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Abstract 

Background Detection of cancer and identification of tumor origin at an early stage improve the survival and prog-
nosis of patients. Herein, we proposed a plasma cfDNA-based approach called TOTEM to detect and trace the cancer 
signal origin (CSO) through methylation markers.

Methods We performed enzymatic conversion-based targeted methylation sequencing on plasma cfDNA samples 
collected from a clinical cohort of 500 healthy controls and 733 cancer patients with seven types of cancer (breast, 
colorectum, esophagus, stomach, liver, lung, and pancreas) and randomly divided these samples into a training 
cohort and a testing cohort. An independent validation cohort of 143 healthy controls, 79 liver cancer patients 
and 100 stomach cancer patients were recruited to validate the generalizability of our approach.

Results A total of 57 multi-cancer diagnostic markers and 873 CSO markers were selected for model development. 
The binary diagnostic model achieved an area under the curve (AUC) of 0.907, 0.908 and 0.868 in the training, testing 
and independent validation cohorts, respectively. With a training specificity of 98%, the specificities in the testing 
and independent validation cohorts were 100% and 98.6%, respectively. Overall sensitivity across all cancer stages 
was 65.5%, 67.3% and 55.9% in the training, testing and independent validation cohorts, respectively. Early-stage (I 
and II) sensitivity was 50.3% and 45.7% in the training and testing cohorts, respectively. For cancer patients correctly 
identified by the binary classifier, the top 1 and top 2 CSO accuracies were 77.7% and 86.5% in the testing cohort 
(n = 148) and 76.0% and 84.0% in the independent validation cohort (n = 100). Notably, performance was maintained 
with only 21 diagnostic and 214 CSO markers, achieving a training AUC of 0.865, a testing AUC of 0.866, and an inte-
grated top 2 accuracy of 83.1% in the testing cohort.

Conclusions TOTEM demonstrates promising potential for accurate multi-cancer detection and localization by pro-
filing plasma methylation markers. The real-world clinical performance of our approach needs to be investigated 
in a much larger prospective cohort.
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Background
Detecting and diagnosing cancer early offers the oppor-
tunity for more effective therapeutic interventions to 
improve patient outcomes [1]. For the purpose of popu-
lation-scale cancer screening, a minimally invasive test 
with affordable cost and superior accuracy for multi-can-
cer detection and localization is urgently needed, espe-
cially for cancers without effective screening paradigms. 
Existing noninvasive blood-based tests based on protein 
biomarkers cannot achieve satisfactory sensitivity or 
specificity to direct diagnosis [2]. Nor can they provide 
clues about the cancer signal origin (CSO). There are 
huge unmet needs for the search of better biomarkers for 
blood-based cancer detection.

In recent years, the potential of using genetic or epi-
genetic aberrations of plasma cell-free DNA (cfDNA) to 
detect the presence of circulating tumor DNA (ctDNA) 
has attracted much attention in the field of cancer early 
detection [3–6]. Among the different types of cfDNA-
bearing cancer features, DNA methylation has shown the 
most promising results for both early detection and CSO 
localization of multiple cancers [3, 5, 7, 8], probably due 
to the pervasive nature of cancer genome methylation 
alterations and the tissue specificity of methylation signa-
tures [9, 10]. Technically, the conventional whole-genome 
bisulfite sequencing (WGBS) assay can provide a com-
prehensive methylation profile of the entire genome [11, 
12]. However, the large size of the human genome as well 
as the sparsity of CpGs reduces the cost-effectiveness of 
WGBS. To increase the sequencing depth for more accu-
rate methylation profiling of characteristic CpG sites, 
targeted methylation sequencing with capture panels has 
been employed and validated for multi-cancer detection 
[3, 13]. However, these previously published panels are 
relatively large, with their costs still being an obstacle for 
large-scale screening. Furthermore, these assays relied on 
bisulfite conversion leading to dramatic DNA degrada-
tion [14]. As a result, there are concerns regarding their 
applications to ctDNA due to the extremely low concen-
tration of ctDNA in the blood of patients with early-stage 
or difficult-to-shed tumors.

To circumvent the limitations of bisulfite sequenc-
ing, a mild enzyme-mediated assay, enzymatic methyl 
sequencing (EM-seq), has recently been developed. 
It uses a combination of enzymes, including TET2, 
T4-βGT, and APOBEC3A to convert unmethylated 
cytosine (C) to thymine (T) with efficiency comparable 
to bisulfite conversion and minimal damages to DNA 
[15]. As a result, EM-seq is expected to increase the 
recovery rate of valuable cfDNA and improve the effi-
ciency of library construction. The EM-seq conversion 
reaction is more sophisticated than bisulfite conver-
sion, thus demanding strict adherence to the protocol 

and a longer experiment time. Despite the higher cost 
in terms of money and labor, EM-seq experiences fewer 
under/over-conversion problems and yields higher 
libraries using fewer PCR cycles for all DNA input than 
bisulfite conversion [15]. To take advantage of this, a 
hepatocellular carcinoma detection panel using EM-seq 
of plasma cfDNA was investigated and showed promis-
ing performance [16]. For effective cancer screening in 
the general population, we propose an EM-seq-based 
targeted methylation sequencing platform with inte-
grated quality control for multi-cancer detection and 
subsequent CSO localization to inform diagnostic 
workup.

