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Abstract
Background  Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive cancer characterized by an 
immunosuppressive microenvironment. Patients from specific ethnicities and population groups have poorer 
prognoses than others. Therefore, a better understanding of the immune landscape in such groups is necessary for 
disease elucidation, predicting patient outcomes and therapeutic targeting. This study investigated the expression of 
circulating key immune cell markers in South African PDAC patients of African ancestry.

Methods  Blood samples were obtained from a total of 6 healthy volunteers (HC), 6 Chronic Pancreatitis (CP) and 
34 PDAC patients consisting of 22 resectable (RPC), 8 locally advanced (LAPC) and 4 metastatic (MPC). Real-time 
Quantitative Polymerase Chain reactions (RT-qPCR), Metabolomics, Enzyme-Linked Immunosorbent Assay (ELISA), 
Reactive Oxygen Species (ROS), and Immunophenotyping assays were conducted. Statistical analysis was conducted 
in R (v 4.3.2). Additional analysis of single-cell RNA data from 20 patients (16 PDAC and 4 controls) was conducted to 
interrogate the distribution of T-cell and Natural Killer cell populations.

Results  Granulocyte and neutrophil levels were significantly elevated while lymphocytes decreased with PDAC 
severity. The total percentages of CD3 T-cell subpopulations (helper and double negative T-cells) decreased when 
compared to HC. Although both NK (p = 0.014) and NKT (p < 0.001) cell levels increased as the disease progressed, 
their subsets: NK CD56dimCD16− (p = 0.024) and NKTs CD56+ (p = 0.008) cell levels reduced significantly. Of note is 
the negative association of NK CD56dimCD16− (p < 0.001) cell levels with survival time. The gene expression analyses 
showed no statistically significant correlation when comparing the PDAC groups with the controls. The inflammatory 
status of PDAC was assessed by ROS levels of serum which were elevated in CP (p = 0.025), (RPC (p = 0.003) and 
LAPC (p = 0.008)) while no significant change was observed in MPC, compared to the HC group. ROS was shown to 
be positively correlated with GlycA (R = 0.45, p = 0.0096). Single-cell analyses showed a significant difference in the 
ratio of NKT cells per total cell counts in LAPC (p < 0.001) and MPC (p < 0.001) groups compared with HC, confirming 
observations in our sample group.
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Introduction
Pancreatic Ductal Adenocarcinoma (PDAC) is the most 
common neoplasm of the pancreas with a very poor 
prognosis and a 5-year survival rate of < 12% [1]. PDAC 
has been projected to be the second leading cause of 
cancer worldwide by 2030 [2]. Treatment strategies pri-
marily include chemotherapy, radiotherapy and surgery 
which may be applied solely or in combination with one 
another. Currently, surgery is the best clinical treatment 
for PDAC, however, only about 15–20% of patients will 
undergo the procedure [3]. Due to the late presentation, 
most patients are diagnosed with a locally advanced 
or metastatic stage of the disease which precludes the 
chance of surgical resection [4]. The tumour microenvi-
ronment (TME) of PDAC is characterised by malignant 
cells, stromal components, and immune cells which 
converge in a delicate balance [5, 6]. Immune cells have 
dual roles in PDAC which contribute to tumour pro-
gression and paradoxically offer avenues for therapeutic 
intervention. For example, neutrophils and lymphocytes 
have been shown to possess pro-tumourigenic and anti-
tumourigeneic characteristics, respectively [7]. Further-
more, effector immune cells such as natural killer (NK) 
cells, CD4+ T-cells, and CD8+ T-cells are present and 
activated in the TME at the early stage of PDAC exert-
ing intricate influences on the tumour behaviour either 
by fueling its growth or orchestrating its suppression [8]. 
Immunosuppressive mechanisms of PDAC cells include 
editing the immune system to become unrecognisable 
leading to tumour escape, activation, and release of 
immunosuppressive molecules such as IL-10 and TGFβ 
which inhibit immune response and promote tumour 
growth and metastasis [9]. Furthermore, tumour cells 
downregulate the expression of MHC class I molecules 
by interfering with the antigen cross-presentation to 
effector T-cells, further exacerbating cancer [10].

