for responding to ICI therapy.

Through analysis with the RNAactDrug database, 
some chemotherapeutic drugs were found to be signifi-
cantly associated with the expression levels of hub genes, 
offering targeted strategies for the potential treatment of 
MIBC. Emerging biomarkers and potential therapeutics 
related to cuproptosis and ferroptosis in cancer provide 
new enlightenment for treatment. A recent study [68] 
has demonstrated that inhibiting SCD can trigger both 
ferroptosis and apoptosis in ovarian cancer cells. This 
dual mechanism presents a significant barrier to the 
development of drug resistance, making SCD a prom-
ising target for anti-cancer therapy [68]. In addition, 
since cancer cells have a higher demand for copper com-
pared to normal cells, targeting copper metabolism and 
cuproptosis-related pathways could selectively kill cancer 
cells without harming normal cells. Potential therapeutic 
approaches could involve utilizing copper ion carriers or 
chelators to regulate cellular copper levels in cells, induc-
ing cuproptosis in cancer cells while sparing healthy cells.

Moreover, the results of differential relative expression 
of hub genes, SCD, DDR2, and MT1A, in bladder cancer 
cells compared to normal urothelial cells from RT-qPCR 
experiments were consistent with those of DEA on tran-
scriptomic data from the TCGA cohort. The experimen-
tal validation of the expression patterns of the three hub 
genes confirms the reproducibility of the molecular alter-
ations associated with bladder cancer.

The precise molecular mechanisms and interactions 
of these hub genes in MIBC remain a critical knowl-
edge gap. Therefore, it is essential to further elucidate 
the detailed molecular pathways associated with these 
hub genes and investigate their potential as biomarkers 
for early diagnosis and treatment response. Addition-
ally, exploring synergistic treatment combinations that 
integrate traditional therapies with targeted approaches 
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against FRGs and CRGs could enhance therapeutic effi-
cacy. The advancements in multi-omics technologies and 
the development of novel targeted drugs hold promise 
for revolutionizing MIBC treatment, making it more per-
sonalized and effective.

While this investigation reveals the significance of 
FRGs and CRGs in the progression of MIBC, it is not 
without limitations. The molecular heterogeneity of 
MIBC poses a challenge in identifying uniform thera-
peutic targets across different subtypes. Additionally, 
the utilization of public databases introduces variability 
in data quality and completeness, potentially impact-
ing study findings. Moreover, this study was limited to 
experiments at the cell line level. Further research involv-
ing human clinical samples is necessary to comprehen-
sively validate the expression pattern of the hub genes. 
Larger, multicentric studies with diverse MIBC patient 
cohorts are also needed to confirm the prognostic utility 
of hub genes. Additionally, exploring the influence of the 
tumour microenvironment on treatment response in dif-
ferent risk score level groups is crucial. Furthermore, this 
study did not delve deeply into the roles of hub genes in 
mediating cuproptosis and ferroptosis in MIBC. Future 
research should include more in-depth biological experi-
ments to investigate these mechanisms.

Conclusions
This study identifies three hub ferroptosis/cuproptosis-
related genes and develops a prognostic signature based 
on these genes. Additionally, it proposes a nomogram-
based model to predict OS probability for MIBC patients. 
The established prognostic model, along with analysis of 
mutational landscape, provides a valuable tool for clini-
cal decision-making. Furthermore, the exploration of 
immune cell infiltration and immune checkpoint expres-
sion reveals the ferroptosis/cuproptosis-related signa-
ture’s value in predicting responses to immunotherapy 
and drug therapy. This represents a significant step for-
ward in the personalized treatment of MIBC, offering 
hope to patients facing this aggressive disease.
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