In this study, we proposed a novel approach called 
TOTEM (cTdna Origin Tracker dependent on Epige-
netic Methylation markers) to detect and track the ori-
gin of ctDNA. A targeted methylation panel, spanning ~ 1 
Mb genomic regions and covering 82,400 CpG sites, was 
designed (Additional file  1: Methods) and validated for 
the detection and localization of seven common cancers 
(lung, colorectal, stomach, liver, breast, esophageal and 
pancreatic) at both early and late stages. These cancer 
types are the top seven cancers with the highest com-
bined mortality rates in both gender, estimated to con-
tribute to 60.4% of the 9.6 million global cancer deaths in 
2018 [17]. This statistic underscores the critical need for 
early diagnosis in these cancer types. Hypermethylated 
CpG sites in tumors versus adjacent normal tissues and 
versus peripheral blood were identified using tissues from 
The Cancer Genome Atlas (TCGA) database and periph-
eral blood samples from publicly available data. Using 
EM-seq, we performed targeted methylation sequencing 
of plasma cfDNA samples from a clinical cohort of 733 
cancer patients and 500 healthy controls, which were 
randomly divided into a training set and a testing set at 
a 7:3 ratio. We developed computational methods to pro-
file methylation status at the fragment level, which were 
used to select and model 57 and 873 methylation mark-
ers for cancer diagnosis and localization, respectively. 
TOTEM demonstrated robust performance, achieving 
an overall area under the curve (AUC) of 0.908 (95% con-
fidence interval (CI): 0.879–0.938) for cancer detection 
and an overall top 1 accuracy of 77.7% (95% CI: 70.1%-
84.1%) and an overall top 2 accuracy of 86.5% (95% CI: 
79.9%-91.5%) for CSO prediction in the test set. Notably, 
the number of diagnostic markers could be reduced to as 
few as 21 while maintaining comparable detection power, 
opening the potential for development of a multiplexed 
PCR assay for improved affordability and faster turna-
round time. Similarly, the number of CSO markers could 
be reduced to 214, a significant reduction from previ-
ously published studies [3, 13].
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Methods
Study design and participants
To develop and validate TOTEM, we applied the 
enzymatic conversion-based targeted methylation 
sequencing to plasma cfDNA samples collected from a 
clinical cohort of 500 healthy controls and 733 previ-
ously untreated cancer patients across the seven highest 
mortality cancers [17]. These samples were randomly 
divided into a training cohort and a testing cohort in a 
7:3 ratio, stratified by cancer type and stage. The train-
ing cohort included 350 healthy controls and 513 can-
cer patients (39 breast cancer (BRCA), 72 colorectal 
cancer (COREAD), 75 esophageal cancer (ESCA), 73 
liver cancer (LIHC), 106 lung cancer (NSCLC), 78 pan-
creatic cancer (PAAD), and 70 stomach cancer (STAD) 
patients), with which we performed marker selection 
and model construction. The testing cohort consisted 
of 150 healthy controls and 220 cancer patients (17 
BRCA, 31 COREAD, 32 ESCA, 31 LIHC, 47 NSCLC, 
33 PAAD, and 29 STAD) for model evaluation. Specifi-
cally, 36% (187/513) of the training cancer samples and 
37% (81/220) of the testing cancer samples were at early 
stage (I or II). In addition, an independent validation 
cohort of 143 healthy controls, 79 LIHC, and 100 STAD 
patients was recruited to validate the generalizability 
of TOTEM, after models developed from the train-
ing cohort were locked. Funding and time constraints 
limited our ability to include other cancer types, thus 
restricting validation to LIHC and STAD. Healthy con-
trols were defined as individuals with no history or 
presence of cancer at the time of administration. Blood 
samples from cancer patients were collected prior to 
surgical or therapeutic treatment. The demographics 
and clinical information of the participants are summa-
rized (Additional file 1: Table S1).

All participants were enrolled from Zhongnan Hospi-
tal of Wuhan University and Yan’an Hospital of Kunming 
Medical University. This study was approved by the insti-
tutional medical ethics committee (Zhongnan Hospital: 
2020106, and Yan’an Hospital: 2023–059-01). Prior to 
enrollment, all participants provided informed consent 
for research use.

Plasma cfDNA extraction
A total of ~ 10 ml peripheral blood was drawn and stored 
in Cell-Free DNA Storage Tube (Cwbiotech). Blood was 
centrifuged at 1,600 g for 10 min at 4 °C and plasma was 
transferred to a new tube. A second centrifuge was per-
formed at 12,000  rpm for 15  min at 4  °C and ~ 4  ml of 
plasma was isolated. cfDNA was extracted using Mag-
MAX Cell-Free DNA Isolation Kit (Thermo Fisher Sci-
entific) per manufacturer instructions. The quantity and 

quality of extracted cfDNA was assessed with Bioana-
lyzer 2100 (Agilent).

Sequencing library preparation
A range of 5 to 30 ng of cfDNA was enzymatically con-
verted with NEBNext Enzymatic Methyl-seq Kit (New 
England Biolabs) and captured with hybridization probes 
(Roche Diagnostics) according to manufacturer’s proto-
cols. Libraries were quantified using Qubit dsDNA HS 
Assay Kit (Thermo Fisher Scientific) and sequenced on 
NovaSeq 6000 (Illumina) with a paired-end read length 
of 150 bp.

Panel design and identification of methylation‑correlated 
blocks
To construct a targeted methylation panel for multi-
cancer detection and CSO localization, we selected 
differentially methylated regions (DMRs) using 450 k 
methylation array data from the TCGA database and a 
previously published normal peripheral blood dataset 
(GSE40279 [18]) (details in Additional file  1: Methods). 
Due to the processivity of DNA methyltransferases, adja-
cent CpGs with highly similar methylation status were 
grouped into methylated correlation blocks (MCBs) as 
the basic unit of methylation markers to reduce techni-
cal noise [19] with the following criteria: (1) the distance 
between the two CpG sites was less than 100 bp; (2) the 
Pearson’s correlation coefficient between the two sites 
was greater than 0.95; (3) at least three consecutive CpG 
sites could be combined. The correlation was calculated 
from the beta-value of 130 tumor tissue samples from 
various cancer types.

Multi‑cancer diagnostic marker selection
Read pairs covering at least three CpG sites were merged 
into fragments for methylation analysis. The methylation 
level of an MCB was quantified by methylated fragment 
counts (MFCs), which was defined as the number of frag-
ments with a fully methylated status on the MCB. Hyper-
methylated diagnostic MCB markers of a specific cancer 
type were selected by mutual information (MI), which 
assessed the difference in MFC values between the can-
cer group and the healthy group in the training cohort 
(Additional file  1: Methods). The MCBs were ranked 
according to the cancer-specific MI in descending order 
and the top X MCBs were selected as hypermethylated 
diagnostic markers of a specific cancer type. The union 
of markers for the seven cancer types was used as the set 
of multi-cancer diagnostic markers. X was optimized by 
maximizing the diagnostic AUC of the training cohort.
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Diagnostic methylation score model
A metric termed methylation score was constructed to 
score the abnormality of the methylation pattern between 
the tested sample and the baseline distribution of healthy 
controls in the training cohort [20]. To reduce technical 
noise, the methylation level of an MCB was calculated 
with the methylated fragment ratio (MFR), which was 
defined as the percentage of fully methylated fragments.

