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Abstract
CD19-targeted chimeric antigen receptors (CAR) T cells are one of the most remarkable cellular therapies for 
managing B cell malignancies. However, long-term disease-free survival is still a challenge to overcome. Here, 
we evaluated the influence of different hinge, transmembrane (TM), and costimulatory CAR domains, as well as 
manufacturing conditions, cellular product type, doses, patient’s age, and tumor types on the clinical outcomes 
of patients with B cell cancers treated with CD19 CAR T cells. The primary outcome was defined as the best 
complete response (BCR), and the secondary outcomes were the best objective response (BOR) and 12-month 
overall survival (OS). The covariates considered were the type of hinge, TM, and costimulatory domains in the CAR, 
CAR T cell manufacturing conditions, cell population transduced with the CAR, the number of CAR T cell infusions, 
amount of CAR T cells injected/Kg, CD19 CAR type (name), tumor type, and age. Fifty-six studies (3493 patients) 
were included in the systematic review and 46 (3421 patients) in the meta-analysis. The overall BCR rate was 56%, 
with 60% OS and 75% BOR. Younger patients displayed remarkably higher BCR prevalence without differences in 
OS. The presence of CD28 in the CAR’s hinge, TM, and costimulatory domains improved all outcomes evaluated. 
Doses from one to 4.9 million cells/kg resulted in better clinical outcomes. Our data also suggest that regardless of 
whether patients have had high objective responses, they might have survival benefits from CD19 CAR T therapy. 
This meta-analysis is a critical hypothesis-generating instrument, capturing effects in the CD19 CAR T cells literature 
lacking randomized clinical trials and large observational studies.
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Introduction
Chimeric antigen receptors (CARs) are artificial cell 
membrane receptors responsible for immune cell acti-
vation. They are constituted by an extracellular bind-
ing domain selected against an antigen, usually in the 
form of a single-chain variable fragment (scFv), a hinge 
sequence, and a transmembrane domain fused to intra-
cellular costimulatory and stimulatory signaling domains. 
First-generation CARs had only one CD3ζ chain in the 
intracellular domain for T cell activation. Second- and 
third-generation CARs harbor one and two additional 
intracellular costimulatory domains, respectively, elicit-
ing complete T cell activation. Fourth-generation CARs 
are based on second or third-generation CARs designed 
in a vector able to induce the expression of additional 
transgenic products, constitutively or by induction, such 
as cytokines or monoclonal antibodies. The CAR expres-
sion has been vastly explored in T cells (CAR T cells), 
and is evolving in other immune cell types, such as NK 
cells, dendritic cells, and macrophages, ushering in a new 
era for the treatment of cancer and other diseases [1, 2]. 
In clinical trials, the main domains constituting the hinge 
part of a CAR are CD28, CD8 alpha, IgG4, or IgG1, while 
for the transmembrane domain (TM), CD28 or CD8 
alpha are the most applied. The costimulatory domains 
more extensively applied in the clinical setting are CD28 
and 4-1BB. CD28 incorporation into the costimulatory 
domain of CD19 CAR elicits tumor eradication, glycoly-
sis, effector memory maturation, and T cell exhaustion, 
whereas 4-1BB signaling induces in vivo T cell persis-
tence, mitochondrial biogenesis, and reprogramming 
towards a central memory T cell phenotype [3]. Regard-
less of a few small studies that explored the clinical 
impact of using different costimulatory domains in the 
CAR, there is a lack of information about the influence of 
different hinge or TM domains on the clinical outcomes 
of patients treated with CAR T cells.

One of the current most effective CAR T cell therapies 
targets CD19, an antigen expressed by B cells in all stages 
of development until differentiation in plasmocytes, 
including B cell malignancies, such as Hodgkin (HL) and 
non-Hodgkin lymphoma (NHL), acute (ALL) or chronic 
lymphocytic leukemia (CLL) [4]. All tumor types treated 
with this therapy had a high initial complete response 
(CR) rate, but long-term disease-free survival can still 
be improved [4]The therapeutic success of CAR T cells 
is sometimes discrepant as it is shaped by several fac-
tors, boosting the conduction of a comparative analysis 
to address the global impact of in vivo and ex vivo con-
ditions that influence CD19 CAR T cell performance in 
clinical trials.

Here, we analyzed the rates of the primary outcome – 
defined as best complete response (BCR) – and second-
ary outcomes defined as 12-month overall survival (OS) 

and best objective response (BOR) of CD19-positive leu-
kemia or lymphoma patients treated with CD19 CAR T 
cells containing different hinge, transmembrane (TMD), 
and costimulatory domains. We have also analyzed the 
impact of different parameters related to CAR T cell 
manufacturing conditions, such as the type of interleukin 
used for CAR T cell expansion, CAR T cells activation 
method, and cell population transduced with the CAR. 
We have also evaluated the number of CAR T cell infu-
sions, amount of CAR T cells injected/Kg, CD19 CAR 
type (name), tumor type, and age. This meta-analysis will 
be helpful as a hypothesis-generating instrument as it 
tries to capture effects in the literature that is still recent, 
lacking randomized clinical trials and large observational 
studies.

Methods
Search strategy
We accomplished a systematic review and meta-analysis 
according to the PRISMA statement [5, 6], registered on 
PROSPERO (CRD42022360268). The main study ques-
tion is the rate of BCR in patients undergoing treatment 
for B cell malignancies according to the CD19 CAR T 
cells hinge, transmembrane, and costimulatory domains. 
The MEDLINE/PubMed database was searched from the 
inception until August 2021, using the following key-
words: “receptors, chimeric antigen“[MeSH Terms] OR 
(“receptors“[All Fields] AND “chimeric“[All Fields] AND 
“antigen“[All Fields]) OR “chimeric antigen receptors“[All 
Fields] OR (“chimeric“[All Fields] AND “antigen“[All 
Fields] AND “receptor“[All Fields]) OR “chimeric antigen 
receptor“[All Fields]) AND “CD19“[All Fields].

Study eligibility criteria
The inclusion criteria were patients with CD19-pos-
itive leukemia or lymphoma treated with second or 
third-generation CD19 CAR T cells. Only studies with 
original data and in English were included. Grey litera-
ture and reference lists from included studies were also 
considered.

The exclusion criteria were studies with (a) no primary 
outcome reported, (b) dual CAR, (c) other CAR cells 
types, such as CAR macrophages, (d) combinations with 
CAR T cells targeting other molecules or with other tar-
geted or non-targeted therapies, such as hematopoietic 
stem cell transplant, (e) patients with multiple myeloma 
and other non-hematological tumors, (f ) case series, 
(g) studies such as meta-analyses, reviews, case reports, 
protocols, books, letters to the editor, comments or spe-
cialists’ opinions, abstracts, and (h) pre-clinical studies. 
Studies ≤ 10 patients were included in the evidence sum-
mary but were excluded from the meta-analysis due to 
statistical constraints.
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Data extraction
Data extracted comprised the rate of successful out-
comes versus the sample included in the study, and 
BCR was defined as the primary outcome. The second-
ary outcomes were OS and BOR. For the meta-analysis, 
categorical covariates were the types of hinge, TM, and 
costimulatory (costimulation) domains in the CAR, CAR 
T cell manufacturing conditions, such as the interleukin 
used for CAR T cell expansion, CAR T cells activation 
method, and cell population transduced with the CAR 
– PBMCs or other specific subsets – (CAR T cell type), 
as well as the CD19 CAR type (CAR name), and tumor 
type. Numerical covariates were patient age, number of 
CAR T cells injected/Kg, and the number of CAR T cells 
infusions.

