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Abstract
Background  The diagnosis of solitary pulmonary nodules has always been a difficult and important point in 
clinical research, especially granulomatous nodules (GNs) with lobulation and spiculation signs, which are easily 
misdiagnosed as malignant tumors. Therefore, in this study, we utilised a CT deep learning (DL) model to distinguish 
GNs with lobulation and spiculation signs from solid lung adenocarcinomas (LADCs), to improve the diagnostic 
accuracy of preoperative diagnosis.

Methods  420 patients with pathologically confirmed GNs and LADCs from three medical institutions were 
retrospectively enrolled. The regions of interest in non-enhanced CT (NECT) and venous contrast-enhanced CT (VECT) 
were identified and labeled, and self-supervised labels were constructed. Cases from institution 1 were randomly 
divided into a training set (TS) and an internal validation set (IVS), and cases from institutions 2 and 3 were treated as 
an external validation set (EVS). Training and validation were performed using self-supervised transfer learning, and 
the results were compared with the radiologists’ diagnoses.

Results  The DL model achieved good performance in distinguishing GNs and LADCs, with area under curve (AUC) 
values of 0.917, 0.876, and 0.896 in the IVS and 0.889, 0.879, and 0.881 in the EVS for NECT, VECT, and non-enhanced 
with venous contrast-enhanced CT (NEVECT) images, respectively. The AUCs of radiologists 1, 2, 3, and 4 were, 
respectively, 0.739, 0.783, 0.883, and 0.901 in the (IVS) and 0.760, 0.760, 0.841, and 0.844 in the EVS.

Conclusions  A CT DL model showed great value for preoperative differentiation of GNs with lobulation and 
spiculation signs from solid LADCs, and its predictive performance was higher than that of radiologists.
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Introduction
Solitary pulmonary nodules (SPNs) are round 
lesions < 3  cm in diameter that are surrounded by nor-
mal lung tissue without atelectasis, hilar enlargement, 
or pleural effusion [1]. With the increasing use of low-
dose CT screening and improved awareness of health 
examinations, the SPNs detection rate has increased 
significantly [2]. However, despite the importance of dis-
tinguishing benign and malignant SPNs, some SPNs are 
difficult to assess qualitatively on the basis of radiologist 
assessments alone [3, 4]. Although most solid SPNs with 
lobulation and spiculation signs are lung adenocarcino-
mas (LADCs), some have been pathologically confirmed 
as granulomatous nodules (GNs) postoperatively [5, 6]. 
For the lobulation sign, up to25% were confirmed to be 
benign lesions; while 88–94% of the spiculation sign indi-
cated malignancy, but a few, such as tuberculoma, were 
confirmed to be benign [6]. PET/CT can evaluate the 
benign and malignant properties of SPNs on the basis 
of the presence or degree of fluorodeoxyglucose uptake. 
However, PET/CT is expensive, not sensitive to pulmo-
nary nodules with a diameter of 8–10 mm, and may show 
false-negative or false-positive results for SPNs diagno-
ses [7, 8]. Although MRI can also distinguish benign and 
malignant lesions, it shows insensitivity for small lesions, 
low resolution of the lung structure, and the propensity 
to be easily disturbed by motion artifacts [9, 10]. Conse-
quently, distinguishing GNs with lobulation and spicu-
lation signs from solid LADCs has remained difficult in 
clinical practice.

In traditional imaging diagnosis based on human 
vision, many minor and important signs are easily over-
looked, and the assessments are often subjective and 
empirical. Moreover, overlaps in the imaging features 
of different lesions can restrict even experienced radi-
ologists from providing definitive diagnoses, and human 
observers cannot easily evaluate and predict deep-level 
information inside the tumor. These limitations highlight 
the need for informative, standardized, reproducible, and 
highly efficient methods to assist and enhance imaging 
diagnoses.

Deep learning (DL), an important branch of machine 
learning, involves learning representations from data 
with an emphasis on learning from connected layers 
corresponding to increasingly meaningful representa-
tions [11, 12]. Compared with traditional machine learn-
ing techniques, DL is capable of recognizing lesions in 
images with high accuracy and automatically extracting 
lesion features for end-to-end computation, which effec-
tively avoids manual segmentation of lesions and com-
plex non-automatic feature extraction processes [11–13]. 
In this study, a CT DL model based on self-supervised 
transfer learning was constructed, and its predictive 
performance was compared with that of radiologists to 

explore its predictive value for distinguishing GNs with 
lobulation and spiculation signs from solid LADCs.

