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Abstract 

Background  Tobacco use is one of the main risk factors for Lung Cancer (LC) development. However, about 10–20% 
of those diagnosed with the disease are never-smokers. For Non-Small Cell Lung Cancer (NSCLC) there are clear 
differences in both the clinical presentation and the tumor genomic profiles between smokers and never-smokers. 
For example, the Lung Adenocarcinoma (LUAD) histological subtype in never-smokers is predominately found 
in young women of European, North American, and Asian descent. While the clinical presentation and tumor 
genomic profiles of smokers have been widely examined, never-smokers are usually underrepresented, espe-
cially those of a Latin American (LA) background. In this work, we characterize, for the first time, the difference 
in the genomic profiles between smokers and never-smokers LC patients from Chile.

Methods  We conduct a comparison by smoking status in the frequencies of genomic alterations (GAs) includ-
ing somatic mutations and structural variants (fusions) in a total of 10 clinically relevant genes, including the eight 
most common actionable genes for LC (EGFR, KRAS, ALK, MET, BRAF, RET, ERBB2, and ROS1) and two established driver 
genes for malignancies other than LC (PIK3CA and MAP2K1). Study participants were grouped as either smokers (cur-
rent and former, n = 473) or never-smokers (n = 200) according to self-report tobacco use at enrollment.

Results  Our findings indicate a higher overall GA frequency for never-smokers compared to smokers (58 vs. 45.7, 
p-value < 0.01) with the genes EGFR, KRAS, and PIK3CA displaying the highest prevalence while ERBB2, RET, and ROS1 
the lowest. Never-smokers present higher frequencies in seven out of the 10 genes; however, smokers harbor a more 
complex genomic profile. The clearest differences between groups are seen for EGFR (15.6 vs. 21.5, p-value: < 0.01), 
PIK3CA (6.8 vs 9.5) and ALK (3.2 vs 7.5) in favor of never-smokers, and KRAS (16.3 vs. 11.5) and MAP2K1 (6.6 vs. 3.5) 
in favor of smokers. Alterations in these genes are comprised almost exclusively by somatic mutations in EGFR 
and mainly by fusions in ALK, and only by mutations in PIK3CA, KRAS and MAP2K1.

Conclusions  We found clear differences in the genomic landscape by smoking status in LUAD patients from Chile, 
with potential implications for clinical management in these limited-resource settings.
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Introduction
Lung cancer (LC) is the leading cause of cancer-related 
death worldwide and the third cause in the Latin Ameri-
can (LA) and the Caribbean populations [1]. About 85% 
of LCs are Non-Small Cell Lung Cancer (NSCLC), and 
Lung Adenocarcinoma (LUAD) is the most frequent 
histological subtype with approximate 40% of cases, fol-
lowed by Squamous Cell Carcinoma (SqCC, 30%), and 
large cell carcinoma (15%) [2]. More than 20 agents 
related to environmental and occupational exposure have 
been identified as lung carcinogens [3]; however, tobacco 
use is the leading cause of LC, followed by second-hand 
smoke. Nevertheless, 10–20% of LC diagnoses are in 
people who have never smoked [4]. LC in never-smokers 
(LCINS) has been reported as the 11th most frequent 
cause of mortality in men, and 8th in women [5]. Sec-
ond-hand smoke and environmental and occupational 
exposure partially explain some LC diagnoses in never-
smokers [6]. Most of the efforts to understand this condi-
tion have been conducted in European, North American, 
and Asian individuals; however, the LCINS from LA pop-
ulations are understudied.

Studies on non-LA populations suggest that LCINS 
has different clinical and genomic characteristics than in 
smokers [7]. In never-smokers, the diagnosis is predomi-
nately of the LUAD subtype and occurs more frequently 
in Asian and Hispanic young women with advanced dis-
ease. Surprisingly, Hispanic never-smokers with LC have 
shown a poorer survival outcome than non-Hispanic [8]. 
On the other hand, efforts have been made to under-
stand the tumor profiles in never-smokers, particularly in 
those of European, North American, and Asian descent. 
From 63,000 LC patients from 167 different studies, it 
was shown that never-smokers had a higher prevalence 
of mutations in EGFR and fusion rearrangements in ALK 
while a lower prevalence of mutations on KRAS, with 
some differences between Caucasian and Asian indi-
viduals [9]. From a French cohort of 17,664 LC patients, 
PIK3CA and BRAF showed a higher mutation frequency 
in never-smokers compared to smokers [10]. The Belgian 
FIELTS-2 study found that the frequency of mutations in 
ERBB2 and amplifications on MET was higher in never-
smokers than in smokers [7]. Studies in the Asian popu-
lation demonstrated that fusion rearrangements in ROS1 
were higher in never-smokers than smokers [11]. In addi-
tion, the RET proto-oncogene is more prevalent mutated 
in the LUAD subtype, mostly in the group of young 
never-smokers [12]. Finally, the frequency of mutation in 

MAP2K1 was higher in smokers than in never-smokers 
[13].