Two independent investigators (ERS and NSPC) 
screened titles and abstracts with ties resolved by a third 
person (VAP). Three authors (NSPC, VAP, GCPS) inde-
pendently performed the full-text review and extracted 
the data, and ERS resolved disagreements.

Data syntheses
The data was presented in a summary of evidence and 
synthesized as forest plots, with studies ordered by publi-
cation year. All methodological details of the meta-analy-
sis were included in the Supplementary Methods.

Risk of bias assessment
Risk of bias assessment adopted the Modified Institute 
of Health Economics Tool for bias analysis [7] and was 
performed independently by three authors (NSPC, VAP, 
GCPS).

Statistical analysis
Statistical analysis was performed with RStudio version 
1.1.383 (The R Foundation for Statistical Computing, 
Vienna, Austria), using meta and metafor packages [8, 9].

Results
Fifty-six studies were included in the systematic review 
with a total of 3493 patients, 2904 treated with CAR T, 
and 2809 patients analyzed for rate estimation of BCR. 
Of these patients, 1440 presented a CR, and 1587 had 
an objective response (OR). We have also evaluated 
12 months-OS, having 42 studies with a total of 2992 
patients included, 2479 patients treated with CAR T, and 
2393 patients analyzed, of whom 1567 were alive at 12 
months.

A total of 46 studies with more than or equal to 10 
patients were included in the meta-analysis involving 
3421 patients, of whom 2837 were treated with CAR T 
and 2746 patients analyzed for rate estimation of the pri-
mary outcome BCR, being 1251 patients presenting CR 
and 1571 presenting OR, one of the secondary outcomes 

evaluated. For the other secondary outcome assessed, 
OS, we had 37 studies with 2949 patients, 2439 patients 
treated with CAR T, and 2356 patients analyzed for OS, 
of whom 1547 were alive at 12 months. The PRISM flow 
diagram is present in Fig. 1, and the summary of evidence 
in Table 1.

Meta-analysis
General clinical responses of CD19 CAR T therapy
The general proportion of BCR was 56% (95%CI: 49 – 
63%), the I2 was 81%, and the τ2 was 0.7911 indicating a 
large between-study variance (Fig. 2). However, it equals 
or exceeds 50% in 28 of 46 studies (Fig. 2). Table 2 sum-
marizes meta-analysis data for primary outcome BCR 
(also presented in full version with references as Suppl. 
Table 1). The bias assessment is presented in Fig. 3.

The general proportion of OS was 60% (95%CI: 53 – 
67%), the I2 was 87%, and the τ2 was 0.5642 (Suppl. Fig-
ure 1 and Suppl. Table 2) indicating a moderate between 
study variance. The overall rate of BOR with CD19 CAR 
T therapy was 75% (95% CI: 68 – 82%, I2 = 78%) with a 
very high between-study variance (τ2 = 1.2262) and rates 
equal to or above 50% in 40 of 46 studies (Suppl. Figure 2 
and Suppl. Table 3). Together, these data indicate sub-
stantial heterogeneity. The bias assessment for OS and 
BOR are also presented in Suppl. Figure 3. All the other 
forest plots are presented as Suppl. Figure 4 to 39.

Sensitivity -analysis
Age
Patients under 18 years old had a 79% BCR (95%CI: 
65-89%, I2:64%), 62% OS (95%CI: 41-80%, I2:73%) and 
84% BOR (95%CI: 75-90%, I2:31%) (Suppl Figs. 4, 5 and 6, 
respectively). Patients above 18 years old presented a 51% 
BCR (95%CI: 43 − 57%, I2:82%), 60% OS (95%CI: 52- 67%, 
I2:88%) and 73% BOR (95%CI: 64-81%, I2:79%) (Suppl 
Figs. 4, 5 and 6, respectively).

CD19 CAR T cells manufacturing conditions
Considering interleukin used for CAR T cell expansion, 
when IL-2 was used we found 58% BCR (95%CI: 50-66%, 
I2:76%), 56% OS (95%CI: 45-66%, I2:86%) and 79% BOR 
(95%CI: 68-87%, I2:70%) (Suppl Figs. 7, 8 and 9, respec-
tively). When other interleukins were applied, we had 
a 54% BCR (95%CI: 43-65%, I2:72%), 63% OS (95%CI: 
50-75%, I2:91%), and 73% BOR (95%CI: 64-80%, I2:71) 
(Suppl Figs. 7, 8 and 9, respectively).

The BCR (Suppl Fig. 10), OS (Suppl Fig. 11), and BOR 
(Suppl Fig.  12) proportions were similar for activation 
and expansion of CAR T cells with anti-CD3/CD28 
beads or anti-CD3 mAb. Considering the cell population 
transduced with the CAR, we have found similar BCR 
(Suppl Fig. 13) and BOR (Suppl Fig. 14) rates when using 
full PBMCs or CD4/CD8 1:1, CD8 only, or other specific 
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Fig. 1 Flow chart for eligibility assessment according to PRISMA guidelines. Based on model reference(Page et al., 2021a). For more information, visit: 
http://www.prisma-statement.org/

 

http://www.prisma-statement.org/


Page 5 of 16Montagna et al. BMC Cancer         (2024) 24:1037 

St
ud

y 
Re

f 
N

um
be

r
St

ud
y/

 
Ye

ar
Ce

ll 
po

pu
la

tio
n 

tr
an

sd
uc

ed
 o

r 
tr

an
sf

ec
te

d 
w

ith
 

th
e 

CA
R

CA
R 

hi
ng

e 
do

m
ai

n
CA

R 
tr

an
s-

m
em

br
an

e 
do

m
ai

n

CA
R 

co
st

im
u-

la
to

ry
 

do
m

ai
n

A
nt

i-C
D

19
 

CA
R 

Ty
pe

 
(N

am
e)

In
te

rle
uk

in
 

us
ed

 fo
r C

A
R 

T 
ce

ll 
ex

pa
ns

io
n 

in
 v

itr
o

CA
R 

T 
ce

lls
ac

tiv
at

io
n

m
et

ho
d

N
um

be
r o

f 
CA

RT
 c

el
ls

 
in

je
ct

ed
/ 

kg

N
um

be
r o

f 
CA

R 
T 

ce
ll 

in
fu

si
on

s

A
ge

 
(m

e-
di

an
/ 

ra
ng

e)

N
um

be
r 

of
 T

re
at

ed
 

Pa
tie

nt
s

N
um

be
r 

of
 P

at
ie

nt
s 

A
na

ly
ze

d 
fo

r 
Re

sp
on

se

Tu
m

or
 T

yp
e

Be
st

 
O

bj
ec

tiv
e 

Re
sp

on
se

 
(%

)

Be
st

 
Co

m
-

pl
et

e 
Re

-
sp

on
se

 
(%

)

O
ve

ra
ll 

Su
rv

iv
al

12
 

m
on

th
s 

(%
)

20
11

BR
E

Br
en

tje
ns

 
et

 a
l. 