The specificity of CD3 antigen for T-cells and its pres-
ence at all the stages of T-cell development makes it an 
ideal T-cell marker for the detection of CD4+ T-helper 
cells and CD8+ T-cytotoxic cells. CD4+ T-helper cells 
and CD8+ T-cytotoxic cells form large proportions of 
the T-cells involved in cell-mediated immunity [11, 12]. 
Alteration of either the number or the function of CD4+ 
T-cells and CD8+ T-cells will affect the immune response 
[13]. Hence maintaining the balance between CD4+ and 
CD8+ T-cells is critical for tumour immunity. Cytotoxic 
lymphocytes play important roles in innate and adaptive 
immune system response against tumour by secreting 

cytokines to facilitate their anti-tumour effect [14]. How-
ever, elevated levels of cytotoxic CD8+ T-cells dysfunc-
tion have been observed in advanced stages of PDAC 
[15]. NK cells represent about 5–25% of circulating lym-
phocytes and express CD16, CD56, and CD57 markers in 
humans [16]. The NK populations are distinguished by 
the markers CD56bright for superior cytokine production 
[17], CD56dimCD16 for immune modulatory function via 
interferon-γ (IFN-γ) secretion and CD56dimCD16+ for 
enhanced cytotoxic abilities [18].

The nexus between immune response, metabolism and 
inflammation has been widely interrogated in PDAC and 
has been implicated in tumour progression and treat-
ment response [5, 19–21]. This systematic inflammatory 
response could be quantified through different scores 
such as ratios between different circulating immune cells 
[22] and correlation between immune cells and reactive 
oxygen species (ROS). Immune cells induce ROS produc-
tion through the secretion of tumour necrosis factor α 
(TNF-α) and ROS have been shown to exert an immu-
nosuppressive effect on NK and T-cells [23]. PDAC accu-
mulates ROS which have dual roles depending on their 
concentration [24, 25]. They can facilitate cancer pro-
gression at mild to moderate levels whilst excessive ROS 
production promotes the release of cytochrome c into 
the cytoplasm which mediates programmed cell death 
[26].

In this study, we demonstrate the immune response 
at both mRNA and protein levels in different stages of 
PDAC in a group of patients of African ancestry. Stud-
ies have shown that the incidence and mortality of PDAC 
can vary across ethnicity and geographical locations [27, 
28]. Importantly, patients of African descent have also 
been observed to have the poorest prognosis attributed 
to both genetic, social and environmental factors. Since 
immune responses could contribute to cancer disparities 
), we sought to profile key immune factors in our patient 
population and highlight their expression patterns.

Methods
Patient recruitment
Ethics clearance for this study was obtained from the 
Human Research Ethics Committee of the University of 
the Witwatersrand (Study number: M190681). Partici-
pants gave written informed consent and were recruited 
from the Hepatopancreatobiliary Unit at Chris Hani 
Baragwanath Academic Hospital, Soweto Johannes-
burg, South Africa. Sample processing was done at the 

Conclusion  The expression of these immune cell markers observed in this pilot study provides insight into their 
potential roles in tumour progression in the patient group and suggests their potential utility in the development of 
immunotherapeutic strategies.
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Department of Surgery, Faculty of Health Science, Uni-
versity of the Witwatersrand. Inclusion criteria included 
patients aged 18 years old and above, self-reported of 
being of African ancestry, a confirmed clinically and his-
tologically primary diagnosis of one of the three stages of 
PDAC notably resectable pancreatic cancer (RPC), locally 
advanced pancreatic cancer (LAPC) and metastatic pan-
creatic cancer (MPC) according to the American Joint 
Committee on Cancer (AJCC 8th edition) [29]. For the 
control groups, patients with chronic pancreatitis (CP) 
and healthy volunteers (HC) were recruited. All patients 
in the control groups also self-reported being of African 
ancestry. Exclusion criteria included patients with organ 
failure or undergoing any therapy at the time of the study.