First, logit transformation was performed on the MFR 
values prior to modeling. The difference of the logit-
transformed MFR xi of MCB marker i between the tested 
sample and the baseline distribution was measured by 
Z-score.

Where µi and σi denote the mean and the standard devi-
ation of the logit MFR of the i th MCB across baseline 
samples.

Next, Zi was transformed into a p-value pi, P-values of 
the multi-cancer markers were combined into a methyla-
tion score with Fisher’s method.

Where wi is the coverage of the i th MCB.

CSO marker selection
CSO markers were selected from cancer samples in the 
training cohort that were correctly identified as true 
positives by the diagnostic methylation score model with 
98% specificity. Initially, 100 MCBs with the highest MI 
values were selected for each of the 21 ( C2

7 ) pairwise 
comparisons among the seven cancer classes, resulting in 
a union of candidate CSO markers. Starting with the can-
didates, a multi-class logistic regression model with L2 
penalty was fitted to 80% of the true-positive cancer sam-
ples from the training cohort. Markers were progressively 
removed from the model, one at a time, until the model 
reached the maximum Akaike Information Criterion 
(AIC). This backward elimination procedure was iterated 
10 times with 10 bootstraps. The final CSO markers were 
MCBs retained in more than six bootstraps.

CSO ensemble model
The MFR values of the CSO markers were used to con-
struct a seven-class multi-layer stacked ensemble model 
using the AutoGluon machine learning framework [21] 
(Additional file  1: Fig. S1). Only the true positive can-
cer samples from the training cohort with 98% specific-
ity were used to train the CSO ensemble model. Data 

(1)Zi =
xi − µi

σi

(2)Methylation score =

−2 I
i=1 wi ln pi
I
i=1 wi

preprocessing included logit transformation and Z-score 
normalization of the MFR values across samples for each 
marker, using the mean and standard deviation of the 
MFR values of the training samples. The ensemble model 
consisted of a base layer of various individual machine 
learning models whose predictions were aggregated 
with the preprocessed data to construct various stacker 
models in the first stacked layer. Weighted combinations 
of the first-layer stacker models were then aggregated 
to produce the final output probability of the ensemble 
model. Repeated k-fold bagging was used to tune the 
weights and the hyperparameters of the models to miti-
gate overfitting.

Impact of the number of markers on multi‑cancer 
diagnosis and CSO localization
Reducing the number of markers may lower the cost of 
the test and make it more affordable. To explore the pos-
sibility of making accurate prediction with fewer mark-
ers, we serially changed the number of markers in the 
diagnostic methylation score model and the CSO ensem-
ble model, and evaluated the performance of the models 
constructed from the pruned markers. The calculation of 
the methylation score and the model fitting process of the 
CSO ensemble model remained the same as described 
in the Diagnostic methylation score model and the CSO 
ensemble model section, where the only thing changed 
was the input markers.

The multi-cancer diagnostic markers were eliminated 
from or appended to the original marker set according 
to MI calculated in the Multi-cancer diagnostic marker 
selection. Methylation scores were calculated for 100 
times, using the union of MCBs with top 1, 2, 3, …, 100 
MI for the seven cancer types as input features. The CSO 
markers were eliminated from or appended to the origi-
nal marker set according to the 10 iterations of backward 
elimination in the CSO marker selection. We trained the 
CSO ensemble models for 10 times, using the markers 
being retained more than 0, 1, 2, …, and 9 times as input 
features.

Results
Methylation marker discovery for cancer diagnosis 
and cancer‑signal‑origin prediction
To construct a targeted methylation panel for multi-can-
cer detection and CSO localization, we selected DMRs 
covering a total of 15,589 hypermethylated CpGs in 32 
TCGA solid tumor types to generate our custom 1-Mb 
hybridization capture panel. To reduce technical noise, 
we identified 6,042 MCBs covering 33,143 CpG sites and 
a total of 230  kb genomic regions for marker selection. 
Most of these MCBs were enriched in exons, introns, 
untranslated regions (UTRs), promoters, and enhancers, 
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while only a few were located in repeat regions (Addi-
tional file 1: Methods, Fig. S2).

We used plasma samples from the training cohort to 
select MCB markers for multi-cancer diagnosis and CSO 
localization of the seven cancer types included in this 
study. For each cancer type, the top 10 MCBs with the 
highest MI with healthy controls were selected as multi-
cancer diagnostic markers, yielding a total of 57 multi-
cancer diagnostic MCBs across the seven cancer types. 
These markers were mapped to the exons of 18 genes and 
the promoters of 21 genes (Additional file  2: Table  S3), 
among which five of the exon-overlapping genes (NSD1, 
ELMO1, ITGA4, HOXC13 and ITPKB) and three of 
the promoter-overlapping genes (ESRRG, MEF2D and 
PTPRU) were curated as cancer genes by the Network 
of Cancer Genes (NCG) database [22] (Additional file 2: 
Table S3). As expected, t-distributed stochastic neighbor 
embedding (t-SNE) plots showed apparent separation of 
cancer samples and healthy controls by the methylation 
profile of these 57 markers (Fig.  1A). Similarly, we per-
formed CSO marker selection with pairwise MI among 
the seven cancer types. Using true positive cancer sam-
ples identified by methylation score with 98% training 
specificity, the top 100 markers with the highest MI for 
each cancer pair were initially selected. After back-
ward elimination with 10 bootstraps, a set of 873 MCBs 
selected in more than six bootstraps were eventually 
retained as CSO markers. These markers were mapped 
to the exons of 218 genes and to the promoters of 299 
genes (Additional file  2: Table  S3), of which 40 and 42 
were considered cancer relevant in the NCG database, 
respectively (Additional file 2: Table S4). In t-SNE analy-
sis, cancer samples from different origins showed clear 
clustering using the methylation profile of these MCBs 

(Fig.  1B). Taken together, these data demonstrate the 
potential of our custom panel for multi-cancer detection 
and CSO localization.