(2
01

1)
 

[1
0]

 #

PB
M

Cs
Ig

G
4

CD
28

CD
28

M
D

AC
C

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
≥ 

10
e8

Va
ria

bl
e

68
 

(5
1–

73
)

9
8

AL
L +

 C
LL

57
0

78

20
11

KA
Ka

lo
s e

t 
al

. (
20

11
) 

[1
1]

 #

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
5 

× 
10

e6
-

9,
9 

× 
10

e7
1

69
 

(6
4–

77
)

3
3

CL
L

10
0

75
N

F

20
12

KO
Ko

-
ch

en
de

r-
fe

r e
t a

l. 
(2

01
2)

 
[1

2]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

An
ti-

CD
3 

m
Ab

5 
× 

10
e6

-
9,

9 
× 

10
e7

1
56

 
(4

8–
63

)
8

7
N

H
L +

 C
LL

86
14

N
F

20
14

BR
Br

en
tje

ns
 

et
 a

l. 
(2

01
4)

 
[1

3]
 #

PB
M

Cs
Ig

G
4

CD
28

CD
28

M
D

AC
C

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
5 

× 
10

e6
-

9,
9 

× 
10

e7
2

52
 

(2
3–

66
)

5
5

AL
L

10
0

10
0

N
F

20
15

 K
Ko

-
ch

en
de

r-
fe

r e
t a

l. 
(2

01
5)

 
[1

4]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

IL-
2

An
ti-

CD
3 

m
Ab

5 
× 

10
e6

-
9,

9 
× 

10
e7

1
51

 
(3

0–
68

)
15

13
N

H
L +

 C
LL

92
62

53

20
15

LE
Le

e 
et

 a
l. 

(2
01

5)
 

[1
5]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

IL-
2

An
ti-

CD
3 

m
Ab

1–
4,

9 ×
 10

e6
Va

ria
bl

e
15

 
(5

–2
7)

21
21

AL
L

67
67

N
F

20
16

BH
Bh

oj
 e

t 
al

. (
20

16
) 

[1
6]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

N
F

25
 

(5
–6

4)
16

16
CL

L +
 A

LL
 +

 N
H

L
10

0
10

0
N

F

20
16

Ke
b

Ke
br

ia
ei

 e
t 

al
.(2

01
6)

 
[1

7]
 †

PB
M

Cs
Ig

G
4

CD
28

CD
28

M
D

AC
C

IL-
2 

+ 
ot

he
rs

*
An

ti-
CD

3 
m

Ab
≥ 

10
e8

1
41

 
(2

1–
61

)
26

26
N

H
L +

 A
LL

10
0

35
69

20
16

RA
M

Ra
m

os
 e

t 
al

. (
20

16
) 

[1
8]

 †

PB
M

Cs
Ig

G
1

CD
28

1s
t g

en
O

th
er

s
IL-

2 
+ 

ot
he

rs
*

An
ti-

CD
3 

m
Ab

≥ 
10

e8
1

59
 

(4
3–

75
)

16
16

N
H

L +
 C

LL
19

13
N

F

20
16

TU
R

Tu
rt

le
 e

t 
al

. (
20

16
) 

[1
9]

 †

Sp
ec

ifi
c 

su
bs

et
s

Ig
G

4
CD

28
4-

1B
B

JC
AR

01
4

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
57

 
(2

2–
70

)
64

60
N

H
L

63
33

19

20
17

G
AR

G
ar

dn
er

 e
t 

al
. (

20
17

) 
[2

0]

Sp
ec

ifi
c 

su
bs

et
s

Ig
G

1
CD

28
4-

1B
B

O
th

er
s

IL-
2 

+ 
ot

he
rs

*
Be

ad
s A

nt
i-C

D
3/

CD
28

1–
4,

9 ×
 10

e6
2

12
 

(1
.3

–
25

.3
)

43
43

AL
L

95
93

70

20
17

H
U

H
u 

et
 a

l. 
(2

01
7)

 
[2

1]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

≥ 
3 

in
fu

sio
ns

32
 

(7
–5

7)
15

15
AL

L
73

40
N

F

20
17

LO
CK

Lo
ck

e 
et

 
al

. (
20

17
) 

[2
2]

 #

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

An
ti-

CD
3 

m
Ab

1–
4,

9 ×
 10

e6
1

59
 

(2
9–

69
)

7
7

N
H

L
71

57
86

Ta
bl

e 
1 

Ev
id

en
ce

 su
m

m
ar

y



Page 6 of 16Montagna et al. BMC Cancer         (2024) 24:1037 

St
ud

y 
Re

f 
N

um
be

r
St

ud
y/

 
Ye

ar
Ce

ll 
po

pu
la

tio
n 

tr
an

sd
uc

ed
 o

r 
tr

an
sf

ec
te

d 
w

ith
 

th
e 

CA
R

CA
R 

hi
ng

e 
do

m
ai

n
CA

R 
tr

an
s-

m
em

br
an

e 
do

m
ai

n

CA
R 

co
st

im
u-

la
to

ry
 

do
m

ai
n

A
nt

i-C
D

19
 

CA
R 

Ty
pe

 
(N

am
e)

In
te

rle
uk

in
 

us
ed

 fo
r C

A
R 

T 
ce

ll 
ex

pa
ns

io
n 

in
 v

itr
o

CA
R 

T 
ce

lls
ac

tiv
at

io
n

m
et

ho
d

N
um

be
r o

f 
CA

RT
 c

el
ls

 
in

je
ct

ed
/ 

kg

N
um

be
r o

f 
CA

R 
T 

ce
ll 

in
fu

si
on

s

A
ge

 
(m

e-
di

an
/ 

ra
ng

e)

N
um

be
r 

of
 T

re
at

ed
 

Pa
tie

nt
s

N
um

be
r 

of
 P

at
ie

nt
s 

A
na

ly
ze

d 
fo

r 
Re

sp
on

se

Tu
m

or
 T

yp
e

Be
st

 
O

bj
ec

tiv
e 

Re
sp

on
se

 
(%

)

Be
st

 
Co

m
-

pl
et

e 
Re

-
sp

on
se

 
(%

)

O
ve

ra
ll 

Su
rv

iv
al

12
 

m
on

th
s 

(%
)

20
17

N
EE

N
ee

la
pu

 
et

 a
l. 

(2
01

7)
 

[2
3]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
58

 
(2

3–
76

)
10

1
10

1
N

H
L

81
53

61

20
17

SC
H

Sc
hu

st
er

 
et

 a
l. 