In Chile, recent evidence revealed that although smok-
ing consumption have decreased in the last years, its 
effect on mortality has not been mirrored, possibly due to 
the existence of additional risk factors [14]. In addition, 
the prevalence of LCINS has increased over the years 
and it is believed that environmental exposure could be 
related to this trend [15, 16]. On the other hand, tumor 
genomic profiles of LC patients from Chile and other 
LA countries are poorly characterized, particularly in 
never-smokers. A better understanding of the genomic 
profiles of this underrepresented population could not 
only provide mechanistic insight into lung carcinogenesis 
not mediated by tobacco smoke, but also could improve 
the clinical management of these group of patients with 
more personalized therapy strategies.

In this study, we perform a comparative-descriptive 
analysis of the genomic profiles of Chilean LC patients 
according to smoking status and other variables of clini-
cal relevance (including sex, age, NSCLC subtype, can-
cer stage, Personal History of Cancer [PHC] and Family 
History of Cancer [FHC]). We focus our analyses on 10 
different genes, including the eight most common action-
able genes for LC (EGFR, KRAS, ALK, MET, BRAF, RET, 
ERBB2, and ROS1) in addition to two driver genes of high 
mutation prevalence and established carcinogenic poten-
tial (PIK3CA and MAP2K1). We calculate the prevalence 
of genomic alterations (GAs) for each gene, including 
somatic mutations and structural variants (fusions), for 
the complete set of participants (overall prevalence) and 
for the group of smokers and never-smokers separately 
(and for the other relevant clinical variables). Further-
more, we attempt to unravel possible patterns of co-
occurrences and exclusions in the genomic landscape of 
smokers and never-smokers. Finally, a detailed descrip-
tion of the complete set of GAs found in the population 
is provided.

Materials and methods
Study participants
The population is derived from the study protocol Char-
acterization and Validation of Molecular Diagnostic 
Technologies for LC Patients from Chile, Brazil, and 
Peru (registered at clinicaltrials.gov as NCT03220230). 
The recruitment period was between July 2015 to Octo-
ber 2018 and encompassed 37 health centers from these 
three countries. A complete description on the study 
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protocol has been provided previously [46, 47]. Of the 
5030 recruited participants, genomics profiles and valid 
clinical information were successfully acquired for 1864 
individuals. After the exclusion of patients with missing 
data in the relevant clinical variables (sex, age, NSCLC 
subtype, cancer stage, PHC and FHC), a total of 673 Chil-
ean patients were included as part of the study popula-
tion of this current study. Subjects were grouped as either 
smokers (current and former) or never-smokers accord-
ing to self-report tobacco use at enrollment. More details 
on the final number of study participants are presented in 
Additional File 1: Fig. S1.

Sequencing quality control and variant classification
From tumor samples, sections with at least 5% tumor 
tissue were included. We selected up to 8 FFPE sections 
of 5  μm, the Recover All extraction kit (Thermo Fisher 
Scientific) was used for the isolation of RNA and DNA. 
The Oncomine Focus Assay (OFA, Thermo Fisher Scien-
tific) was employed to prepare libraries, and sequenced 
in the Ion Personal Genome Machine System. OFA is a 
Next-Generation Sequencing (NGS) panel aimed at dis-
covering Single Nucleotide Variants (SNVs), Indels, Copy 
Number Variations (CNVs) and gene fusions. The QC 
metric thresholds were at least 240 median reads per 
amplicon and 60% of aligned reads for DNA libraries, 
and 20,000 correctly mapped reads plus three out of five 
expression control amplicons detected for RNA.

For the alignment and variant calling, strict parameters 
were defined to call SNVs and Indels: minimum allele fre-
quency of 5% (SNVs) and 7% (Indels), the minimum cov-
erage that admits a variant was 10x (SNVs and Indels). In 
addition, the minimum coverage of the variant location is 
50x, with minimum variant scores in phred-scaled values 
set at 6 for SNVs and 20 for Indels. Defined parameters 
of 70% overlap reading alignment with reference and 66% 
exact matches were used for the alignment of the fusions, 
and a minimum valid mapped reading of 20 × and 15 × for 
fusions and expression controls, respectively. All remain-
ing reference/reference sites, variants with allelic fre-
quency < 5%, and observed alternative alleles < 10 reads 
were removed from the DNA Variant Call Format (VCF) 
files. For RNA VCFs, only fusions with more than 20 
reads were maintained. Oncomine variants were selected, 
defined as those located in positions within the prede-
fined hotspots of Oncomine Focus DNA Hotspots v1.4.

Statistical analyses
Overall prevalence of GA per gene was calculated by 
computing the proportion between the number of 
patients with at least one GA as the numerator and the 
total number of study participants as the denomina-
tor. Stratified prevalence by smoking status and relevant 

clinical variables for each gene was calculated by comput-
ing the proportion between the number of patients with 
at least one GA in each group as the numerator and the 
total number of study participants in each group as the 
denominator. Statistical significance for difference in pro-
portions between groups was calculated using either the 
chi-squared test or the fisher exact test for small sample 
sizes or low expected frequencies. Statistical significance 
level was set to 5% and 1% and reported appropriately. 
In addition, we accounted for multiple testing using a 
Bonferroni correction, controlling the Family Wise Error 
Rate (FWER) below 1%.