Methods
Study population
The inclusion criteria were as follows: (1) pathologi-
cally confirmed GNs or LADCs; (2) plain CT and con-
trast-enhanced examinations performed within 2 weeks 
before surgery and images reconstructed with slice thick-
ness ≤ 2 mm; (3) lesions appearing as solid SPNs without 
calcification and fat inside, lobulation and spiculation 
signs on the margin, and a diameter of 8–30  mm; (4) 
availability of complete clinical and imaging data.

The exclusion criteria were as follows: (1) pathologi-
cally confirmed other types of tumors; (2) CT images 
with severe artifacts or suboptimal image quality or 
reconstructed with thickness values > 2  mm; (3) lesion 
diameter not in the range of 8–30 mm; (4) lesions appear-
ing as subsolid nodules on CT, containing fat or calcifica-
tion within the lesion, or showing a regular margin ; (5) 
incomplete clinical or imaging data.

Based on the above inclusion and exclusion criteria, 
we retrospectively recruited a total of 420 patients with a 
pathologically confirmed diagnosis of GNs or LADCs by 
surgical resection or puncture biopsy between June 2013 
and February 2019 from three medical institutions. There 
were 307 cases in Institution 1 (211 LADCs and 96 GNs) 
and 113 cases in Institutions 2 and 3 (70 LADCs and 43 
GNs). In this study, we randomly divided the cases from 
Institution 1 into training set (TS) and internal validation 
set (IVS), and used the cases from Institutions 2 and 3 as 
external validation set (EVS). The case screening process 
is depicted in Fig. 1.

CT image acquisition
Images were acquired at the three hospitals with Siemens 
Definition AS + 128-slice and 64-slice CT, Canon 640-
slice CT (Aquilion ONE Vision), and Ge Optima CT660 
64-row 128-slice CT scanners. All patients underwent 
plain and enhanced CT; the scan range was from the tip 
of both lungs to the costophrenic angle bilaterally. Scan-
ning parameters were as follows: tube voltage, 120  kV; 
automated tube current; acquisition matrix, 512 × 512; 
and field of view, 500  mm × 500  mm. The mediastinal 
and lung windows were reconstructed using standard 
algorithms.

Image preprocessing and lesion extraction
Image preprocessing: (1) the image was resampled using 
a linear interpolation algorithm, with the sampling layer 
thickness interval set to 1  mm (although the interpola-
tion algorithm is somewhat detrimental to the detection 
of edge features, it ensures isotropy of the image voxels 
and has higher spatial positional precision [14] ); (2) the 
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window width and window position were adjusted to 
1400 HU and − 500 HU for all images. The 3D slicer soft-
ware was applied to obtain the region of interest (ROI): 
first, the coordinates of the centre of the lesion were used 
as the datum, then coordinate points 1  mm above and 
1 mm below the centre coordinates were determined, and 

finally a square ROI of 40 mm in diameter was obtained 
with each of these three points as the centre. Simultane-
ously, the GNs and LADCs were identified as benign and 
malignant, respectively. The ROI extraction process is 
shown in Fig. 2.

Fig. 1  The case screening process of this study
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Definition of labels
Our study adopts a self-supervised learning approach 
[15], and its main process is divided into two stages: (1) 
self-supervised pretext task training: this stage entails 
the design of a pretext task, and a pseudo label for the 
pretext task is automatically generated for the unlabelled 
data based on certain attributes of the data (e.g., image 
panning, flipping, rotating, etc.), and after completing 
the training with the pseudo label, a network model that 
is capable of capturing the visual features of the image is 
obtained; (2)supervised downstream task training: after 
self-supervised pretext task training finished, the learned 
parameters serve as a pre-trained model and are trans-
ferred to other downstream computer vision tasks by 
fine-tuning.

It has been shown that the method of using rotation 
to generate pseudo labels in self-supervised learning can 
achieve good results in visual, audio, text and other tasks 
[16]. In this study, the obtained ROI patches were trans-
formed to generate pseudo labels by doing four angles 
(each patch was rotated counterclockwise by 0°, 90°, 
180°, and 270°, respectively), which was done in order 
to enable the CNN to learn to recognise and detect the 
local features of the lesions [16]. However, this approach 
somewhat ignores the overall features of the lesion. We 
designated the image rotation angle as the pseudo label 
and the lesion benignity and malignancy as the original 
label. In addition, the geometric transformation (i.e., 
rotation) of the image carried out by this step achieves 
data augmentation and avoids the problem of unbalanced 
samples in this study.