Sampling and Processing
Fasting blood samples were collected by venepuncture 
in two separate clear vacutainer tubes (BD Biosciences, 
Franklin Lakes, NJ, USA) with coagulant EDTA and 
without anti-coagulant. Plasma was obtained by centri-
fuging the blood at 1734  g, 4  °C for 10  min. The blood 
was processed to obtain serum by centrifuging at 1734 g, 
4 °C for 10 min after allowing it to clot for 30–60 min at 
room temperature. Peripheral blood mononuclear cells 
(PBMCs) were separated using the Ficoll-Paque™ (GE 
Healthcare, Illinois, United States) separation method 
[30]. PBMCs were collected at a concentration between 
105 and 106 cells/ml and stored in a freezing medium 
(10% dimethyl sulphoxide, Sigma Aldrich, Missouri, USA 
and 90% Gibco Bovine Serum, Thermo Fischer, Massa-
chusetts, USA) and aliquoted (200 µl) in single-use vials, 
which were stored at -80 °C until needed. Samples were 
only thawed once to preserve integrity. One millilitre 
of diluted BD FACS Lyse (BD Biosciences, New Jersey, 
United States) solution was added to 100 µl of the whole 
blood sample to fix the white blood cells. The whole 
blood FACS lyse mix was allowed to stand at room tem-
perature for 12–15 min after which it was stored at -80ºC 
until analysis.

Serum, plasma and PBMCs samples were processed 
within 2 h from the blood collection. An overview of the 
analysed samples is shown in Table S1. Serum, plasma, 
PBMCs, lysed whole blood were used to carry out NMR, 
ROS, Elisa, RT-qPCR and immunophenotyping, respec-
tively (Figure S1).

Gene expression analysis of immune-related markers
Total RNA was extracted from PBMCs samples, using 
the TriReagent® (Sigma Aldrich, Missouri, United States) 
according to the manufacturer’s instructions. The qual-
ity of RNA was measured using a NanoDrop ND-1000 
Spectrophotometer (Thermo Fischer Scientific, Mas-
sachusetts, United States), and A260/280 ratio > 1.8 
was observed across all samples. Complimentary DNA 

(cDNA) synthesis was performed from 250 ng/µl of total 
RNA using the Photoscript® II First Strand cDNA Syn-
thesis Kit (cat no. E6560S, New England BioLabs® Inc. 
Massachusetts, United States), according to the manufac-
turer’s instructions.

A quantitative Real-time Quantitative Polymerase 
Chain Reaction (RT-qPCR) was then carried out using the 
TaqMan® Fast Advanced Master Mix (Thermo Fischer, 
Massachusetts, United States) per the manufacturers’ 
instructions. The reference gene Microsomal Ribosomal 
Protein L19 (MRPL19) (Hs00608519_m1) [31] and target 
genes CD8A (Hs00233520_m1), CD4 (Hs01058407_m1), 
CD3 (Hs00609515_m1), CD16/FCGRB (Hs00275547_
m1), CD56/NCAM1 (Hs00169851_m1), and CD57/
B3GAT were obtained from Thermo Fischer Scientific, 
Massachusetts, United States. The MIQE guidelines 
were strictly adhered to [32]. The Quant Studio™ 1 Real-
Time System (Thermo Fischer Scientific, Massachusetts, 
United States) was used to run the RT-qPCR reactions.

Measurement of plasma levels of CD4 and CD8 cellular 
markers
An immunoassay ELISA kit (Elabscience Biotechnol-
ogy Inc Houston, USA) which has been pre-coated with 
antibodies specific to human CD4 and CD8 was used to 
quantify the concentration of these immune cell mark-
ers in the plasma samples. The ELISAs were performed 
according to the manufacturer’s protocol. Standards and 
samples were assayed in duplicates and the optical den-
sity was determined at 430  nm. The concentrations of 
CD4 and CD8 (ng/ml) markers were calculated from the 
standard curve.

Reactive oxygen species (ROS) assessment
N, N-diethyl-para-phenylenediamine (DEPPD) sul-
fate is a compound that reacts with the serum to form a 
coloured cation radical [33]. The amount of radical cat-
ion formed is related to the oxidative status of serum and 
can be expressed as hydrogen peroxide equivalents [34]. 
ROS can be assessed by measuring the hydrogen perox-
ide equivalent which is proportional to the absorbance 
measured spectrophotometrically.

One hundred and forty microlitres of 0.1  M sodium 
acetate buffer (pH 4.8) was added to each allocated well 
of a 96-well plate. Five microlitres of serum samples con-
sisting of PDAC and controls as well as standards of dif-
ferent concentrations of hydrogen peroxide solutions: 
50, 25, 6.25, 3.13, 1.56, 0.78 and 0.39 µM were added in 
duplicates. DEPPD and iron sulfate were dissolved in 
0.1  M sodium acetate buffer pH 4.8, respectively. One 
hundred microlitres of the reagent mixture prepared at a 
ratio of 1:25 was then added to each well. The solution 
was incubated at 37  °C for 1  min. Colour development 
was recorded at 505 nm at 25 °C, every 15 s for 30 repeats 
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using an FL 600 Microplate reader Multiscan Sky Micro-
plate Spectrophotometer (Thermo Fisher Scientific, Mas-
sachusetts USA).