Kendall correlation estimates were computed to the 
obtain matrices of GA co-occurrences and exclusions and 
the significance level was set at 5%. We used R program-
ming language version 4.3.1 for all statistical analyses.

Results
Study population
A description of the study population by smoking sta-
tus concerning the main clinical variables is depicted 
in Table  1. We observe that the never-smoker group 

Table 1  Characteristics of the study population by smoking 
status with respect to main clinical variables (n = 673)

Counts and percentages are reported, p-value for difference in proportions was 
calculated using the chi-squared test

LUAD Lung Adenocarcinoma, SqCC Squamous Cell Carcinoma, PHC Personal 
History of Cancer, FHC Family History of Cancer

Smoker Never-Smoker P-value

(n = 473) (n = 200)

Sex
  Male 269 (56.9%) 85 (42.5%) < 0.001

  Female 204 (43.1%) 115 (57.5%)

Age
  55 or less 56 (11.8%) 41 (20.5%) 0.00506

  More than 55 417 (88.2%) 159 (79.5%)

NSCLC Type
  LUAD 413 (87.3%) 148 (74.0%) < 0.001

  SqCC 52 (11.0%) 48 (24.0%)

  Other 8 (1.69%) 4 (2.00%)

Cancer Stage
  Stage I 25 (5.29%) 8 (4.00%) 0.00187

  Stage II 19 (4.02%) 5 (2.50%)

  Stage III 72 (15.2%) 11 (5.50%)

  Stage IV 357 (75.5%) 176 (88.0%)

PHC
  No 433 (91.5%) 192 (96.0%) 0.0589

  Yes 40 (8.46%) 8 (4.00%)

FHC
  No 346 (73.2%) 171 (85.5%) < 0.001

  Yes 127 (26.8%) 29 (14.5%)



Page 4 of 15Garrido et al. BMC Cancer          (2024) 24:951 

is predominately formed by females (57.5%), and the 
smoker by males (56.9%). In addition, smokers are char-
acterized by a higher proportion of older participants, 
LUAD subtype, and self-reported PHC and FHC, while 
never-smokers by higher frequencies of SqCC subtype, 
and advanced disease at diagnosis. We found statistically 
significant results for differences in proportions between 
groups at 0.1% level for sex, NSCLC type and FHC.

Genomic profile landscape
The co-oncoprint plot by smoking status for the com-
plete set of participants is displayed in Fig.  1. Broadly, 
we observe that around half of the patients in each group 
present at least one GA, with most of the tumor sam-
ples harboring only one. The highest number of GA in 
a single tissue sample among smokers is seven (n = 1), 
and five among never-smokers (n = 1). In that same 
line, samples containing more than one GA are more 
common in smokers, as co-occurrence events in never-
smokers are scarce. The two most altered genes, EGFR 
and KRAS, display a clear exclusion pattern as tumors 

with alterations in EGFR do not contain alterations in 
KRAS, and vice versa. EGFR events co-occur mainly with 
PIK3CA, MAP2K1, ALK and MET predominately in 
smokers. Somatic missense mutations (MM) are the most 
common type of GA and are mainly observed in EGFR, 
KRAS, PIK3CA and MAP2K1. Other types of somatic 
mutations such as In − Frame Deletions (InF Del) and 
In − Frame Insertions (InF Ins) are infrequent, typically 
present in the EGFR and ERBB2 genes. Structural vari-
ants are mostly present in ALK, MET, RET and ROS1. 
On the other hand, multi-hit events (i.e., two or more GA 
co-occurring in the same gene) are also infrequent and 
mainly observed in EGFR and MET. In relation to clini-
cal variables, we can observe a distinguishable pattern for 
NSCLC subtype, cancer stage, PHC and FHC. Regarding 
disease subtype, altered samples of smokers seem to have 
a higher proportion of the LUAD subtype than those of 
never-smokers; conversely, there are appeared to be a 
similar proportion of the SqCC subtype in non-altered 
samples in both smokers and never-smokers. Concerning 
stage, unaltered samples of never-smokers seem to have 

Fig. 1  Genomic landscape of the study population by smoking status. Left panel figures represent smokers (n = 473) and right panel figures 
never-smokers (n = 200). Top panels display the absolute number of GA per tumor sample. Middle panels are the oncoprint plots for each group 
of participants. Bottom panels indicate the characteristics of the patients for the studied clinical variables. Dashed vertical lines separate the set 
of samples with at least one GA from the those without GAs. GA: Genomic Alteration, MM: Missense Mutation, InF Del: In-Frame Deletion, InF Ins: 
In-Frame Insertion, Fus: Fusion, LUAD: Lung Adenocarcinoma, SqCC: Squamous Cell Carcinoma
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a higher proportion of advanced disease patients. As to 
PHC and FHC, a negative self-report in both conditions 
is proportionately more frequent in unaltered samples of 
never-smokers.