Model construction
ResNet50 is a residual network composed of many resid-
ual units connected in series. It solves the problems of 
gradient vanishing and gradient explosion that occur as 
the network deepens, allowing the network to deepen 
without degrading performance. Therefore, we choose 
ResNet50 network to construct the model [17].The resid-
ual unit’s structure is shown in Supplementary Fig.  1. 
The structure of ResNet50 is shown in Fig.  3. Based on 
the ROI obtained above, DL models of non-enhanced 
CT (NECT), venous contrast-enhanced CT (VECT), 
and non-enhanced with venous contrast-enhanced CT 
(NEVECT) were established, and the IVS was used for 
internal verification with five cross-validation. Thus, 
all cases in institution 1 participated in the training and 
internal verification in this study. Finally, the model was 
validated using the EVS. The establishment process of the 
DL model is shown in Fig. 4.

Radiologist lesion assessment
Two junior radiologists with 3–5 years of work experi-
ence (radiologists 1 and 2) and two senior radiologists 
with 5–10 years of work experience (radiologists 3 and 4) 
independently evaluated the benign and malignant pul-
monary nodules without foreknowledge of the pathol-
ogy. When the diagnostic results were different, the 
radiologists discussed and reached a consensus, which 
was regarded as the Radiologist consensus results (RCR). 
The four radiologists also measured the lesion diameter, 
which was considered as the longest diameter measured 
in the horizontal axis position, and the average value of 

Fig. 2  Region of interest extraction process. The 3D slicer software was applied to obtain the region of interest (ROI): first, the coordinates of the centre of 
the lesion were used as the datum, then coordinate points 1 mm above and 1 mm below the centre coordinates were determined, and finally a square 
ROI of 40 mm in diameter was obtained with each of these three points as the centre. Since the lesions we included were pulmonary nodules with a 
diameter of < 30 mm, the ROIs obtained for each lesion were three slices containing the entire cross-section of the lesion
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the four radiologists’ measured values was considered as 
the final lesion diameter.

Statistical analysis
SPSS 24.0 (IBM) and Medcalc (version 19.1.2.0) software 
were used for statistical analysis. The measurement data 
were expressed as mean ± standard deviation, and the 
counting data were expressed by frequency. T-tests of 
two independent samples were performed for compari-
son of measurement data, and the chi-square test was 
used for comparison of counting data. When p < 0.05, the 
difference was considered to be statistically significant. 
The Kappa test was used to test the consistency of the 
diagnostic results obtained by radiologists. The larger the 
kappa value, the better the consistency.

Area under curve (AUC) of receiver operating char-
acteristic curve, 95% confidence interval(CI), sensitivity, 
and specificity were obtained to evaluate the diagnostic 
efficacy of DL models and radiologists. The Delong test 
was used to compare differences between different DL 
models and the diagnostic efficacy of radiologists. When 
p < 0.05, the differences were considered to be statistically 
significant.

Results
General clinical data
On the basis of the inclusion and exclusion criteria, 420 
patients with GNs and LADCs (LADCs, 281; GNs, 139; 
231 males, 189 females; age range, 22–87 years; mean 
age, 55.93 ± 12.44 years). Samples of malignant and 
benign pulmonary nodules in this study are shown in 
Fig.  5. Cases from institution 1 were randomly divided 
into a TS and internal validation set IVS in a ratio of 7:3, 
while cases from institutions 2 and 3 were treated as the 
EVS. General clinical data of all patients are shown in 

Supplementary Table 1. Both the TS and IVS consisted of 
cases from institution 1 (n = 307), while cases of institu-
tions 2 and 3 constituted the EVS (n = 113). The general 
clinical data of all three sets are shown in Supplementary 
Table 2.