Performance of multi‑cancer diagnosis and CSO 
localization
For a multi-cancer test to be clinically useful, we estab-
lished a two-step approach including the diagnosis of 
cancer status and the localization of CSO after a positive 
cancer diagnosis. To profile the methylation pattern of a 
sample for cancer detection, the methylation levels of the 
57 multi-cancer diagnostic MCB markers were quanti-
fied by MFR and we developed a metric called “methyla-
tion score” to summarize the deviations of MFR values of 
the 57 MCBs from the baseline distributions of training 
healthy controls. High methylation scores indicate abnor-
mal methylation patterns, and as expected, we observed 
significantly higher methylation scores in cancer patients 
than in healthy individuals (Wilcoxon test p-value < 0.05) 
(Fig.  2). Using the diagnostic methylation score model 
to discriminate cancer samples from healthy controls, 
the overall AUC value was 0.907 (95% CI: 0.887–0.927) 
in the training cohort and 0.908 (95% CI: 0.879–0.938) in 
the testing cohort (Fig. 3A). With a cut-off value of 4.451 
and a training specificity of 98% (i.e., the score threshold 
was set at the 98th quantile of the training control sam-
ples), the diagnostic methylation score model achieved 
a specificity of 100% (95% CI: 97.6%-100%) in the testing 
cohort. The overall sensitivity was 65.5% (95% CI: 61.2%-
69.6%) and 67.3% (95% CI: 60.6%-73.4%) in the training 
and testing cohorts, respectively, and the sensitivity for 
early-stage (I and II) samples was 50.3% (95% CI: 37.7%-
52.3%) and 45.7% (95% CI: 34.6%-57.1%), respectively 
(Fig.  3B). For most cancer types, detection sensitivity 

Fig. 1 Visualization of the multi-cancer diagnostic markers and the CSO markers in cohort samples. t-SNE algorithm was used for dimension 
reduction. A Clustering of the 500 healthy controls and 733 cancer patients in the training and testing cohorts using 57 multi-cancer diagnostic 
markers. B Clustering of the 484 true positive cancer samples identified by the diagnostic methylation score model at 98% training specificity using 
873 CSO markers



Page 6 of 12Xiong et al. BMC Cancer          (2024) 24:840 

increased with increasing disease stage in both the train-
ing and testing cohorts (Fig. 3C). Spearman’s rank coef-
ficient of correlation between the methylation score and 
cancer stage was 0.738 and 0.751 in the training and test-
ing cohort, respectively (Fig. 2), suggesting an association 
between methylation score and tumor load.

For CSO localization, we used the MFR values of the 
873 CSO markers to construct a seven-class multi-layer 
stacked ensemble model (the CSO ensemble model) 
using the AutoGluon machine learning framework [21]. 
We included only true positive cancer samples identi-
fied by methylation score with 98% specificity for model 
development (n = 336) and testing (n = 148). AutoGluon 
initially trained 13 models with the 873 methylation fea-
tures and subsequently identified the optimal ensemble 
combination, consisting of 4 models (NeuralNetFastAI, 
LightGBMXT, LightGBM, and CatBoost), from this set. 
The input data and the code for the fitting process were 
available on Github (http:// github. com/ tchan 1029/ 
TOTEM). Performance of the CSO ensemble model 
was assessed by the top 1 accuracy (i.e., the true class 
matched the most likely class) and the top 2 accuracy 
(i.e., the true class matched the first or the second most 
likely class). The top 1 and top 2 accuracies were 97.0% 
(95% CI: 94.6%-98.6%) and 98.2% (95% CI: 96.2%-99.3%) 

in the training cohort and 77.7% (95% CI: 70.1%-84.1%) 
and 86.5% (95% CI: 79.9%-91.5%) in the testing cohort 
(Fig. 4). The top 1 and top 2 accuracies of the ensemble 
model in the testing cohort surpassed those of any indi-
vidual models (Additional file 1: Table S2), demonstrating 
that the ensemble model leveraged the collective wisdom 
of different models, thereby reducing the risk of overfit-
ting associated with any single individual model.

The purpose of the early detection approach introduced 
in this study is to guide, rather than replace, clinical diag-
nostic procedures. Therefore, even if the CSO misclassi-
fies a case into a closely associated cancer type, such as 
liver and pancreatic cancer, which share similar diagnos-
tic protocols (i.e., abdominal ultrasound and magnetic 
resonance imaging), it remains clinically valuable. Mis-
classifications between liver and pancreatic cancer can 
still benefit patients by excluding other low-probability 
cancers and directing subsequent medical investigations. 
To account for misclassified cases that could still benefit 
from the CSO model, we combined LIHC and PAAD into 
a single category, hepatopancreatic cancer (HPCA), and 
recalculated the probability of HPCA by summing up the 
probabilities of the two classes. Subsequently, the over-
all top 1 and top 2 accuracies for all cancers increased 
to 97.9% (95% CI: 95.8%-99.2%) and 98.8% (95% CI: 

Fig. 2 Methylation scores of healthy individuals and cancer patients stratified by stage. Samples in the training cohort and in the testing cohort 
were plotted separately. Two-sided Wilcoxon test was performed on the methylation score between healthy individuals and all cancer patients. 
Spearman’s rank coefficient and one-sided p-value of correlation was calculated between the methylation score and the stage (i.e., healthy, stage I, 
II, III, and IV)

http://github.com/tchan1029/TOTEM
http://github.com/tchan1029/TOTEM
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Fig. 3 Performance of the diagnostic methylation score model. A RoC plots of the model, stratified by cancer type. B RoC plots of the model, 
stratified by stage. C Sensitivity of the model with 98% training specificity for individual cancer types or for multi-cancer, stratified by stage. 
Error bars indicate the 95% Wilson confidence interval (CI). The number of samples in the training and testing cohort is shown below the stage 
and separated by a vertical line
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97.0%-99.7%), respectively, in the training cohort and to 
82.4% (95% CI: 75.3%-88.2%) and 90.5% (95% CI: 84.6%-
94.7%), respectively, in the testing cohort (Additional 
file 1: Fig. S3).