Flow cytometry immunophenotyping
Multicolour flow cytometry immunophenotyping analy-
sis was used to determine immune cell populations and 
frequency. A 6-colour panel was established to character-
ize heterogeneous cell populations in the blood samples 
(Table S2). Fully stained samples and unstained samples 
were prepared from the thawed cells. Stained samples 
were prepared by adding antibodies in the dark at previ-
ously titrated volume and then incubated for 30  min at 
room temperature. Antibodies were optimized by titra-
tion to optimally stain lymphocyte populations and 
their subpopulations using CD3 BD Horizon Brilliant™ 
Ultraviolet (BUV), CD4 Alexa flour (AF-700) and CD8 
Brilliant Violet™ 605 (BV-605), CD56 PE Phycoerythrin 
Cyanine 7 (PECy7), CD57 (BB515) while the granulocyte 
population was stained with CD16 PECy5.

All antibodies were obtained from BD LSRFortessa™ 
II flow cytometer BD Biosciences (New Jersey, United 
States). Instrument controls for voltage optimisation 
using single stained and unstained cells as well cytome-
ter setup and tracking beads assays were performed with 
each experiment. Compensation controls using compen-
sation beads (Anti-mouse Ig, K/Negative control compen-
sation particles set; BD Biosciences, New Jersey, United 
States) to exclude spillover were also included in addition 
to the experimental controls of unstained samples [35]. A 
total of 100,000 events were recorded on the flow cytom-
eter (BD Biosciences, New Jersey, United States). Cells 
were gated using forward versus side angle light scatter 
to identify lymphocytes and granulocytes with side scat-
ter versus the various stained markers to confirm these 
populations as described in Figure S2A. The granulocytes 
were used to identify CD16+ neutrophils (Figure S2B) 
and lymphocyte subpopulations which are CD3+CD56− 
T-cells, NKT cells and NK cells (Figure S2C). NKT cells 
were further gated to NKTs CD57+ (Figure S2D) and 
NKTs CD16 (Figure S2E) subsets. NK cells were gated 
into NK CD57+ (Figure S2F), NKCD56brightCD16−, 
NKCD56dimCD16− and NKCD56dimCD16+ (Figure S2G). 
Furthermore, CD3+CD56− T-cells were gated into three 
subsets namely; CD3+CD4−CD8− (double negative) 
T-cells (Figure S2H), CD3+CD8+ (cytotoxic) T cells (Fig-
ure S2I) and CD3+CD4+ (helper) T cells (Figure S2J). The 
gating strategy used also showed another subpopulation 
CD8+CD57+ (Figure S2K) derived from cytotoxic T-cells.

Single-cell RNA profiling
Publicly available were downloaded from the National 
Institute of Health Gene Expression Omnibus data-
base under the accession GSE155698. Data were from 

the PBMCs of 16 PDAC patients (7 Resectable, 5 locally 
advanced and 4 metastatic) and 4 controls (3 healthy vol-
unteers and 1 duodenal adenoma). The data were pro-
cessed as indicated in the original publication [15], using 
the Seurat pipeline version 5.0 [36]. In brief, data were 
initially filtered and normalized; then variable genes were 
identified using the FindVariableFeatures function. Data 
were scaled and centered using linear regression on the 
counts and the cell cycle score difference was calculated 
using the CellCycleScoring function. Principal compo-
nent analysis was used to reduce the dimensionality to 30 
principal components and batch effects were corrected 
using the Harmony algorithm [37]. Differently from the 
original publication, KODAMA algorithm [38, 39] was 
used to highlight the sub-population of immune cells. 
Cell clusters were identified via the FindNeighbors and 
FindClusters function using a resolution of 1.2–2 for all 
samples.