(2
01

7)
 

[2
4]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
5 

× 
10

e6
-

9,
9 

× 
10

e7
1

57
 

(2
5–

77
)

28
28

N
H

L
64

57
75

20
17

TU
R

Tu
rt

le
 e

t 
al

. (
20

17
) 

[2
5]

Sp
ec

ifi
c 

su
bs

et
s

Ig
G

4
CD

28
4-

1B
B

JC
AR

01
4

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
61

 
(4

0–
73

)
24

19
CL

L
74

21
58

20
18

EN
B

En
bl

ad
 e

t 
al

. (
20

18
) 

[2
6]

PB
M

Cs
CD

28
CD

28
3r

d 
ge

n
O

th
er

s
IL-

2
An

ti-
CD

3 
m

Ab
≥ 

10
e8

1
61

 
(2

4–
71

)
15

15
N

H
L +

 A
LL

40
40

33

20
18

G
EY

E
G

ey
er

 e
t 

al
. (

20
18

) 
[2

7]
 #

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
5 

× 
10

e6
-

9,
9 

× 
10

e7
2

58
 

(4
5–

70
)

8
8

CL
L

38
25

10
0

20
18

JA
C

Ja
co

by
 e

t 
al

. (
20

18
) 

[2
8]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

An
ti-

CD
3 

m
Ab

1–
4,

9 ×
 10

e6
1

11
 

(5
–4

8)
20

20
AL

L
90

90
90

20
18

M
AU

M
au

de
 e

t 
al

. (
20

18
) 

[2
9]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
11

 
(3

–2
3)

75
75

AL
L

80
60

76

20
18

PA
RK

Pa
rk

 e
t 

al
. (

20
18

) 
[3

0]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

≥ 
3 

in
fu

sio
ns

44
 

(2
3–

74
)

53
52

AL
L

87
62

55

20
18

RO
SS

Ro
ss

i e
t 

al
. (

20
18

) 
[3

1]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
N

F
N

F
53

 
(2

8,
6–

67
,8

)

20
20

N
H

L
70

50
N

F

20
18

SV
O

Sv
o-

bo
da

 e
t 

al
. (

20
18

) 
[3

2]
 #

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
≤ 

9.
9 

× 
10

e5
≥ 

3 
in

fu
sio

ns
23

 
(2

1–
42

)
4

4
H

L
50

25
N

F

20
18

W
EN

W
en

g 
et

 
al

. (
20

18
) 

[3
3]

 #

PB
M

Cs
CD

28
CD

28
3r

d 
ge

n
O

th
er

s
N

F
Be

ad
s A

nt
i-C

D
3/

CD
28

≤ 
9.

9 
× 

10
e5

≥ 
3 

in
fu

sio
ns

20
 

(1
5–

34
)

3
3

AL
L

10
0

10
0

N
F

20
19

CU
R

Cu
rra

n 
et

 
al

. (
20

19
) 

[3
4]

PB
M

Cs
Ig

G
4

CD
28

CD
28

M
D

AC
C

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

≥ 
3 

in
fu

sio
ns

13
 

(1
-2

2.
5)

25
24

AL
L

75
67

44

20
19

G
H

O
G

ho
-

ra
sh

ia
n 

et
 

al
. (

20
19

) 
[3

5]

PB
M

Cs
CD

8
CD

8
4-

1B
B

O
th

er
s

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
9 (1

.3
5–

19
.2

8)

14
14

AL
L

86
71

57

20
19

H
A

H
ay

 e
t 

al
. (

20
19

) 
[3

6]

Sp
ec

ifi
c 

su
bs

et
s

Ig
G

4
CD

28
4-

1B
B

JC
AR

01
4

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

Va
ria

bl
e

39
 

(2
0–

76
)

53
53

AL
L

85
85

N
F

Ta
bl

e 
1 

(c
on

tin
ue

d)

 



Page 7 of 16Montagna et al. BMC Cancer         (2024) 24:1037 

St
ud

y 
Re

f 
N

um
be

r
St

ud
y/

 
Ye

ar
Ce

ll 
po

pu
la

tio
n 

tr
an

sd
uc

ed
 o

r 
tr

an
sf

ec
te

d 
w

ith
 

th
e 

CA
R

CA
R 

hi
ng

e 
do

m
ai

n
CA

R 
tr

an
s-

m
em

br
an

e 
do

m
ai

n

CA
R 

co
st

im
u-

la
to

ry
 

do
m

ai
n

A
nt

i-C
D

19
 

CA
R 

Ty
pe

 
(N

am
e)

In
te

rle
uk

in
 

us
ed

 fo
r C

A
R 

T 
ce

ll 
ex

pa
ns

io
n 

in
 v

itr
o

CA
R 

T 
ce

lls
ac

tiv
at

io
n

m
et

ho
d

N
um

be
r o

f 
CA

RT
 c

el
ls

 
in

je
ct

ed
/ 

kg

N
um

be
r o

f 
CA

R 
T 

ce
ll 

in
fu

si
on

s

A
ge

 
(m

e-
di

an
/ 

ra
ng

e)

N
um

be
r 

of
 T

re
at

ed
 

Pa
tie

nt
s

N
um

be
r 

of
 P

at
ie

nt
s 

A
na

ly
ze

d 
fo

r 
Re

sp
on

se

Tu
m

or
 T

yp
e

Be
st

 
O

bj
ec

tiv
e 

Re
sp

on
se

 
(%

)

Be
st

 
Co

m
-

pl
et

e 
Re

-
sp

on
se

 
(%

)

O
ve

ra
ll 

Su
rv

iv
al

12
 

m
on

th
s 

(%
)

20
19

H
I

H
ira

ya
m

a 
et

 a
l. 

(2
01

9)
 

[3
7]

Sp
ec

ifi
c 

su
bs

et
s

Ig
G

4
CD

28
4-

1B
B

JC
AR

01
4

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
58

 
(5

2–
63

)
48

47
N

H
L

49
45

N
F

20
19

H
I

H
ira

ya
m

a 
et

 a
l. 

(2
01

9)
 

[3
8]

Sp
ec

ifi
c 

su
bs

et
s

Ig
G

4
CD

28
4-

1B
B

JC
AR

01
4

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
56

 
(5

1–
62

)
21

21
N

H
L

57
57

N
F

20
19

Lo
ck

Lo
ck

e 
et

 
al

. (
20

19
) 

[3
9]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

An
ti-

CD
3 

m
Ab

1–
4,

9 ×
 10

e6
1

52
 

(3
4–

64
)

10
8

10
1

N
H

L
83

58
N

F

20
19

 M
a

M
a 

et
 a

l. 
(2

01
9)

 
[4

0]
 #

Sp
ec

ifi
c 

su
bs

et
s

CD
28

CD
28

4-
1B

B
O

th
er

s
IL-

2
Be

ad
s A

nt
i-C

D
3/

CD
28

5 
× 

10
e6

-
9,

9 
× 

10
e7

1
6 

(3
–1

3)
10

8
AL

L
75

25
20

20
19

Sc
hu

st
er

Sc
hu

st
er

 
et

 a
l. 