Impact of the number of markers on multi‑cancer 
diagnosis and CSO localization
To explore the possibility of making accurate prediction 
with fewer markers, we performed a serial elimination of 
markers and evaluated the performance of TOTEM con-
structed from the pruned markers. The AUCs of the diag-
nostic methylation score model for the detection across 
cancer types and stages remained stable when 21 markers 
(three markers per cancer type) or more were included. 
Even with a set of only seven markers (one per cancer 
type), the diagnostic model could still perform well with 
an overall AUC of 0.865 (95% CI: 0.841–0.889) and 0.866 
(95% CI: 0.830–0.903) in the training and testing cohorts, 
respectively (Additional file  1: Fig. S4). After reducing 
the number of CSO markers from 873 to 214, which only 
included markers retained in all 10 bootstraps, the CSO 
ensemble model achieved an integrated top 1 accuracy 
of 64.9% (95% CI: 56.6%-72.5%) and an integrated top 2 
accuracy of 83.1% (95% CI: 76.1%-88.8%) in the testing 
cohort (Additional file 1: Fig. S5). Despite the decrease in 
top 1 accuracy from 77.7% (95% CI: 70.1%—84.1%), the 
top 2 accuracy was consistent with the full set of markers. 
Samples from different groups were still clustered in the 
t-SNE plots (Additional file 1: Fig. S6). These results sug-
gest that a subset of our methylation markers may suffice 
for accurate multi-cancer diagnosis and acceptable CSO 
localization.

Independent validation of multi‑cancer diagnosis and CSO 
localization
To further evaluate the generalizability of our approach, 
we recruited an independent validation cohort con-
sisting of 143 healthy controls, 79 LIHC and 100 STAD 
patients based on availability. The diagnostic methyla-
tion score model and the CSO ensemble model that has 
been trained on the training cohort were applied to the 
validation samples. The MFR values of the 57 multi-can-
cer diagnostic markers and the 873 CSO markers in the 
training, testing and independent validation cohorts were 
summarized in Additional file 2: Table S5 and Table S6, 
respectively. The prediction values of the diagnostic 
methylation score model and the CSO ensemble model 
were summarized in Additional file  2: Table  S7 and 
Table S8, respectively.

The AUC of the diagnostic model for the validation 
LIHC and STAD samples reached 0.955 (95% CI: 0.929–
0.980) and 0.800 (95% CI: 0.739–0.861), respectively 
(Fig. 5A). Using the cutoff at 98% training specificity, the 
validated specificity was 98.6% (95% CI: 95.0%-99.8%) and 
the sensitivity was 68.4% (95% CI: 56.9%-78.4%) for LIHC 
and 46.0% (95% CI: 36.0%-56.3%) for STAD. With true 
positive samples at 98% training specificity, top 1 accu-
racy and top 2 accuracy of CSO localization were 83.3% 
(95% CI: 70.7%-92.1%) and 88.9% (95% CI: 77.4%-95.8%) 
for LIHC (n = 54), and 67.4% (95% CI: 52.0%-80.5%) 
and 78.3% (95% CI: 63.5%-89.1%) for STAD (n = 46), 
respectively (Fig.  5B). While the model performance for 
the LIHC validation samples was similar to the testing 
cohort, there was a decrease in the performance for the 
STAD validation samples, likely due to the lower pro-
portion of stage IV cases. Indeed, when STAD samples 

Fig. 4 Performance of the CSO ensemble model. Heat maps showing the number and proportion of cancer samples classified into a given class 
in (A) the training cohort and (B) the testing cohort. Column labels represent actual sample classes and row labels represent predicted classes
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were stratified by stage, we found no significant differ-
ence in the performance of diagnosis and CSO localiza-
tion between the testing cohort and the validation cohort 
(Fig.  5C). Overall, the performances of the diagnostic 
methylation score model and the CSO ensemble model 
in LIHC and STAD patients within the independent vali-
dation cohort were comparable to those in the testing 
cohort, suggesting that our approach could be generalized 
to external data, specifically in these cancer types.

Discussion
Utilizing the methylation profile of circulating cfDNA 
for non-invasive early cancer diagnosis has shown great 
promise, but currently there are only limited published 
large-scale investigations for multi-cancer application. 

In this study, we present a novel multi-cancer detection 
and localization approach based on targeted methylation 
sequencing of 1,555 plasma samples, which achieved high 
sensitivity and accurate CSO prediction for seven com-
mon cancers across stages. In particular, we explored the 
minimal number of markers required and demonstrated 
that comparable performance can be achieved with as few 
as 21 diagnostic markers and 214 CSO markers, achieving 
a training AUC of 0.865, a testing AUC of 0.866, and an 
integrated top 2 accuracy of 83.1% in the testing cohort.

Overfitting is a common concern in the field of early 
cancer detection due to the extremely low presence of 
tumor-derived cfDNA fragments. Unlike most published 
studies, we used a fragment-level metric rather than 
machine learning method for multi-cancer diagnosis, 

Fig. 5 Performance of the diagnostic model and the CSO model in the independent validation cohort. A RoC curves of the diagnostic methylation 
score model; B Heat map showing the CSO prediction results for STAD validation samples; C Sensitivity, top 1 and top 2 accuracy of TOTEM for STAD 
validation samples at different stages compared with the training and testing cohorts. Error bars indicate the 95% Wilson CI
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which likely mitigated the risk of overfitting problem. 
Indeed, we observed a consistent distribution of methyla-
tion scores between the training and testing cohorts across 
cancer class or stage (Additional file  1: Fig. S7). We also 
observed a strong association between methylation score 
and disease stage, with higher methylation scores generally 
associated with later stages, suggesting that we detected 
bona fide cancer-related methylation signals. Finally, to 
assess the potential bias of our method, we included an 
independent validation cohort of LIHC and STAD sam-
ples, which showed similar detection performance to both 
the training and testing cohorts when stratified by stage. 
Differences in the mean age between healthy individuals 
and patients were observed in the independent validation 
cohort (39.5 vs. 58.5 yrs). To validate the independence of 
methylation scores from age, individuals in the independ-
ent validation cohort were categorized into three groups: 
healthy individuals, LIHC patients, and STAD patients 
and further subdivided into younger (≤ 60 yrs) and older 
(> 60 yrs) subgroups. Wilcoxon tests were then conducted 
on the methylation scores of the younger and older sub-
groups within each group. The p-values from the three 
sets of tests were all non-significant (0.15, 0.67, and 0.14), 
indicating that methylation scores are not associated with 
age (Additional file 1: Fig. S8). Additionally, although the 
mean age of healthy individuals in the independent valida-
tion cohort (39.5 yrs) was different from that in the train-
ing (52.0 yrs) and testing cohort (51.5 yrs), no significant 
difference was found in the methylation scores of healthy 
individuals between the three cohorts (Additional file  1: 
Fig. S7). This suggests that the methylation score of healthy 
individuals was not associated with age. Taken together, 
these data demonstrate the robustness of our approach.