Backbone network selection and performance of networks 
without self-supervised pretext task training
It has been reported that ResNet50 [17], DenseNet121 
[18], Inception-v3 [19], ResNet18 [20] and VGG19 [21] 
networks are often used for classification tasks in the 
field of medical images and have achieved good perfor-
mance. In order to select a more appropriate network, we 
pretrain with the above-mentioned network and param-
eters applied by previous researchers. The plain CT scan 
dataset (unrotated data) from Institution 1 was used for 
training and validation. The results show that the deep 
learning models built by DenseNet121, Inception-v3, 
ResNet18, ResNet50 and VGG19 networks have AUCs of 
0.79, 0.83, 0.78, 0.86 and 0.81 in the validation set, with 
the best prediction performance for the ResNet50 net-
work (AUC = 0.86). Therefore, we finally chose ResNet50 
as the backbone network. The ROC curves of the deep 
learning models built by different networks in the valida-
tion set are shown in Fig. 6.

Deep learning model and radiologist prediction 
performance
For the DL models based on NECT, VECT, and NEVECT 
images, the AUCs in the IVS and EVS were, respectively, 
0.917, 0.876, and 0.896, and 0.889, 0.879, and 0.881. In 
contrast, the AUCs of assessments performed by radiolo-
gists 1, 2, 3, and 4 in the IVS and EVS were, respectively, 
0.739, 0.783, 0.883, and 0.772 and 0.760, 0.760, 0.841 
and 0.844. In the IVS and EVS, AUCs the of radiologist 

Fig. 3  The structure of ResNet50 and parameters during training. ResNet50 includes 49 convolution layers and one full connection layer from input to 
output, which can be divided into five stages. The structure of the first stage is relatively simple and can be regarded as the pretreatment of input. The 
last four stages are composed of bottlenecks, and their structures are relatively similar. CONV represents the convolution layer, which is used to extract 
features; Maxpool indicates the maximum pooling operation, which can avoid overfitting; Relu refers to the activation function, which can accept the 
signal output from the previous unit and convert it into a form that can be received by the next unit; BN refers to batch normalization processing, which 
can cut the image data to a specified size; BTNK in stages 1–4 represents the bottleneck structure, and each BTNK contains three convolution layers; FC 
layer represents the fully connected layer with the functions of combining features and classifying discriminations
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Fig. 4  The process of building deep learning models. The process includes two stages, (1) self-supervised pretext task training: the pseudo labels were 
entered into ResNet50 for DL and predicted. (2) supervised downstream task training: after self-supervised pretext task training finished, the learned 
parameters serve as a pre-trained model and are transferred to downstream task by fine-tuning (prediction of benign and malignant lesions). The param-
eters of the training layers are shown in Fig. 3, only the FC layer parameters are different between the two stages, self-supervised pretext task training is 
(2048,8) and supervised downstream task training fine-tuning for (2048,2)
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concordant results were 0.772 and 0.785, respectively. In 
addition, the comparison revealed that the performance 
of the rotated pre-trained network was higher than the 
non-rotated one (AUC = 0.86). The AUC, 95% CI, sensi-
tivity, and specificity of the DL models and radiologists 
are shown in Table 1. The receiver operating characteris-
tic curves of the DL models are shown in Supplementary 

Fig. 2, and those of the radiologists are shown in Supple-
mentary Fig. 3.

Radiologist diagnostic results and consistency test
Junior radiologists generally showed higher diagnostic 
accuracy for identifying solid LADCs than GNs, with a 
significant difference in the IVS (P < 0.001). However, 
the senior radiologists showed no definite patterns for 

Fig. 6  The ROC curves of the deep learning models built by different networks in the validation set

 

Fig. 5  Examples of malignant and benign samples from this study. A: The margins of the lesion can be seen with lobulation and spiculation signs, and the 
lesion was confirmed to be lung adenocarcinoma after surgery. B: The lesion also has lobulation and spiculation signs, but the postoperative pathology 
is granuloma, this is not uncommon in clinical practice and is easily misdiagnosed as a malignant tumour by radiologists
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the diagnostic accuracy of both types of lesions. The 
radiologists’ diagnostic results are shown in Supplemen-
tary Table 3. The diagnostic results of radiologists were 
tested for consistency. The diagnostic consistency among 
senior radiologists is high (highest kappa value, 0.801), 
the consistency among junior radiologists is medium 
(0.4 < kappa < 0.75), and the consistency between senior 
radiologists and junior radiologists is low (lowest kappa 
value, 0.282).The results of radiologists’ diagnosis consis-
tency test are shown in Supplementary Table 4.