(2
01

9)
 

[4
1]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

N
F

An
ti-

CD
3 

m
Ab

≥ 
10

e8
1

56
 

(2
2–

76
)

11
1

93
N

H
L

51
40

25

20
19

YI
N

G
Yi

ng
 e

t 
al

. (
20

19
) 

[4
2]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
≥ 

10
e8

Va
ria

bl
e

48
 

(7
6 

− 
24

)
25

25
H

L +
 N

H
L

68
28

N
F

20
19

ZH
AN

G
Zh

an
g 

et
 

al
. (

20
19

) 
[4

3]
 #

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
N

F
2

48
 

(2
9–

59
)

4
4

AL
L

75
75

N
F

20
20

AB
R

Ab
ra

m
so

n 
et

 a
l. 

(2
02

0)
 

[4
4]

 †

Sp
ec

ifi
c 

su
bs

et
s

Ig
G

4
O

th
er

s/
 

M
ix

ed
4-

1B
B

O
th

er
s

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
Va

ria
bl

e
Va

ria
bl

e
63

 
(5

4–
70

)
29

4
25

6
N

H
L

73
53

58

20
20

AN
An

 e
t a

l. 
(2

02
0)

 
[4

5]

PB
M

Cs
Ig

G
4

CD
28

3r
d 

ge
n

O
th

er
s

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
22

 
(3

–7
2)

47
47

AL
L

N
F

81
10

0

20
20

BE
N

Be
nj

am
in

 
et

 a
l. 

(2
02

0)
 

[4
6]

†

PB
M

Cs
CD

8
CD

8
4-

1B
B

O
th

er
s

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
Va

ria
bl

e
Va

ria
bl

e
22

 
(1

4–
39

)
21

21
AL

L
7

19
38

20
20

CA
P

Ca
pp

el
l e

t 
al

. (
20

20
) 

[4
7]

 †

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

An
ti-

CD
3 

m
Ab

1–
4,

9 ×
 10

e6
1

54
 

(2
6–

68
)

43
43

N
H

L +
 C

LL
81

58
77

20
20

ch
en

0
Ch

en
 e

t 
al

. (
20

20
) 

[4
8]

 †

PB
M

Cs
Tw

o 
ar

m
s 

be
lo

w
Tw

o 
ar

m
s 

be
lo

w
Tw

o 
ar

m
s 

be
lo

w
Tw

o 
ar

m
s 

be
lo

w
IL-

2
Be

ad
s A

nt
i-C

D
3/

CD
28

≤ 
9.

9 
× 

10
e5

1
21

 
(2

–5
5)

35
35

AL
L

86
88

46

20
20

ch
en

1
Fi

rs
t a

rm
#

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
≤ 

9.
9 

× 
10

e5
1

N
F

6
6

AL
L

N
F

67
67

20
20

ch
en

2
Se

co
nd

 
ar

m
PB

M
Cs

CD
8

CD
8

4-
1B

B
Ti

sa
-c

el
IL-

2
Be

ad
s A

nt
i-C

D
3/

CD
28

≤ 
9.

9 
× 

10
e5

1
N

F
26

26
AL

L
N

F
92

46

20
20

FR
EY

Fr
ey

 e
t 

al
. (

20
20

) 
[4

9]
†

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

IL-
7 

+ 
IL-

15
Be

ad
s A

nt
i-C

D
3/

CD
28

Va
ria

bl
e

≥ 
3 

in
fu

sio
ns

61
.3

 
(4

8.
8–

76
.1

)

38
32

CL
L

43
28

74

Ta
bl

e 
1 

(c
on

tin
ue

d)

 



Page 8 of 16Montagna et al. BMC Cancer         (2024) 24:1037 

St
ud

y 
Re

f 
N

um
be

r
St

ud
y/

 
Ye

ar
Ce

ll 
po

pu
la

tio
n 

tr
an

sd
uc

ed
 o

r 
tr

an
sf

ec
te

d 
w

ith
 

th
e 

CA
R

CA
R 

hi
ng

e 
do

m
ai

n
CA

R 
tr

an
s-

m
em

br
an

e 
do

m
ai

n

CA
R 

co
st

im
u-

la
to

ry
 

do
m

ai
n

A
nt

i-C
D

19
 

CA
R 

Ty
pe

 
(N

am
e)

In
te

rle
uk

in
 

us
ed

 fo
r C

A
R 

T 
ce

ll 
ex

pa
ns

io
n 

in
 v

itr
o

CA
R 

T 
ce

lls
ac

tiv
at

io
n

m
et

ho
d

N
um

be
r o

f 
CA

RT
 c

el
ls

 
in

je
ct

ed
/ 

kg

N
um

be
r o

f 
CA

R 
T 

ce
ll 

in
fu

si
on

s

A
ge

 
(m

e-
di

an
/ 

ra
ng

e)

N
um

be
r 

of
 T

re
at

ed
 

Pa
tie

nt
s

N
um

be
r 

of
 P

at
ie

nt
s 

A
na

ly
ze

d 
fo

r 
Re

sp
on

se

Tu
m

or
 T

yp
e

Be
st

 
O

bj
ec

tiv
e 

Re
sp

on
se

 
(%

)

Be
st

 
Co

m
-

pl
et

e 
Re

-
sp

on
se

 
(%

)

O
ve

ra
ll 

Su
rv

iv
al

12
 

m
on

th
s 

(%
)

20
20

G
U

G
u 

et
 a

l. 
(2

02
0)

 
[5

0]

PB
M

Cs
CD

8
CD

28
4-

1B
B

O
th

er
s

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
5 

× 
10

e6
-

9,
9 

× 
10

e7
1

18
 

(3
–5

2)
20

20
AL

L
90

90
40

20
20

JA
Ja

co
bs

on
 

et
 a

l. 
(2

02
0)

 
[5

1]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
62

 
(2

1–
79

)
12

2
11

6
N

H
L

N
F

70
70

20
20

LI
U

Li
u 

et
 a

l. 
(2

02
0)

 
[5

2]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

Irr
ad

ia
te

d 
fe

ed
er

 c
el

ls 
co

m
b

1–
4,

9 ×
 10

e6
Va

ria
bl

e
60

 
(4

7–
70

)
11

11
N

H
L +

 C
LL

10
0

64
N

F

20
20

N
A

N
as

to
up

il 
et

 a
l. 