In contrast to the diagnostic model for multi-cancer 
binary classification, machine learning algorithms were 
implemented for the multi-class CSO prediction. Due to 
tumor heterogeneity, it was challenging to find a generic 
set of CSO markers applicable to all patients across the 
seven cancer classes, and thus the number of CSO mark-
ers was large relative to the sample size. We took several 
measures to reduce overfitting, including bootstrapping 
CSO marker selection, repeated bagging for hyperpa-
rameter tuning, and integrating predictions from multi-
ple classifiers. Although there was still a decrease in CSO 
accuracy from the training to the testing cohort, similar 
performance was achieved in the independent validation 
dataset (top 1 accuracy: 76.0%; top 2 accuracy: 84.0%) 
compared to the testing cohort (top 1 accuracy: 77.7%; 
top 2 accuracy: 86.5%), suggesting that our CSO model 
can still generalize to external data with acceptable accu-
racy. In addition, we examined the association between 
cancer signal intensity and CSO accuracy and found that 
samples with higher methylation scores were more likely 

to be accurately predicted by the CSO model (Additional 
file 1: Fig. S9). For example, for samples with methylation 
scores above 7.36, which accounted for 80.1%, 86.5%, 
and 66% of the true positives in the training, testing and 
the independent datasets, the top 1 accuracy increased 
to 98.5%, 80.5%, and 80.3%, and the top 2 accuracy 
increased to 98.9%, 89.8%, and 89.4%, respectively. In 
comparison, for samples with methylation scores above 
4.451 (i.e., true positives with the cutoff providing 98% 
training specificity), the top 1 accuracy was 97.0%, 77.7%, 
and 76.0%, and the top 2 accuracy was 98.2%, 86.5%, and 
84.0%, respectively. This result suggests that our CSO 
model was built on true tumor-related methylation sig-
nals instead of technical or biological noise.

Methylation-based multi-cancer detection usually 
requires a large number of markers due to cancer het-
erogeneity. For example, Liu et al. selected 256 features 
from a 17.2 Mb panel for each ordered cancer type pair 
and concatenated them to train a multi-class model 
in more than 50 cancer types [3]. Gao et  al. selected 
566 pan-cancer and 1,240 tissue-specific methylation 
regions from a 2.7 Mb panel and performed a multi-
class classification in six cancer types (COREAD, 
ESCA, LIHC, NSCLC, OV, PAAD) [13]. Compared 
with these published multi-cancer studies with larger 
panels, our approach could maintain comparable sen-
sitivities with only 57 markers for cancer detection 
in both stage I (Liu et  al.: 39.0%; Guo et  al.: 35.4%; 
TOTEM: 35.7%) and stage II (Liu et  al.: 69.0%; Guo 
et  al.: 54.5%; TOTEM: 56.4%) and achieve comparable 
top 1 accuracy for the five overlapping cancer types 
(Liu et  al.: 93.0%; Guo et  al.: 80.8%; TOTEM: 76.3%) 
with 873 markers for CSO identification. We also inves-
tigated the influence of the number of markers on the 
performance of cancer diagnosis and localization for 
TOTEM. Satisfactory performance could be achieved 
with only 21 diagnostic markers and 214 CSO markers. 
This tremendous reduction in the size of the marker 
set could significantly reduce the cost of panel design 
and NGS sequencing. It also opens up the possibility of 
developing a multiplex PCR-based platform to further 
reduce the cost of testing and simplify the experimental 
workflow, which would benefit the applicability of our 
approach for large-scale cancer screening purposes. 
Moreover, the integration of protein and methylation 
cfDNA markers has been shown to enhance the dis-
crimination for early-stage cancer detection, as shown 
by Ben-Ami et  al. in a pancreatic cancer cohort [23]. 
This combination strategy holds promise for improving 
the sensitivity of multi-cancer diagnosis, particularly in 
the early stages.

In addition to targeted methylation sequencing stud-
ies, there are also studies utilizing shallow whole-genome 
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methylation sequencing for cancer diagnosis and can-
cer signal origin prediction. Comparing with targeted 
approach, which only analyzes differentially hypermeth-
ylated or hypomethylated CpG sites enriched in CpG 
islands, the whole-genome approach profiles whole-
genome hypomethylation and allows for multimodal 
analysis of methylation and fragmentation, therefore 
suffers less from tumor heterogeneity, and could con-
tribute to higher sensitivity in pan-cancer diagnosis. 
However, high-depth targeted sequencing usually has 
higher analytical sensitivity in detecting cancer-specific 
genetic changes [24]. The low coverage of whole genome 
methylation sequencing poses a challenge in capturing 
cancer-specific signals. THEMIS, a multimodal analy-
sis integrating methylation, fragment size, fragment 
end motif, and copy number changes from enzymatic 
conversion-based whole-genome methylation sequenc-
ing data, demonstrated superior sensitivity in detecting 
early-stage patients (73% and 74% at 99% specificity in 
the training and testing cohorts, respectively). Never-
theless, this enhanced sensitivity came at the expense 
of compromised CSO accuracy. The CSO accuracy of 
THEMIS approach was only 53% and 54% in the training 
and testing datasets, respectively [25], which was lower 
than the top 1 accuracy observed in the TOTEM study.