Data analysis
The 2-ΔΔCT method was used to calculate relative changes 
in gene expression [40]. Statistical analyses and graphical 
representations of the data were conducted using R (ver-
sion 4.3.2) and RStudio (2023.9.0.463) software. Com-
parisons of numerical variables were conducted using 
Wilcoxon and Kruskal–Wallis rank-sum tests. Fisher’s 
exact test was utilized to evaluate differences between 
categorical variables. Spearman’s rank test was employed 
to compute the correlation coefficient (rho) between 
variables. Pearson’s correlation coefficient was applied for 
the correlation matrix. The Wald test was utilized to cal-
culate the statistical significance (p-value) of differences 
between Kaplan–Meier survival curves. A significance 
threshold of p < 0.05 was adopted. To address multiple 
testing, a false discovery rate (FDR) of < 10% was applied. 
The KODAMA algorithm [41] was employed to identify 
immunophenotyping patterns for flow cytometry results 
across all samples.

The immunophenotyping data were analysed using 
FlowJo LLC version 10.8 (BD, Biosciences, New Jersey, 
United States) using flow cytometry standard (FCS) files 
linked to the compensation controls from FACSDiva™ 
software. Cells were gated as singlets to exclude doublets 
using forward scatter height (FSC-H) and forward side 
scatter area (FSC-A) parameters. The gating strategies 
were optimised to identify distinct cell populations based 
on scatter parameters such as white blood cells into lym-
phocytes and granulocytes based on forward side scatter 
(FSC) versus side scatter as well as fluorochrome inten-
sities conjugated to each antibody used. Subsequently, 
fluorescence histograms and dot plots were generated to 
visualize the distribution of marker expression within the 
defined gates. Statistical metrics, including percentages 
of the total parent, were computed for specific markers. 



Page 5 of 14Elebo et al. BMC Cancer          (2024) 24:809 

Kaplan–Meier survival curves were created using the R 
library “survival.” The Wald test was used to calculate the 
p-values between survival curves.

Results
Forty patients including 22 RPC, 8 LAPC, 4 MPC, and 6 
CP as well as six age-matched healthy controls (HC) were 
recruited in this study. All the healthy participants con-
firmed that they were in good health and were not taking 
any regular medication, to be eligible for the study. The 
clinical parameters, demographics, and comorbidities 
of this cohort have been reported in our previous study 
[42]. While type 2 diabetes mellitus, cholangitis, and 
hypertension were not significantly associated with the 
disease severity, obstructive jaundice has a higher inci-
dence in patients with LAPC and MPC.

Effector Immune Cell profiling in PDAC
To identify effector immune cell response patterns in 
PDAC, the immune cell markers CD3, CD4, CD8, CD16, 
CD56 and CD57 were assessed in the lymphocytes 
and granulocyte cell populations. CD3, CD4, and CD8 
immune cell markers were used to target T-cell lym-
phocyte subpopulations, CD16 and CD56 were used to 
determine the NK cell levels, and CD57 for NK cell dif-
ferentiation [41]. The total percentages of granulocytes 
significantly increased in PDAC groups compared with 
HC group ( Table S3). As expected neutrophils were dis-
tributed to the right indicating elevated levels because 
they are the most abundant part of granulocytes, while 
lymphocytes shifted to the left signifying lower levels in 
PDAC groups (Fig. 1). Additionally, a shift to the left indi-
cates a decrease in the total percentage of CD3 T-cells 
with increased severity. Except for CD3+ CD8+ (cytotoxic 
T-cell), subpopulations of CD3 T-cells; CD3+ CD4+ (T 
helper) and CD3+ CD4− CD8− ( Double Negative) T-cells 
decreased across the PDAC groups when compared to 
the HCs. Although not significant, HC had the highest 
percentage of T helper cell subset (Table S3), it should be 
noted note that the downregulated CD4+ T-cell level in 
this cohort is not related to HIV status because the CD4 
counts of these patients were above 300 cells/µl which is 
within the normal range. These patients are on antiret-
roviral (ARV) treatments and have normal CD4 counts 
as shown previously [42]. Cytotoxic T-cell decreased in 
RPC and MPC but increased in LAPC while its subset 
cytotoxic CD57+ T-cell decreased with increased severity 
and this could be due to its enhanced cytotoxicity. There 
is a shift to the right for NKs and NKTs which shows an 
increase in levels as the disease progresses. Conversely, 
NKT subsets (NKTsCD57+ and NKTsCD56+) and NK 
subsets (NKCD56brightCD16−, NKCD56dimCD16− and 
NKCD56dimCD16+) were dysregulated within the PDAC 
groups. Of importance is the different distribution 

pattern of CP from both the PDAC and HC groups for all 
the immune markers.