(2
02

0)
 

[5
3]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
60

 
(2

1–
83

)
27

5
27

5
N

H
L

N
F

64
82

20
20

PA
S

Pa
s-

qu
in

i e
t 

al
. (

20
20

) 
[5

4]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
Va

ria
bl

e
1

39
 

(0
,41

–8
8)

41
0

41
0

N
H

L +
 A

LL
62

39
74

20
20

SE
0

Se
sq

ue
s e

t 
al

. (
20

20
) 

[5
5]

 †

PB
M

Cs
Tw

o 
ar

m
s 

be
lo

w
Tw

o 
ar

m
s 

be
lo

w
Tw

o 
ar

m
s 

be
lo

w
Tw

o 
ar

m
s 

be
lo

w
IL-

2
Tw

o 
ar

m
s b

el
ow

1–
4,

9 ×
 10

e6
1

59
 

(2
7–

75
)

61
59

N
H

L
63

48
18

20
20

SE
1

Fi
rs

t a
rm

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
62

 
(2

8–
75

)
33

31
N

H
L

61
48

39

20
20

SE
2

Se
co

nd
 

ar
m

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

An
ti-

CD
3 

m
Ab

1–
4,

9 ×
 10

e6
1

59
 

(2
7–

75
)

28
28

N
H

L
64

46
61

20
20

W
AN

G
W

an
g 

et
 

al
. (

20
20

) 
[5

6]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

An
ti-

CD
3 

m
Ab

1–
4,

9 ×
 10

e6
1

65
 

(3
8–

79
)

68
60

N
H

L +
 A

LL
93

67
72

20
20

ZH
O

Zh
ou

 e
t 

al
. (

20
20

) 
[5

7]

PB
M

Cs
CD

8
CD

28
O

th
er

s/
4t

h 
ge

n
O

th
er

s
N

F
Be

ad
s A

nt
i-C

D
3/

CD
28

≤ 
9.

9 
× 

10
e5

1
50

 
(3

1–
77

)
21

21
N

H
L

67
43

76

20
21

BA
I

Ba
ird

 e
t 

al
. (

20
21

) 
[5

8]

Sp
ec

ifi
c 

su
bs

et
s

CD
28

CD
28

CD
28

Ax
i-c

el
IL-

2
Be

ad
s A

nt
i-C

D
3/

CD
28

1–
4,

9 ×
 10

e6
1

56
 

(2
1–

76
)

41
41

N
H

L
97

66
68

20
21

G
A

G
au

th
ie

r 
et

 a
l. 

(2
02

1)
 

[5
9]

Sp
ec

ifi
c 

su
bs

et
s

Ig
G

4
CD

28
4-

1B
B

JC
AR

01
4

IL-
7 

+ 
IL-

15
Be

ad
s A

nt
i-C

D
3/

CD
28

1–
4,

9 ×
 10

e6
2

58
 

(2
3–

73
)

44
44

CL
L +

 A
LL

 +
 N

H
L

32
22

N
F

20
21

IA
C

Ia
co

-
bo

ni
 e

t 
al

. (
20

21
) 

[6
0]

PB
M

Cs
CD

8
CD

8
4-

1B
B

Ti
sa

-c
el

N
F

Be
ad

s A
nt

i-C
D

3/
CD

28
≥ 

10
e8

1
60

 
(5

2–
67

)
75

75
N

H
L

60
32

87

20
21

M
I

M
ia

n 
et

 
al

. (
20

21
) 

[6
1]

PB
M

Cs
CD

28
CD

28
CD

28
Ax

i-c
el

IL-
2

Be
ad

s A
nt

i-C
D

3/
CD

28
1–

4,
9 ×

 10
e6

1
63

 
(2

5–
77

)
27

38
N

H
L

85
48

37

Ta
bl

e 
1 

(c
on

tin
ue

d)

 



Page 9 of 16Montagna et al. BMC Cancer         (2024) 24:1037 

subsets. OS rate was higher when using full PBMCs (61%; 
95%CI: 53–73%, I2: 86%) compared to 55% for CD4/CD8 
1:1, CD8 only, or other specific subsets (55%; 95%CI: 
35–73%, I2: 86%) (Suppl Fig. 15).

Number of T cells injected into the patients/Kg
Patients treated with doses between 1 and 4.9  million 
cells/ kg per injection had BCR rates of 63% (95%CI: 
55-71%, I2:77%), 60% OS (95%CI: 50-69%, I2:85%), and 
83% BOR (95%CI: 76-88%, I2:74%) (Suppl Figs. 16, 17 and 
18, respectively). The 5 to 99 million cells/kg group had 
only three studies and was not considered for compari-
son (71% BCR; 95%CI: 25-95%, I2:62%; 58% OS; 95%CI: 
21-88%, I2:66%, and 83% BOR, 95%CI:29–98%, I2: 64) 
(Suppl Figs. 16, 17 and 18, respectively). Doses superior 
to 100 million cells/kg showed lower BCR (36%; 95%CI: 
28–46%, I2:38%), OS (56%, 95%CI: 25–83%, I2:94%) and 
BOR rates (64%, 95%CI: 32-87%, I2:69%) (Suppl Figs. 16, 
17 and 18, respectively).

Number of CAR T cell infusions in the patients
The proportions for a single cell injection were 55% for 
BCR (95%CI:48-62%, I2: 81%), 61% for OS (95%CI:52-
69%, I2: 88%) and 78% for BOR (95%CI:69-85%, I2: 77%) 
(Suppl Figs.  19, 20 and 21, respectively). For two infu-
sions, the number of studies was meager (65% BCR; 
95%CI: 0-100, I2: 97%; 70% OS, 95%CI:55-82%, I2: not 
applicable) (Suppl Figs. 19, 20 and 21, respectively). Stud-
ies with three or more infusions showed a 50% BCR rate 
(50%; 95%CI: 25–74%, I2: 74%) and 72% BOR (95%CI: 
40–91%, I2: 81%) (Suppl Fig.  19, and 21, respectively). 
For OS, the number of studies was also meager (58% OS, 
95%CI: 29–83%, I2: 66%) (Suppl Fig. 20).

CD19 CAR T cell products
For Axicabtagene ciloleucel (Axi-cel), we have found a 
62% BCR (95%CI: 56–67%, I2: 52%), 68% OS (95%CI: 
59–77%%, I2: 80%) and 86% BOR rates (95%CI: 78–91%, 
I2: 46%) (Suppl Figs.  22, 23 and 24, respectively). Tisa-
genlecleucel (Tisa-cel) showed 53% BCR (95%CI:38–
67%, I2: 66%), 61% OS (95%CI:42–76%, I2: 92%) and 
70% BOR rates (95%CI:59–79%, I2: 55%) (Suppl Figs. 22, 
23 and 24, respectively). Other CD19 CAR T products 
more recently tested had a 60% BCR (95%CI:40–78%, 
I2:82%), 57% OS (95%CI:52–62%, I2:40%), and 67% BOR 
rates (95%CI:44–86%, I2:80%) (Suppl Figs. 22, 23 and 24, 
respectively).

CAR hinge domain
When CD28 was used to construct the CAR hinge 
domain, we had a 60% BCR (95%CI:55–66%, I2: 52%), 
65% OS (95%CI:55–74%, I2: 81%) and 83% BOR rates 
(95%CI:73–90%, I2: 66%) (Suppl Figs.  25, 26 and 
27, respectively). For CD8, we observed 56% BCR St
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(95%CI:42–70%, I2: 75%), 59% OS (95%CI:46–71%, I2: 
89%), and 71% BOR (95%CI:58–82%, I2: 66%) (Suppl 
Figs.  25, 26 and 27, respectively). IgG4 resulted in 50% 
BCR (95%CI:35–66%, I2: 85%), 50% OS (95%CI:32–59%, 
I2: 84%) and 71% BOR (95%CI: 54–83%, I2: 79%) (Suppl 
Figs. 25, 26 and 27, respectively).