The present study has several limitations that need to be 
addressed in the future. First, only healthy individuals were 
included in the study as controls, and therefore the perfor-
mance of our classifiers was not evaluated for the high-risk 
population with cancer-related benign conditions. Second, 
the independent validation cohort recruited only LIHC and 
STAD patients based on availability, thus the performance 
for the other five cancer types remains to be externally vali-
dated. Finally, the non-cancer status of the healthy controls 
was determined at the time of recruitment without follow-
up, which may misclassify early-stage cancers as controls 
and overestimate the false positive rate. The real-world 
clinical performance of our approach needs to be investi-
gated in a much larger prospective cohort, including all 
seven cancer types and balanced disease stages. As more 
cancer subtypes and samples are included in the study, the 
tumor diversity within the cohort will be enriched. This will 
enable us to identify more diverse and effective markers, 
thereby enhancing the robustness of the model. Complete 
long-term follow-up of non-cancer controls is also neces-
sary to evaluate performance.

Conclusion
The diagnostic model achieved an overall area under the 
curve (AUC) of 0.907 and 0.908 in the training and testing 
cohorts, respectively. For cancer patients correctly iden-
tified by the diagnostic model in the testing cohort, the 
top 1 and top 2 CSO accuracies were 77.7% and 86.5%, 

respectively. Notably, performance was maintained with 
only 21 diagnostic and 214 CSO markers, achieving a 
training AUC of 0.865, a testing AUC of 0.866, and an 
integrated top 2 accuracy of 83.1% in the testing cohort. 
These results demonstrate the promising potential of our 
approach for accurate multi-cancer detection and locali-
zation by plasma methylation profiling. The real-world 
clinical performance of our approach needs to be investi-
gated in a much larger prospective cohort.

Abbreviations
AIC  Akaike Information Criterion
AUC   Area under the curve
BRCA   Breast cancer
cfDNA  Cell-free DNA
CI  Confidence interval
COREAD  Colorectal cancer
CSO  Cancer signal origin
ctDNA  Circulating tumor DNA
DMP  Differentially methylated position
DMR  Differentially methylated region
EM-seq  Enzymatic methyl sequencing
ESCA  Esophageal cancer
FDR  False discovery rate
HPCA  Hepatopancreatic cancer
LIHC  Liver cancer
MCB  Methylation-correlated block
MFC  The count of methylated fragments
MFR  The ratio of fully methylated fragments
MI  Mutual information
NCG  The Network of Cancer Genes
NSCLC  Non-small cell lung cancer
PAAD  Pancreatic cancer
RoC  Receiver Operating Characteristic
STAD  Stomach cancer
t-SNE  T-distributed stochastic neighbor embedding
TCGA   The Cancer Genome Atlas
TFBS  Transcription factor binding site
TOTEM  CTdna Origin Tracker dependent on Epigenetic Methylation 

markers
TSS  Transcription start site
UTR   Untranslated region
WGBS  Whole-genome bisulfite sequencing

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12885- 024- 12626-7.

Supplementary Material 1.

Supplementary Material 2.

Acknowledgements
We thank all healthy volunteers, patients and their families for their voluntary 
participation in this study. We also thank all laboratory technicians, for their 
assistance in experiments.

Authors’ contributions
Dalin Xiong, Tiancheng Han and Yulong Li designed the study and wrote the 
manuscript. Yuanyuan Hong oversaw next-generation sequencing experi-
ments. Tiancheng Han performed data analysis and prepared figures and 
tables. Suxing Li and Xi Li performed exploratory data analysis. Wenhui Tao 
and Chunguang Li enrolled patients and collected clinical data. Yu S Huang, 
Weizhi Chen, Chunguang Li oversaw the study. All authors contributed to 
discussion and editing of this manuscript.

https://doi.org/10.1186/s12885-024-12626-7
https://doi.org/10.1186/s12885-024-12626-7


Page 12 of 12Xiong et al. BMC Cancer          (2024) 24:840 

Funding
This work was supported by the Engineering Construction Project of Improv-
ing Diagnosis and Treatment Ability of Difficult Diseases (Oncology) from the 
National Health Commission of China (ZLYNXM202012) and the National Key 
R&D Program of China (2021YFC2500400 and 2021YFC2500401).

Availability of data and materials
The datasets analysed during the current study are available in the the 
Genome Sequence Archive for Human (https:// ngdc. cncb. ac. cn/ gsa- human/) 
with the accession number HRA005803.

Declarations

Ethics approval and consent to participate
All participants were enrolled from Zhongnan Hospital of Wuhan University 
and Yan’an Hospital of Kunming Medical University. This study was approved 
by the institutional medical ethics committee (Zhongnan Hospital: 2020106, 
and Yan’an Hospital: 2023–059-01). Prior to enrollment, all participants pro-
vided informed consent for research use.

Consent for publication
Not applicable.

Competing interests
Tiancheng Han, Yulong Li, Yuanyuan Hong, Suxing Li, Xi Li, Yu S Huang and 
Weizhi Chen are employees of Genecast Biotechnology Co., Ltd.. Tiancheng 
Han, Yuanyuan Hong and Weizhi Chen are inventors on a pending patent 
application related to TOTEM approach (US20220228209A1). All other authors 
declare that they have no competing interests.

Author details
1 Department of Thoracic Surgery, Yan’an Hospital of Kunming Medical 
University, Kunming 650051, China. 2 Genecast Biotechnology Co., Ltd., Wuxi, 
Jiangsu 214105, China. 3 Department of Gastroenterology, Zhongnan Hospital 
of Wuhan University, Wuhan 430071, China. 4 Department of Colorectal 
and Anal Surgery/Hubei Key Laboratory of Intestinal and Colorectal Diseases, 
Zhongnan Hospital of Wuhan University, Wuhan 430071, China. 5 Clinical 
Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, 
China. 6 Quality Control Center of Colorectal and Anal Surgery of Health Com-
mission of Hubei Province, Wuhan 430071, China. 

Received: 15 September 2023   Accepted: 10 July 2024

References
 1. Surveillance, Epidemiology, and End Results (SEER) Program (https:// www. 

seer. cancer. gov) SEER*Stat Database: Incidence - SEER Research Data, 8 
Registries, Nov 2021 Sub (1975-2019) - Linked To County Attributes - Time 
Dependent (1990-2019) Income/Rurality, 1969-2020 Counties, National 
Cancer Institute, DCCPS, Surveillance Research Program, released April 2022, 
based on the November 2021 submission.