Additionally, gene and protein expression levels of 
key markers were assessed using RT-qPCR and ELISA, 
respectively. Gene expression analysis of the PBMCs 
showed the differences in fold changes between the 
PDAC and control groups. There was no significant dif-
ference in gene expression profiles across the different 
groups except for in CD3 which showed significance 
when the MPC group was compared to HC (Figure S3). 
Assessing protein levels, there were significant decreases 
observed in LAPC and MPC when compared to HC for 
CD4 marker (Figure S4).

Characterisation of effector immune cell response in PDAC
To characterise the immune cell response across the 
PDAC groups, a heatmap was used to compare their cor-
relation with clinical parameters such as HIV, cholangitis, 
obstructive jaundice, hypertension and type 2 diabetes 
(Fig.  2A). NK, NK CD56bright, NKT and NKT CD56+ 
cells were observed to have the highest intensities which 
indicates a strong association with the comorbidities. 
Granulocytes, neutrophils and T-cells had the weakest 
intensities which implies no link to the maladies. Fur-
thermore, to further understand the relationship between 
the immune cells and PDAC progression, the correlation 
matrix was used to assess the intra-correlation of these 
immune cells in RT-qPCR, Elisa, and Immunopheno-
typing analyses (Fig.  2B). The immune cell populations 
CD3 exhibited a positive correlation with lymphocytes 
and NKT CD56+ cells and lymphocytes. Additionally, 
neutrophils CD57 were also shown to correlate strongly 
with both Neutrophils and NK CD56dimCD16+cells. As 
expected both CD4 and CD8 were positively linked to 
T helper, T cytotoxic respectively and CD3+CD4−CD8− 
T-cells collectively.

After obtaining the immune matrix, we speculated that 
these immune cells could distinguish the tumour group 
from the control group. KODAMA was used to explain 
the variance-covariance structure of the variable data 
set through linear combinations of the immunopheno-
typing data sets to determine the pattern of separation. 
Except for one CP outlier CP, HC and LAPC, CP, and HC 
groups were shown to be separate clusters while RPC and 
MPC were not distinctively separated (Fig.  2C). Prog-
nostic factors for overall survival (OS) were analysed 
using the Cox proportional hazard regression. Although 
both CD4/CD8 and neutrophil-lymphocyte ratio (NLR) 
were not significantly associated with overall survival 
(OS), the NLR levels increased in RPC, LAPC, and 
MPC when compared with HC (Fig.  2D). Kaplan Meier 
survival curve was plotted to correlate the immune cell 
levels with survival and patients with lower levels of NK 
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Fig. 1  Distribution of effector immune cell populations in PDAC: Granulocytes and neutrophils were distributed to the right indicating elevated levels 
while lymphocytes shifted to the left signifying decreased levels in PDAC groups. The total parent proportion of CD3 T-cells with increased severity. Sub-
populations of CD3 T-cells, T helper and T cytotoxic were also distributed to the left indicating reduction as the disease progressed. However, CD3 subset, 
cytotoxic T-cell decreased in RPC and MPC but increased in LAPC while it’s subset cytotoxic CD57+ T-cell decreased with increased severity and this could 
be due to it’s enhanced cytotoxicity. There is a shift to the right for NKs and NKTs which signifies elevated levels with increased severity of PDAC. This was 
not the same for NKT subsets (NKTsCD57+ and NKTsCD56+) and NK subsets (NKCD56brightCD16− NKCD56dimCD16− and NKCD56dimCD16+) which were 
dysregulated within the PDAC groups. It should be noted that CP control group has an entirely different distribution from both the PDAC and HC groups 
for all the immune markers. HC; Healthy controls, CP: Chronic Pancreatitis, RPC: Resectable Pancreatic Ductal Adenocarcinoma, LAPC; Locally Advanced 
Pancreatic Ductal Adenocarcinoma, MPC; Metastatic Pancreatic Ductal Adenocarcinoma *p < 0.05, **p < 0.01, ***p < 0.001. Black circle represent signifi-
cantly different from HC.
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Fig. 2  Characterisation of effector immune cell markers in PDAC. (A) Heatmap showing the comparison of immune cell profiles across the PDAC groups 
and their correlation with their comorbidities. NK cells, NK CD56bright,NKT cells and NKTs CD56+ were observed to have the highest intensities which indi-
cates a strong association with the comorbidities. Granulocytes, neutrophils and T-cells had the weakest intensities which implies no link to the maladies. 
(B) Correlation matrix of Spearman’s rank correlation coefficients between the immune cell populations from Immunophenotyping, RT-qPCR, and Elisa 
analyses. Dark blue colours indicate strong relationships while dark red signifies weak correlations. (C) Unsupervised clustering of the Immunophenotyp-
ing data using KODAMA showed that the controls HC and CP were distinctively separated from the PDAC groups. D) Comparison of the Neutrophil/
Lymphocyte ratio (NLR) between the control and PDAC groups. The NLR was significantly altered across the PDAC groups when compared to the HC 
group. (E) Kaplan Meier plot showing that significant correlation between NK CD56dimCD16− cells and patient survival. Patients with lower levels of NK 
CD56dimCD16− cells survived longer. HC; Healthy controls, CP: Chronic Pancreatitis, RPC: Resectable Pancreatic Ductal Adenocarcinoma, LAPC; Locally 
Advanced Pancreatic Ductal Adenocarcinoma, MPC; Metastatic Pancreatic Ductal Adenocarcinoma