CAR transmembrane domain
When the CD28 transmembrane domain was used to 
build the CAR, we found a 58% BCR (95%CI:48–67%, 
I2: 80%), 61% OS (95%CI:51–70%, I2: 85%) and 79% 
BOR (95%CI:69–86%, I2: 80%) (Suppl Figs.  28, 29 and 
30, respectively). CD8 alpha in the transmembrane 

Fig. 2 The Forest Plot represents the overall rate of the primary outcome Best Complete Response (BCR) of patients treated with CD19 CAR T therapy 
based on the studies included in the meta-analysis
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resulted in 54% BCR (95%CI:40–68%, I2: 73%), 59% OS 
(95%CI:45–72%, I2: 90%) and 70% BOR (95%CI:55–82%, 
I2: 67%) (Suppl Figs. 28, 29 and 30, respectively).

CAR costimulatory domain
The CD28 costimulatory domain in the CAR resulted in 
60% BCR (95%CI:54–66%, I2: 55%), 66% OS (95%CI:57–
74%, I2: 79%) and 85% BOR rates (95%CI:78–91%, I2: 
45%), while for 4-1BB we had 56% BCR (95%CI:44–67%, 
I2: 82%), 56% OS (95%CI:45–66%, I2: 89%) and 71% BOR 
(95%CI:61–79%, I2: 76%) (Suppl Figs.  31, 32 and 33, 
respectively).

Tumor type
Patients with ALL achieved 73% BCR (95%CI:60–83%, 
I2: 77%), 57% OS (95%CI:45–68%%, I2: 67%), and 80% 
BOR (95%CI:66–89%, I2: 64%) %) (Suppl Figs. 34, 35 and 
36, respectively), while for NHL, the general BCR was 
51% (95%CI:45–57%, I2: 75%), 59% OS (95%CI:46–72%, 
I2: 92%) and 71% BOR (95%CI:63–78%, I2: 74%) (Suppl 
Figs. 34, 35 and 36, respectively).

Meta-regression
The meta-regression showed that the group aged above 
18 presented a low but significant amount of heteroge-
neity explained by this variable (H2 = 7.5535) and that 
the moderator is inversely related to BCR, suggesting 
that the effect size favors the younger patient (estimate= 
-1.3211; p = 0.005). Also, costimulation based on CD28 
and third-generation CD28/4-1BB presents a small 
amount of heterogeneity explained (H2 = 9.1079), but 
both were statistically significant moderators (p = 0.0391 
and p = 0.0493, respectively). For BOR, the attributable 
heterogeneity for costimulatory domains was H2 = 7.5535, 
and CD28 and 4-1BB were significant for this observation 
(p = 0.0047 and p = 0.0355). The attributable heterogeneity 
for the CAR T cell product was small (H2 = 7.4956); how-
ever, there was an inverse effect for Tisa-cel and JCAR014 
as moderators (p = 0.0336 and p = 0.0097). Finally, for OS, 
the attributable heterogeneity for the CAR T cell product 
was H2 = 6.0343, and only the treatment with JCAR014 
presented an inverse and statistically significant modera-
tor effect (p = 0.0215).

Risk of bias assessment
A predominant low risk of bias was assessed for the pri-
mary and the secondary outcomes, presented in Suppl. 
Figures 37, 38, and 39, respectively.

Discussion
The pooled 56%BCR found for all CD19 CAR T thera-
pies evaluated herein, with a 60% OS and 75% BOR, cor-
roborates the results found in most CD19 CAR T clinical 
trials [66]. However, among the studies included in this 

Table 2 Best complete response subgroup analysis
Variable Propor-

tion per 
subgroup

95% CI I2 
(%)

General 0.56 0.49–0.63 81
Age
< 18 0.79 0.65–0.89 64
> 18 0.51 0.43–0.57 82
Interleukin used for
CAR T cell expansion
IL-2 0.58 0.50–0.66 76
Others/ Not mentioned 0.54 0.43–0.65 72
CAR T Cells Activation Method
Anti-CD3 mAb 0.55 0.43–0.67 71
Anti-CD3/CD28 beads 0.56 0.47–0.65 84
Number CAR T cells
injected/ kg
1 to 4,9 × 10e6 0.63 0.55–0.71 77
5 × 10e6 to 9,9 × 10e7 0.71 0.25–0.95 62
≥ 10e8 0.36 0.28–0.46 38
Variable 0.40 0.25–0.56 80
Number of CAR T cells infusions
One infusion 0.55 0.48–0.62 81
Two infusions 0.65 0.00–1.0 97
≥ 3 infusions 0.50 0.25–0.74 74
Variable 0.61 0.33–0.83 79
Cell population transduced
or transfected with the CAR
PBMCs 0.57 0.49–0.64 80
CD4/CD8 1:1 or CD8 + only or specific 
subsets

0.54 0.34–0.73 87

Anti-CD19 CAR Type (Name)
Axicabtagene citoleucel (Yescarta) (Axi-
cel) KTE-C19

0.62 0.56–0.67 52

Tisagenlecleucel (CTL019) (Kymriah) 
(Tisa-cel)

0.53 0.38–0.67 66

JCAR014 0.44 0.20–0.71 88
Others 0.60 0.40–0.78 82
CAR Hinge Domain
CD8 0.56 0.42–0.70 75
CD28 0.60 0.55–0.66 52
IgG4 0.50 0.35–0.66 85
CAR Transmembrane Domain
CD8 0.54 0.40–0.68 73
CD28 0.58 0.48–0.67 80
CAR Costimulatory Domain
CD28 0.60 0.54–0.66 55
4-1BB 0.56 0.44–0.67 82
Tumor Type
NHL 0.51 0.45–0.57 75
ALL 0.73 0.60–0.83 77



Page 12 of 16Montagna et al. BMC Cancer         (2024) 24:1037 

meta-analysis, there are also some outliers, such as one 
published by Ramos et al. (2016), showing only 13% BCR 
and 19% BOR (N = 16 patients, no OS reported), that 
can be explained by the employment of a first-genera-
tion CAR, which usually fails to reach effective antitu-
mor responses [67, 68].For comparison, a meta-analysis 
focused on DLBCL conducted in 2022 by Ying and col-
laborators showed a similar pooled 63% OS rate and 74% 
BOR, diverging only by an expressively lower 48% BCR 
[69].Additionally, another meta-analysis published in 
2021 by Aamir et al., focused on ALL patients, reported 
an 82% BCR rate. Neither OS nor BOR were reported in 
this study for comparison [70]. The difference in pooled 
BCR from these two studies compared with ours can 
be explained, at least in part, by the mixed tumor types 
included in our study, such as ALL, CLL, and other 
NHL subtypes. When we compared ALL and NHL in 
our sensitivity analysis for tumor type, the most expres-
sive differences between them were also found for BCR 
(73 versus 51%), followed by BOR (80 versus 71%) rates, 
while both tumors resulted in similar OS rates (59 versus 
57%). Our data also suggest that regardless of whether 
patients have had high objective responses or not, they 
might have survival benefits from CD19 CAR T therapy.