 2. Heitzer E, Perakis S, Geigl JB, Speicher MR. The potential of liquid biopsies for 
the early detection of cancer. Npj Precis Oncol. 2017;1(1):36.

 3. Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV, Liu MC, et al. Sensitive 
and specific multi-cancer detection and localization using methylation 
signatures in cell-free DNA. Ann Oncol. 2020;31(6):745–59.

 4. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and 
localization of surgically resectable cancers with a multi-analyte blood test. 
Science. 2018;359(6378):926–30.

 5. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick 
D, et al. Sensitive tumour detection and classification using plasma cell-free 
DNA methylomes. Nature. 2018;563(7732):579–83.

 6. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, et al. Genome-
wide cell-free DNA fragmentation in patients with cancer. Nature. 
2019;570(7761):385–9.

 7. Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K, Zhang K. Identification 
of methylation haplotype blocks aids in deconvolution of heterogeneous 

tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat 
Genet. 2017;49(4):635–42.

 8. Jamshidi A, Liu MC, Klein EA, Venn O, Hubbell E, Beausang JF, et al. Evalua-
tion of cell-free DNA approaches for multi-cancer early detection. Cancer 
Cell. 2022;40(12):1537-1549.e12.

 9. Dor Y, Cedar H. Principles of DNA methylation and their implications for 
biology and medicine. The Lancet. 2018;392(10149):777–86.

 10. van der Pol Y, Mouliere F. Toward the early detection of cancer by decoding 
the epigenetic and environmental fingerprints of cell-free DNA. Cancer Cell. 
2019;36(4):350–68.

 11. Chan KCA, Jiang P, Chan CWM, Sun K, Wong J, Hui EP, et al. Noninvasive 
detection of cancer-associated genome-wide hypomethylation and copy 
number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad 
Sci. 2013;110(47):18761–8.

 12. Sun K, Jiang P, Chan KCA, Wong J, Cheng YKY, Liang RHS, et al. Plasma DNA 
tissue mapping by genome-wide methylation sequencing for noninvasive 
prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci. 
2015;112(40):E5503–12.

 13. Gao Q, Lin YP, Li BS, Wang GQ, Dong LQ, Shen BY, et al. Unintrusive multi-
cancer detection by circulating cell-free DNA methylation sequencing 
(THUNDER): development and independent validation studies☆. Ann 
Oncol. 2023;0(0). Available from: https:// www. annal sofon cology. org/ artic le/ 
S0923- 7534(23) 00087-X/ fullt ext. Cited 2023 Apr 20.

 14. Tanaka K, Okamoto A. Degradation of DNA by bisulfite treatment. Bioorg 
Med Chem Lett. 2007;17(7):1912–5.

 15. Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, et al. 
Enzymatic methyl sequencing detects DNA methylation at single-base 
resolution from picograms of DNA. Genome Res. 2021;31(7):1280–9.

 16. Guo P, Zheng H, Li Y, Li Y, Xiao Y, Zheng J, et al. Hepatocellular carcinoma 
detection via targeted enzymatic methyl sequencing of plasma cell-free 
DNA. Clin Epigenetics. 2023;15(1):2.

 17. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer 
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide 
for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

 18. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-
wide methylation profiles reveal quantitative views of human aging rates. 
Mol Cell. 2013;49(2):359–67.

 19. Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al. Circulating tumour 
DNA methylation markers for diagnosis and prognosis of hepatocellular 
carcinoma. Nat Mater. 2017;16(11):1155–61.

 20. Liu L, Toung JM, Jassowicz AF, Vijayaraghavan R, Kang H, Zhang R, et al. Tar-
geted methylation sequencing of plasma cell-free DNA for cancer detection 
and classification. Ann Oncol. 2018;29(6):1445–53.

 21. Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, et al. AutoGluon-
Tabular: Robust and Accurate AutoML for Structured Data. arXiv; 2020. 
Available from: http:// arxiv. org/ abs/ 2003. 06505. Cited 2023 Apr 20.

 22. Repana D, Nulsen J, Dressler L, Bortolomeazzi M, Venkata SK, Tourna A, 
et al. The Network of Cancer Genes (NCG): a comprehensive catalogue 
of known and candidate cancer genes from cancer sequencing screens. 
Genome Biol. 2019;20(1):1.

 23. Ben-Ami R, Wang QL, Zhang J, Supplee JG, Fahrmann JF, Lehmann-Werman 
R, et al. Protein biomarkers and alternatively methylated cell-free DNA 
detect early stage pancreatic cancer. Gut. 2024;73(4):639–48.

 24. E H, P U, Jb G. Circulating tumor DNA as a liquid biopsy for cancer. Clin 
Chem. 2015 Jan;61(1). Available from: https:// pubmed. ncbi. nlm. nih. gov/ 
25388 429/. Cited 2024 Jan 31

 25. Bie F, Wang Z, Li Y, Guo W, Hong Y, Han T, et al. Multimodal analysis of cell-
free DNA whole-methylome sequencing for cancer detection and localiza-
tion. Nat Commun. 2023;14(1):6042.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://ngdc.cncb.ac.cn/gsa-human/
https://www.seer.cancer.gov
https://www.seer.cancer.gov
https://www.annalsofoncology.org/article/S0923-7534(23)00087-X/fulltext
https://www.annalsofoncology.org/article/S0923-7534(23)00087-X/fulltext
http://arxiv.org/abs/2003.06505
https://pubmed.ncbi.nlm.nih.gov/25388429/
https://pubmed.ncbi.nlm.nih.gov/25388429/

	TOTEM: a multi-cancer detection and localization approach using circulating tumor DNA methylation markers
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study design and participants
	Plasma cfDNA extraction
	Sequencing library preparation
	Panel design and identification of methylation-correlated blocks
	Multi-cancer diagnostic marker selection
	Diagnostic methylation score model
	CSO marker selection
	CSO ensemble model
	Impact of the number of markers on multi-cancer diagnosis and CSO localization

	Results
	Methylation marker discovery for cancer diagnosis and cancer-signal-origin prediction
	Performance of multi-cancer diagnosis and CSO localization
	Impact of the number of markers on multi-cancer diagnosis and CSO localization
	Independent validation of multi-cancer diagnosis and CSO localization

	Discussion
	Conclusion
	Acknowledgements
	References