Prevalence of genomic alterations (GAs)
The total number of participants harboring at least one 
GA in any of the 10 driver genes under study is 332 
(49,3%). As depicted in Fig. 2, EGFR, KRAS and PIK3CA 
are among the most altered genes with an overall preva-
lence of 17.4%, 14.9% and 7.6%, respectively; ERBB2, 
RET and ROS1 are the least altered ones with respec-
tive overall prevalence of 2.5%, 1.6% and 1.2%. Stratified 
analyses by smoking status reveal a higher proportion of 
GA among never-smokers than smokers (n = 116, 58% vs. 
n = 216, 45.7%, p-value < 0.01). Smokers present a higher 
prevalence for three out of the 10 genes, namely KRAS 
(16.8% vs 11.5%), MAP2K1 (6.5% vs. 3.5%), and RET 
(1.9% vs. 1%). Never-smokers present a higher prevalence 
for the remaining seven genes, with the most noticeable 

differences in EGFR (21.5% vs. 15.6%), PIK3CA (6.7% vs 
9.5%), and ALK (3.2% vs 7.5%). Statistical significance 
difference between groups was only reached for EGFR 
(p-value < 0.01).

When estimating the prevalence of somatic mutations 
and structural variants separately, frequencies remain 
unchanged for KRAS, PIK3CA, MAP2K1, BRAF and 
ERRB2 as these genes only display mutations. In con-
trast, ALK, MET, RET and ROS1 present a prevalence 
of fusions that is higher than the respective prevalence 
of mutations; the most notable difference is observed for 
ALK while MET shows similar prevalence values for the 
two types of GAs.

Stratified prevalence analyses by relevant clinical vari-
ables of interest reveal a statistically significant difference 
for EGFR between categories in all variables, favoring a 
higher proportion of GA for younger female patients 
with stage I LUAD subtype, and positive PHC and FHC. 
Additional statistical significance differences were also 
observed for RET and ROS1 in the NSCLC subtype 

Fig. 2  Prevalence of GAs for the 10 driver genes under study by smoking status. Genes are ordered by decreasing overall prevalence. Absolute 
and relative frequencies are specified for each group at the top of each bar. Prevalence values for the complete population are shown in grey 
rectangles. p-value for difference in proportions between groups was calculated using either the chi-squared test or the fisher exact test for small 
expected counts. Top panel displays the overall prevalence for smokers and never-smokers including both somatic mutations and structural 
variants. Bottom panels display relative frequencies separately for somatic mutations (left) and structural variants (right). (*) represents statistically 
significant difference. (*: p-value < 0.05, **: p-value < 0.01, ***: Bonferroni adjusted p-value < 0.001). GA: Genomic Alteration
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(favoring higher frequencies for LUAD subtype); BRAF, 
ERRB2 and ROS1 in cancer stage (favoring higher fre-
quencies for early-stage disease); and for MAP2K1 in 
PHC (favoring higher frequencies for a positive history). 
(Fig. 2 and Additional File 1: Fig. S2).

When treating age as a continuous variable, we found 
statistically significant findings for overall prevalence 
for KRAS in the age value 63 y/o (prevalence for smok-
ers = 0% [n smokers = 12] vs prevalence for never-smok-
ers = 50% [n never-smokers = 4], p-value < 0.05), and MET 
in the age value of 64 y/o (prevalence for smokers = 0% 
[n smokers = 20] vs prevalence for never-smokers = 100% 
[n never-smokers = 1], p-value < 0.05). When categoriz-
ing age by 20th percentiles (20th: 58 y/o, 40th; 65y/o, 
60th:70 y/o, and 80th: 75 y/o), we found statistically sig-
nificant findings for overall prevalence for KRAS in the 
age range ≤ 58 y/o and 70–75 y/o, MAP2K1 in the age 
range ≤ 58 y/o, and ROS1 in the age range 58–65 y/o 
(p-value < 0.05) (Additional File 1: Fig. S3).

Distribution and type of GAs per gene by smoking status
Most patients only harbor one GA in their genomic pro-
files. More precisely, out of participants with altered 

profiles, 73.1% (n = 158) of smokers and 76.7% (n = 89) 
of never-smokers present samples with one GA. As 
depicted in Fig.  3 (top), the prevalence of the genes 
MAP2K1, ALK, ERBB2, RET and ROS1 are exclusively 
based on patients with one GA for both smokers and 
never-smokers. In the case of KRAS and BRAF, one-GA 
samples are observed solely for never-smokers, while 
smokers present a comparatively low proportion of sam-
ples with more than one GA. On the other hand, PIK3CA 
and MET display a similar distribution of one- vs. more-
than-one GA samples in the two groups, with a higher 
proportion of the later in the never-smoker group. Nota-
bly, a similar distribution between groups is observed 
for EGFR. Analyses for difference in proportion between 
smokers and never-smokers did not detect statistically 
significant findings.