Comparison of prediction performance
Delong test showed a significant difference in the predic-
tion performance between the non-enhanced and venous 
contrast-enhanced CT DL models in the IVS (p = 0.001), 
with non-enhanced CT showing better prediction per-
formance. No other significant differences were observed 
in the prediction performance of the DL models (all 
P > 0.05). Delong test also showed that the prediction per-
formance of radiologists with the same experience level 
was not significantly different (all P > 0.05); the predic-
tion performance of senior radiologists was higher than 
that of junior radiologists, and the difference was statis-
tically significant in the IVS. The Delong test results of 
the predictive performance of the DL models and radi-
ologists are presented in Supplementary Tables 5 and 6, 
respectively.

Discussion
Lung adenocarcinomas require early resection while 
granulomatous nodules do not, indicating the impor-
tance of preoperative identification of these lesions. The 
biological information of tumors can be characterized by 
specific CT signs [22], with lobulation [23] and spicula-
tion [24] both often associated with malignant tumors. 
However, solitary pulmonary nodules showing these 
signs have been pathologically proven to be granuloma-
tous nodules [5, 6]. Therefore, we used self-supervised 
transfer learning and the ResNet50 network to establish 
a deep learning model for distinguishing granulomatous 
nodules and solid lung adenocarcinomas. The model 

showed maximum area under the curve values of 0.917 
and 0.889 in the internal and external validation sets, 
respectively, highlighting the usefulness of this model in 
distinguishing these lesions and thereby facilitating pre-
operative diagnosis.

Self-supervised learning is an unsupervised learn-
ing method in which the model uses information from 
the data to maximize its knowledge reserves [25]. The 
accuracy of DL is directly proportional to the number of 
network layers within a reasonable range, but when the 
depth exceeds a certain threshold, gradient explosion and 
gradient dissipation problems can reduce the accuracy of 
the training set [22]. Resnet50 can improve the system 
performance of the network while increasing the depth 
[26, 27]. Therefore, this study used self-supervised trans-
fer learning and the ResNet50 network to establish a DL 
model.

Radiomics is susceptible to CT acquisition data, lesion 
segmentation, feature extraction and modelling meth-
ods. Unlike radiomics, DL extracts features through 
end-to-end deep convolutional neural networks, and as 
a data-driven algorithm, deep learning-based models can 
achieve higher performance by constructing large datas-
ets. [28, 29]. A radiomics model for distinguishing GNs 
with lobulation and spiculation signs from solid LADCs 
has been previously reported [30], in which the AUCs 
of non-enhanced, venous contrast-enhanced, and non-
enhanced with venous contrast-enhanced CT models in 
the validation set were 0.817, 0.837, and 0.841. However, 
the DL model in this study showed better performance 
for predicting GNs and LADCs, indicating that DL mod-
els offer more advantages than radiomics models for dis-
tinguishing GNs with lobulation and spiculation signs 
and solid LADCs before operation.

Many recent studies have also used DL for prediction 
of benign and malignant pulmonary nodules. Yang et al. 
[31] established a DL model to predict benign and malig-
nant lung nodules (AUC = 0.84), while Feng et al. [32] per-
formed a retrospective analysis of tuberculous GNs and 
LADCs and obtained AUCs of 0.889, 0.879, and 0.809, 
respectively, in the test set, IVS and EVS, respectively. 

Table 1  The AUC, 95% CI, sensitivity, and specificity of the deep learning models and radiologists
IVS EVS
AUC 95%CI SEN SPE AUC 95%CI SEN SPE