Among the CAR T manufacturing conditions evalu-
ated herein, the cell populations chosen to build the CAR 
product and the cytokine used for T cell expansion pro-
moted the most relevant differences for the clinical out-
comes analyzed, mainly for OS. PBMCs had higher OS 
but similar BOR and BCR rates compared to CD4/CD8 
1:1 clustered with CD8 and other specific subsets for 
analysis. The clustering of CD4/CD8 1:1, CD8 alone, or 
others might have influenced the results obtained since 
there is pre-clinical and clinical evidence that CD4:CD8 
1:1 seems to outperform other populations. However, we 
decided to cluster these groups due to the small num-
ber of clinical studies available to evaluate each one of 
these cell populations separately. ILs different from IL-2 
used for CD19 CAR T cell manufacturing showed higher 

OS rates despite similar BCR and lower BOR, evidenc-
ing the necessity of running clinical trials using differ-
ent cytokines for CAR T cell expansion to evaluate their 
impacts on clinical responses. The CAR T cell activation 
and expansion methods were equivalent for all outcomes 
evaluated.

Considering the covariate age, patients under 18 had 
notably higher BCR and BOR rates but similar OS com-
pared to older patients. CD19 CAR T cell therapy is 
known to induce a high clinical response rate in children 
and young adults, especially with B-ALL, but relapses are 
still a current issue [62], explaining, at least in part, the 
similar OS despite the higher BCR rates found in younger 
patients.

Regarding the CAR T cell dose effect, higher BCR, 
BOR, and OS rates were found for patients treated with 
doses between 1 and 4.9  million cells/kg compared to 
those with doses greater than 100  million cells/kg. The 
dose-effect might be biased considering the higher BCR 
and BOR rates found for younger patients, usually treated 
with lower CAR T cell doses. Nevertheless, the age bias 
can be ruled out for the higher OS rates observed for 
lower CAR T doses since OS was not affected by age. 
When the number of CAR T infusions was evaluated, we 
noted that three or more infusions presented lower rates 
for the evaluated outcomes. This result is critical because 
higher CAR T doses with repeated infusions are known 
to enhance toxicity [71, 72] despite the evident increased 
manufacturing cost. These results might affect the design 
of future comparative CD19 CAR T cells-based clini-
cal trials, which can be focused on testing different dose 
scales up to 100 million cells/kg, limiting the administra-
tion to one or two infusions.

The comparison of different molecules used to build 
the structural CD19-directed CAR hinge (CD8, CD28, or 
IgG4), transmembrane (CD8 or CD28), and costimula-
tory domains (CD28 or 4-1BB) showed that the presence 
of CD28 in these three domains revealed higher rates for 
all the clinical outcomes evaluated. It might be possible 

Fig. 3 Funnel, Baujat, and Radial plots showing the heterogeneity observed for the primary outcome Best Complete Response (BCR) of patients treated 
with CD19 CAR T therapy based on the studies included in the meta-analysis

 



Page 13 of 16Montagna et al. BMC Cancer         (2024) 24:1037 

that the different CAR domains act synergistically since 
they are part of the same functional full costimulatory 
molecule in human immune cells. However, we can-
not affirm or discard this hypothesis based on our data. 
Particularly considering OS, the most relevant rate dif-
ference was found when CD28 was in the CAR’s hinge 
and costimulatory regions. For BCR, the rate differences 
between CD28 and other molecules tested were less rel-
evant. A CAR hinge and transmembrane-based compari-
son with clinical data has never been performed before in 
the literature, and our meta-analysis gives us some evi-
dence that must be further investigated in future studies 
to clarify the possibility of synergism combining differ-
ent/ equal domains. For the costimulatory domains, data 
recently published in a meta-analysis focused on patients 
with diffuse large B-cell lymphoma (DLBCL) treated 
with CD19 CAR T cells corroborated our findings, show-
ing higher BCR and BOR rates of CD28 (57% BCR and 
81% BOR) compared to 4-1BB (42% BCR and 70% BOR). 
However, they found a non-significant statistical differ-
ence between CD28 and 4-1BB considering the 12-month 
OS rate for DLBCL patients [69].In the same study, the 
CD28-based Axi-cel had higher rates for all outcomes 
evaluated compared with the 4-1BB Tisa-cel CAR T for 
the treatment of DLBCL patients, with a BCR rate of 57% 
versus 36%, OS rate of 65% versus 49%, and BOR rate of 
82% versus 58%, respectively [69]A clinical trial compar-
ing CD19 CAR-T containing either CD28 or 4-1BB was 
performed to treat ten ALL patients, five treated with 
each type of construction in a dose of 0.62 × 106 CAR T 
cells/kg. This study showed similar responses for both 
treatments, with the CD28 group resulting in 3 CR, 
1 PR, and one no response (NR), and the 4-1BB with 
3 CR, 0 PR, and 2 NR. Despite the superior number of 
NR patients in the 4-1BB group, this group had a unique 
patient with an ongoing anti-tumor response evaluated 
five months after treatment [73].This clinical trial was 
not conclusive due to the limited number of patients. Still 
considering the costimulatory domain of the CAR, Cap-
pel and Kochenderfer recently reviewed and compared 
CAR T cell clinical studies based on different targets and 
having CD28 or 4-1BB as costimulatory domains, includ-
ing but not limiting CD19 as a target. This general review 
showed that the available data from clinical trials do not 
demonstrate a clear advantage of either CD28-costim-
ulated or 4-1BB-costimulated CARs for treating B cell 
lymphomas or B-ALL, pointing out that more extensive 
studies and comparative clinical trials must be performed 
to allow a conclusion about the performance of the dif-
ferent costimulatory domains against B-cell malignancies 
[74].

This study is the pioneer in evaluating the impact of the 
hinge and TMD CAR domains in addition to costimu-
latory domains in CD19 CAR T cell’s clinical response 

for B cell leukemia and lymphoma, which is an essential 
unanswered question in the field. In summary, several 
covariates analyzed might have a positive impact on all 
the evaluated clinical outcomes BCR, OS, and BOR of 
patients treated with CD19 CAR T cell therapies, such 
as age inferior to 18 years old, injection of 1 to 4.9 mil-
lion CAR T cells per kg, with one CAR T cell infusion 
– without discard a potential efficiency using two doses 
– and CD28 constituting the hinge, transmembrane, and 
costimulatory domains of the CAR, as in Axi-cel product, 
and must be better explored in future comparative clini-
cal trials.

The lack of randomized trials or large observational 
studies on CAR T cells justifies the implementation of 
this meta-analysis, which intends to provide insights 
on the ongoing procedures for further research, raising 
questions and spotting potential aspects of interest in the 
current approaches. Due to the unavoidable heteroge-
neity observed, the results of this meta-analysis are not 
deemed for clinical decision-making but to improve the 
understanding of this complex and multifaceted treat-
ment instead. The extrapolation and generalization of 
the results obtained in this meta-analysis should be made 
with caution since it may be biased by the different study 
designs and characteristics considering CAR structures, 
CAR T cell manufacture conditions, doses, tumor type, 
autologous cells isolated from each individual heavily 
pretreated, and other variables.
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