The type of GA per gene by smoking status for samples 
harboring one GA and more than one GA is depicted in 
Fig.  3 (bottom left and bottom right, respectively). The 
prevalence estimates for one-GA samples in the genes 
KRAS, PIK3CA, MAP2K1, and BRAF are exclusively 
comprised by somatic mutations of the missense type. 
Fusions are almost exclusively found in ALK, MET, RET 

Fig. 3  Distribution and type of GAs per gene. For each plot, smokers are shown in the left and never-smokers in the right. Top panel includes all 
tumor samples with at least one GA and the distribution of samples with only one or more than one GA for each gene is shown. Bottom left panel 
includes samples with only one GA and the proportion of the different types of GA for each gene is shown. Bottom right panel includes samples 
with more than one GA and the proportion of the different types of GA for each gene is shown. In each panel, the number of tumor samples 
included in the analysis for each group of patients is specified at the top. Absolute and relative frequencies for the distribution and type GA are 
specified inside bars. GA: Genomic Alteration
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and ROS1, and mostly co-occur with MMs. Of those four 
genes, never-smokers present a slightly higher propor-
tion of fusions in ALK and in MET than smokers. InF Ins 
events occur only in EGFR and ERRB2 with a higher pro-
portion in never-smokers. InF Del occur only in EGFR in 
a similar ratio between groups. More infrequent events 
include splice sites (SS) in MET and fusions in EGFR, 
both present in smokers only. On the other hand, the 
prevalence estimates for samples with more than one 
GA are exclusively based on MM for KRAS, PIK3CA and 
BRAF. Co-occurrence events with different types of GAs 
are only seen for EGFR and MET in a similar proportion 
between smokers and never-smokers. Statistically signifi-
cant difference in the proportions of GA types between 
groups did not reveal significant findings.

Correlation patterns between GAs
The matrices of co-occurrences and exclusions of GA 
grouped by genes and stratified by smoking status are 
shown in Fig. 4. Overall, we observe that in both smok-
ers and never-smokers most pair-wise correlation coeffi-
cients are negative (exclusions) and non-significant. On 
the contrary, most statistically significant correlations are 
positive (co-occurrences): 11 out of 12 of the significant 
coefficients in smokers and three out of four in never-
smokers; in the former group these are mainly driven by 
EGFR, PIK3CA, ALK and MET. The only negative coeffi-
cient reaching statistical significance in the two groups is 

between EGFR and KRAS (smokers: R = -0.14 vs. never-
smokers: R = -0.19, p-value: < 0.05). On the other hand, 
the only positive and statistically significant coefficient in 
the two groups is between PIK3CA and BRAF (smokers: 
R = 0.12 vs. never-smokers: R = 0.14, p-value: < 0.05).

When analyzing the co-occurrence and exclusion pat-
terns at the level of individual GA, we observe a much 
sparser matrix as most coefficients are weak and non-
significant, particularly for smokers. In both groups, 
a minority of pair-wise correlations reach statistically 
significant coefficients of one (34 out of 110 [25.9%] in 
smokers and 12 out of 74 [15.4%] in never-smokers). 
Among those, the following pair-wise correlations can 
be highlighted: p.A1200V (ALK)/ p.R841K (EGFR), 
p.L1204F (ALK)/ p.L798F (EGFR), p.G776D (ERBB2) 
/ p.G128S (MAP2K1) in smokers, and p.D1045N 
(PIK3CA)/ p.G863S (EGFR) in never-smokers (Fig. 5 and 
Additional File 1: Fig. S4). The complete set of co-occur-
rences in each group of patients is listed in Additional 
File 2: Tables S1-S2.

Characterization of individual GA
The total number of unique GAs identified in our study 
population is 152, of which 78 (51.3%) are solely found 
in smokers, 42 (27.4%) solely in never-smokers and 32 
(21.1%) are common between the two groups. EGFR 
and PI3KCA are the genes with the highest numbers of 
unique GAs (n = 48 and n = 33, respectively), followed 

Fig. 4  Matrices of co-occurrences and exclusions of GA grouped by genes. The group of smokers are shown in the left and never-smokers 
in the right. Lower triangles of the matrices represent Kendall correlation coefficients, with negative correlation (exclusion) coloured in red 
and positive correlation (co-occurrence) in blue. (*) represents statistically significant correlations at a 5% level. Upper triangles of the matrices 
represent the actual number of co-occurrences, with bigger and redder circles representing higher absolute number of co-occurrences. GA: 
Genomic Alteration
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by KRAS and BRAF (n = 12), MET and ERBB2 (n = 9), 
MAP2K1 and ALK (n = 8), RET (n = 7) and ROS1 (n = 6). 
In the case of EGFR, most of these GA are located in 
exons 19 (n = 19, 36.9%) and 20 (n = 13, 27.1%), where the 
tyrosine-kinase domain is located; for PIK3CA in exons 
10 (n = 8, 24.2%), 2 and 21 (n = 7, 21.2%), and in the PKc 
MEK1 domain. Details on the unique set of GAs for these 
two genes are provided in Figs. 6 and 7 (for the remain-
ing genes see Additional File 1: Fig. S4 and Additional 
File 2: Tables S3-S12). Common actionable mutations in 
EGFR including deletions in exon 19 and point mutation 
p.L858R reach overall relative frequencies of 6.5% and 
5%, respectively. For other common actionable GAs these 
values are: 5.6% and 2.8% for KRAS p.G12C and p.G12D, 
respectively; 2.7% for METex14; and 0.9% for BRAF 
p.V600E. For smokers, individual GAs with the highest 
frequencies are p.G12C with 6.6%, and MAP2K1 p.Q56K 
with 5.3%; for never-smokers, p.L858R and p.G12C with 
7% and 3.5%, respectively. When calculating differences 
in relative frequencies at the level of individual GA for 
each gene by smoking status, our analyses did not find 
statistically significant results (see also Additional File 2: 
Tables S3-S12). In relation to the common GAs between 
groups, 30 out of 32 are somatic mutations and only two 
are structural variants. These common alterations are 
present in 264 participants (smokers: n = 173, never-
smokers: n = 91). Most of the shared mutations are found 
in EGFR (n = 10), KRAS (n = 6), PIK3CA (n = 5) and MET 
(n = 5), while shared fusions are found in ALK and MET 
(n = 1). Analyses for differences in proportion between 