NECT 0.917 0.877–0.946 0.894 0.805 0.889 0.850–0.920 0.786 0.853
VECT 0.876 0.831–0.912 0.852 0.770 0.879 0.839–0.912 0.841 0.830
NEVECT 0.896 0.867–0.920 0.783 0.851 0.881 0.854–0.905 0.791 0.853
Radiologist1 0.739 0.686–0.787 0.905 0.573 0.760 0.670–0.835 0.729 0.791
Radiologist2 0.783 0.733–0.828 0.910 0.656 0.760 0.671–0.836 0.800 0.721
Radiologist3 0.883 0.841–0.916 0.848 0.917 0.841 0.760–0.903 0.729 0.953
Radiologist4 0.901 0.863–0.932 0.938 0.865 0.844 0.763–0.905 0.943 0.744
RCR 0.772 0.721–0.818 0.911 0.625 0.785 0.679–0.856 0.871 0.698
Abbreviation AUC: area under the curve, CI: confidence interval, IVS: internal validation set, EVS: external validation set, SEN: sensitivity, SPE: specificity, NECT: non-
enhanced CT, VECT: venous contrast-enhanced CT, NEVECT: non-enhanced with venous contrast-enhanced CT, RCR: Radiologist concordant results
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This study focused on distinguishing GNs and solid 
LADCs, and the maximum AUCs in the IVS and EVS 
were 0.917 and 0.889, respectively, which are higher than 
the results obtained by Feng et al. [32]. Thus, a DL model 
based on self-supervised transfer learning and Resnet50 
shows great potential for distinguishing between GNs 
with lobulation and spiculation signs from solid LADCs 
and thereby facilitating preoperative diagnosis.

Our study also showed that diagnostic consistency 
was high, medium, and low among senior radiologists, 
among junior radiologists, and between senior and 
junior radiologists, highlighting inconsistencies in radi-
ologist assessments. The lack of effective and unified 
diagnostic standards for distinguishing between these 
lesions and the presence of lobulation and spiculation 
signs can impair junior radiologists’ judgment. More-
over, traditional image diagnosis is based on evaluat-
ing the morphological characteristics of the focus and 
prior knowledge, resulting in differences in the diagno-
ses performed by different radiologists. The prediction 
performance of senior radiologists was higher than that 
of junior radiologists, further highlighting the influence 
of diagnostic experience on radiologists’ ability to distin-
guish between GNs with lobulation and spiculation signs 
and solid LADCs.

The AUCs of the DL model in this study were higher 
than the AUCs for radiologists, suggesting that the DL 
model shows obvious advantages over radiologist assess-
ments in differentiating GNs and LADCs. In addition, 
the specificity of the DL was generally higher than that 
of the radiologists’, however, its diagnostic sensitivity was 
generally lower than that of the radiologists’. This may 
be related to the fact that the lung nodules included in 
this study had lobulation and spiculation signs. Lobula-
tion and spiculation signs are usually indicative of malig-
nancy, and radiologists are more likely to diagnose lung 
adenocarcinoma when these two signs are present in a 
lung nodule, influenced by subjective a priori knowledge. 
Therefore, radiologists have higher diagnostic sensitivity 
but lower specificity. Deep learning models, on the other 
hand, are completely data-driven and unaffected by sub-
jective a priori knowledge, and thus have an advantage in 
diagnostic specificity.

In this study, the performance of the DL models with 
unenhanced CT was higher than that with CT enhanced 
scans, indicating that unenhanced CT may offer advan-
tages over CT enhanced scans when using DL models. 
This may have occurred because the contrast agent res-
idues in the tissue gaps of the focus on enhanced scans 
will interfere with the model’s evaluation of the internal 
structure of the focus, resulting in degradation of its pre-
diction performance.Therefore, in clinical practice, DL 
models with unenhanced CT are more applicable and 

cost-effective in the screening and follow-up of pulmo-
nary nodules.

Limitations
Our study had some limitations. First, this was a retro-
spective study, which may have led to selection bias. Sec-
ond, this study only compared GNs with LADCs, and did 
not include other inflammatory nodules, squamous cell 
carcinomas, and other tumors. Third, due to incomplete 
clinical data for parameters such as smoking history and 
tumor markers, this study did not analyze the influence 
of clinical risk factors on the predictive performance of 
the DL model.

Conclusion
In conclusion, a CT deep learning model could effectively 
distinguishing granulomatous nodules with lobulation 
and spiculation signs from solid lung adenocarcinomas, 
and its diagnostic performance and specificity are supe-
rior to those of radiologists. Therefore, in clinical prac-
tice, when radiologists encounter SPNs with lobulation 
and spiculation signs that are difficult to characterise, 
CT deep learning, as a noninvasive and highly repeat-
able approach, can help to assist radiologists with differ-
ential diagnosis in the preoperative period and provide 
a theoretical basis for development of appropriate clini-
cal diagnosis and treatment plans. In addition, our study 
also found that the non-enhanced model performs better 
than the enhanced one. Therefore, this method can also 
be used in patients with contraindications to enhance-
ment, such as contrast allergies.
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