groups did not find statistically significant results for any 
of the common GAs (Table 2).

Discussion
Our main findings reveal that the genes with the high-
est overall genomic prevalence are EGFR, KRAS and 
PIK3CA while ERBB2, RET and ROS1 present the lowest. 
Compared to smokers, never-smokers harbor at least a 
single alteration in their tumor samples more frequently 
(58 vs. 45.7, p-value < 0.01), with higher genomic preva-
lence in seven out the 10 genes under study. The clear-
est differences in favor of never-smokers are observed for 
EGFR (15.6 vs. 21.5, p-value: < 0.01), PIK3CA (6.8 vs 9.5) 
and ALK (3.2 vs 7.5). The clearest differences in favor of 
smokers are seen for KRAS (16.3 vs. 11.5) and MAP2K1 
(6.6 vs. 3.5). Despite the lower prevalence, the group of 
smokers harbor a more complex genomic profile as i) 
there is a higher proportion of samples with more than 
one alteration (26.9 vs. 23.3), ii) co-occurrence events are 
more common (at the level individual GAs and grouped 
by genes), and iii) isolated events such as fusions and 
frame shift deletions in EGFR, and SSs in MET are pre-
sent in smokers only. On the other hand, our analyses 
also reveal common features between smokers and never-
smokers: i) the distribution and type of alterations across 
genes is similar, and ii) a clear exclusion pattern between 
EGFR and KRAS events is present in the genomic pro-
files of the two groups. With respect to the relevant clini-
cal variables, we can draw the following conclusions: i) 
never-smokers are more likely to be younger women 

Fig. 5  Matrices of co-occurrences and exclusions of the top 30 GA with the highest coefficients. The group of smokers are shown in the left 
and never-smokers in the right. Matrices display the first 30 GAs with the highest sum of the absolute values of all pair-wise coefficients. GAs 
are coloured and ordered by the genes to which they belong. Negative correlations (exclusions) are coloured in red and positive correlation 
(co-occurrences) in blue. (*) represents statistically significant correlations at a 5% level. GA: Genomic Alteration
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Fig. 6  Characterization of individual GA identified in the gene EGFR (n = 48). Panel A: pie chart displaying the relationship between the frequency 
of individual GAs (inner circle), type of GA (middle circle), and exon number to which individual GAs belong (outer circle). For all circles, grey 
color represents GA present only once (n = 1). Panel B: lolliplot specifying the location and counts of individual GAs for the group of smokers (top) 
and never-smokers (bottom). For more details see Additional File 2: Table S3
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Fig. 7  Characterization of individual GA identified in the gene PIK3CA (n = 33). Panel A: pie chart displaying the distribution and relationship 
between the frequency of individual GAs (inner circle), type of GA (middle circle), and exon number to which individual GAs belong (outer circle). 
For all circles, grey color represents GA present only once (n = 1). Panel B: lolliplot specifying the location and counts of individual GAs for the group 
of smokers (top) and never-smokers (bottom). For more details see Additional File 2: Table S4



Page 11 of 15Garrido et al. BMC Cancer          (2024) 24:951 	

with SqCC subtype and advanced disease at diagnosis, 
and a negative history of cancer, ii) never-smokers with-
out alterations in their profiles are more likely to have 
advanced disease and a negative history of cancer, and 

iii) higher prevalence of alterations in EGFR are found in 
never-smoker young women with early-stage disease and 
LUAD subtype, and a positive PHC and FHC.

Ancestry-mediated variations in the prevalence of 
alterations of LC from LA are well-documented, par-
ticularly for genes with approved targeted therapy in the 
region [17–20]. Compared to Peru, Mexico and Ecua-
dor, lower prevalence estimates of EGFR alterations are 
reported for Chile, with values similar to those found in 
European and White patients [21, 22]. Differences based 
on raced are also found for individual alterations. Com-
mon mutations such as deletions of exon 19 and p.L858R 
point mutation of exon 21 account for 80% to 90% of all 
EGFR mutations [20]. In our study, however, these repre-
sent around 50% of all alterations of this gene, with indi-
vidual mutation prevalence of 6.4 and 5% respectively, 
which is considerably lower to has been reported in other 
populations [20–22]. Less common mutations like exon 
20 insertions and points mutations p.G719X in exon 18, 
p.L861X in exon 21, and S768I in exon 20 were all found 
to have a prevalence close to 1% in the present study, 
which is consistent with other reports [20, 23]. Interest-
ingly, multiple mutations in EGFR were found in < 3% of 
the patients in our study, which is higher than frequen-
cies reported elsewhere [20, 24]. Compound EGFR muta-
tions have been shown to be less responsive to therapy 
targeting this gene than single mutations [25]. In regard 
to clinical variables, our finding of higher proportion of 
EGFR-mutated samples for never-smoker women with 
LUAD and early-stage disease confirms what has been 
reported in recent metanalysis of LA patients [20]; age, 
however, appears to be a discordant factor as our results 
point to younger women. With respect to KRAS, the 
estimates of 14.9% is within the range found for other 
LA countries [20]; nevertheless, it is lower than values 
reported for Whites, Blacks, the GENIE database, and 
higher than values for Asians [26]. The p.G12C muta-
tion was the most common at 5.6%, making it less com-
mon than prevalence estimates of other LA countries 
(7%); likewise for p.G12D (2.8 vs. 4%) [20]. Studies have 
shown that mutation p.G12C is more predominant in 
former/current smokers while p.G12D in never smok-
ers. However, our data shows both of these alterations 
are more frequent in smokers. Race-driven variability for 
other actionable genes like ALK, ROS1, BRAF is less clear, 
given the low prevalence estimates. Nevertheless, our 
values are similar to those reported elsewhere: between 
2.8 and 5% for ALK fusions [20, 27, 28], 1.9 and 2.2 for 
ROS1 rearrangements [11, 20], and 2 and 6% for BRAF 
mutations [20, 29]. In our study, the most common BRAF 
mutation, V600E, accounts for 31.5% of alterations in this 
gene, which is lower than what has been found in other 
LA populations (50% and 68%) [30, 31]. For MET, while 

Table 2  Detail of the common GA between smokers and never-
smokers (n = 32)

MM Missense Mutation, InF Del In-Frame Deletion, InF Ins In-Frame Insertion, SS 
Splite Site, Fus Fusion

GA Name/ Gene Total (n) Smoker (n) Never-
smoker 
(n)

GA Type

EGFR (n = 10)

1 p.L858R 34 20 14 MM

2 p.E746_A750del 25 13 12 InF Del

3 p.S720A 9 8 1 MM

4 p.A750P 7 5 2 MM

5 p.L747_A750delinsP 6 4 2 InF Del

6 p.E746_S752delinsV 3 1 2 InF Del

7 p.L747_P753delinsS 3 2 1 InF Del

8 p.G719A 2 1 1 MM

9 p.H773dup 2 1 1 InF Ins

10 p.N771_H773dup 2 1 1 InF Ins

KRAS (n = 6)

1 p.G12C 38 31 7 MM

2 p.G12V 20 14 6 MM

3 p.G12D 19 14 5 MM

4 p.G12A 9 7 2 MM

5 p.G12S 3 1 2 MM

6 p.G13D 2 1 1 MM

PIK3CA (n = 5)

1 p.E545K 13 9 4 MM

2 p.E542K 5 3 2 MM

3 p.H1047R 4 1 3 MM

4 p.R38H 4 2 2 MM

5 p.D1045N 2 1 1 MM

MET (n = 5)

1 X1010_splice 4 3 1 SS

2 D1010H 3 2 1 MM

3 H1094Y 3 1 2 MM

4 p.P1009S 3 2 1 MM

5 METex14 18 11 7 Fus

ALK (n = 2)

1 p.L1204F 2 1 1 MM

2 EML4-ALK 22 10 12 Fus

BRAF (n = 2)

1 p.V600E 6 5 1 MM

2 p.G466V 2 1 1 MM

MAP2K1 (n = 1)

1 p.Q56K 30 25 5 MM

ERBB2 (n = 1)

1 p.Y772_A775dup 6 4 2 InF Ins
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a previous study did not identify alterations in this gene 
for Chilean patients [32], our data shows a prevalence of 
4.5%, with METex14 accounting for 50% of all MET alter-
ations. No previous data for Chilean patients were found 
for ERBB2 and RET. For ERRB2, our estimate of 2.5 is 
lower than what has been found in other LA populations 
with values ranging from 4.9 to 11% [29, 31, 33, 34]. For 
RET, our estimate of 1.6% is similar to those reported 
elsewhere [20, 29, 35].

Contrasting results were observed for non-actionable 
genes. While our PIK3CA estimate is within the range of 
values reported in LA, estimates for MAP2K1 are notably 
higher than those reported in the literature (5.6 vs < 1%), 
particularly for smokers [36, 37]. Alterations in MAP2K1 
have been found to be more frequent in patients of Afri-
can descent [37]. The present study also shows a potential 
enrichment of MAP2K1-mutant samples in this group of 
Chilean patients. Point mutation p.Q56X is significantly 
more common that p.K57X (78.9 vs 2.6), which is con-
trary to frequencies reported by other authors [36, 37]. 
These findings constitute valuable discoveries that war-
rant further investigation, specially giving the promising 
results that targeted therapies for this gene have shown in 
LC and other solid tumors.

The results from the present study could have impor-
tant implications for the management of Chilean LC 
patients. Current international guidelines recommend 
molecular testing of EGFR, ALK, and ROS1 for all 
patients with advanced-stage LC with an adenocarci-
noma component, and ERBB2, MET, BRAF, KRAS, and 
RET in laboratories performing NGS [38]. However, 
access to standard of care molecular diagnosis for LC in 
Chile is limited. The most widely available techniques are 
qPCR and immunohistochemistry-based assays for the 
assessment of established actionable alterations in EGFR, 
ALK, and ROS1. Target or comprehensive NGS based 
assays are available in a small number of private hospi-
tals in the capital city, and these lack insurance cover-
age or reimbursements [32, 39–41]. On the other hand, 
targeted therapy currently approved by local regulatory 
authorities for metastatic NSCLC include EGFR tyros-
ine kinase inhibitors (TKIs), and ALK, ROS1 and BRAF 
inhibitors [39]. Similar to molecular testing, access to 
these drugs pose a significant problem given their high 
cost, as in the vast majority of cases they are not reim-
bursed and must be paid directly by patients. In addition, 
many FDA-approved drugs are yet to be registered in the 
country, particularly for KRAS, MET, RET and ERRB2, as 
well as some second- and third generation EGFR-TKIs. 
In this scenario, clinical trial involvement is a viable alter-
native to receive newer and more effective therapies. The 
associations found in our study of smoking status and 
clinical variables with actionable alterations may guide 

a risk-based selection of patients for access to molecular 
testing and targeted therapies in these unfavorable set-
tings where financial considerations impose a major con-
straint [42, 43]. In particular, the more complex genomic 
profile of smokers also makes molecular testing in this 
group of patients more relevant, as a more careful con-
sideration of the therapy to use is needed. Furthermore, 
given that our study indicates that i) estimates of estab-
lished actionable alterations including those in EGFR and 
BRAF are lower than those reported in other popula-
tions, and ii) estimates for ALK fusions and ROS1 rear-
rangements are equally low to those described elsewhere, 
approval and testing of drugs targeting other genes is 
crucial. Based on our findings, drugs targeting genes such 
as KRAS, MET and MAP2K1 should be prioritized.

This study characterized for the first time the differ-
ences in the genomic profiles between smokers and 
never-smokers LC patients from Chile; as such con-
stitutes a valuable effort to close the gap in the under-
standing of underrepresented populations. Nonetheless, 
it is not without limitations. First, small sample sizes 
and class imbalances may have hindered the possibil-
ity of detecting statistically significant findings. Second, 
our descriptive analyses did not correct for known and 
unknown confounding factors; therefore, whether the 
observed group differences can be explained by factors 
other than tobacco consumption is yet to be determined. 
Third, categorization between smokers and never-smok-
ers was made according to self-report at enrollment. 
More formally, never-smokers are defined as people who 
have smoked less than 100 cigarettes in their lifetime, in 
contrast to ever smokers (current and former) who are 
people who have smoked more than 100 cigarettes over 
their life [44]. Thus, a more robust categorization would 
have included this aspect into account or employed 
metrics such the Comprehensive Smoking Index, which 
aggregates duration, intensity and time since cessation 
[45]. Fourth, the study utilized FFPE with at least 5% 
tumor content, possibly limiting the detection of variants 
as most assays require closer to 20–30%. Finally, the OFA 
is targeted NGS panel designed to detect the presence of 
specific and restricted number of alterations (> 1,000), 
which may result in an underestimation of the genomic 
prevalence when compared to more comprehensive 
untargeted assays. Also, the determination of important 
somatic genomic features such as tumor mutational bur-
den and mutational signatures are not possible because 
of the small size of the OFA DNA targeted regions.

Conclusions
High-quality local genomic data is essential to ease 
the transition to a more widespread use of molecu-
lar testing and targeted therapy approaches for the 



Page 13 of 15Garrido et al. BMC Cancer          (2024) 24:951 	

management of LC patients in LA countries. Here, we 
provided a thorough characterization of the genomic 
landscape of Chilean LC patients by smoking status. 
We found important differences in the prevalence of 
alterations compared to other countries of the region 
as well as by tobacco use, which are mainly driven by 
genes EGFR, KRAS, MET, and MAP2K1. Smokers 
appear to face a more challenging prospect as they are 
less likely to have actionable mutations and more likely 
to harbor a complex genomic profile. It is our expec-
tation these findings offer guidance to clinicians and 
regulatory agencies for management of LC patients in 
these limited-resource settings where financial con-
straints are a major hurdle.
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