 



Page 8 of 14Elebo et al. BMC Cancer          (2024) 24:809 

CD56dimCD16− (p-value = 0.00054) cells survived longer 
(Fig. 2E).

Immunometabolism and inflammatory response in PDAC
To comprehend the role of metabolism on immune 
response, quantitative metabolomics analysis was con-
ducted using NMR spectroscopy and several metabolites 
were observed to be dysregulated in PDAC compared 
with the control groups as reported in the previous study 
[42]. Pearson correlation coefficient was used to measure 
the linear correlation between the two sets; metabolites 
and immune data obtained from immunophenotyping, 
Elisa and RT-qPCR. A heatmap was used to interpret the 
correlation based on the intensities between the immune 
cells and metabolites (Fig.  3A). Glycine and lipids were 
observed to be strongly associated with CD3 and CD16 
from RT-qPCR assay.

A spectrophotometric assay of ROS showed that there 
was no significant difference observed when the PDAC 
groups were compared with CP groups but showed 
significance when compared with the HC. ROS lev-
els were elevated in RPC (p-value = 0.003) and LAPC 
(p-value = 0.008) compared to the HC group (Fig.  3B). 
Hence, to further understand how and if these metabo-
lites alter the oxidative status of PDAC, ROS levels were 
correlated with metabolite concentration. Further-
more, a recent study from our laboratory showed that 
the inflammatory markers GlycA and GlycB were sig-
nificantly elevated in PDAC patients of African descent 
when compared to healthy individuals [42]. Hence, 
GlycA markers (rho = 0.45, p-value < 0.0096) were shown 
to have a significantly positive correlation (Fig. 3C) while 
2-hydroxybutyrate, a metabolite linked to oxidative stress 
(rho = − 0.035, p-value = 0.85) although not significant, 
was inversely associated with the ROS levels (Fig.  3D). 
To determine if ROS is a good marker of inflammation, 
a receiver observing characteristic (ROC) curve was plot-
ted with an area under the curve (AUC) value of 0.91 
shown in Figure S5.

T-cell profiling using single-cell RNA sequencing data
Single-cell RNA sequencing data conducted on PDAC 
patient PBMCs sourced from Steele et al.‘s (2021) study 
was utilized to explore T-cell and natural killer (NK) 
cell populations across different stages of cancer. Unsu-
pervised clustering techniques for PBMC single-cell 
RNA sequencing (scRNA-seq) data were leveraged 
via KODAMA, and two dominant clusters primar-
ily of CD3 + T cells were identified (Fig.  4A). One of 
these clusters exhibited concurrent expression of NK 
cell gene markers, including NCR3, FCGR3A, NCAM1, 
KLRF1, KLRC1, CD38, and NKG7 genes (Fig.  4B). Fur-
thermore, cellular cytotoxicity within these clusters was 
highlighted by monitoring the activity of granzyme and 

perforin through the expression of GZMA, GZMK, 
GZMB, GZMH, GZMM, and PRF1 genes (Fig. 4C). The 
distribution of CD4 and CD8 T cell populations was dis-
cerned through the expression analysis of CD4, CD8A, 
and CD8 genes, aiding in the differentiation between 
natural killer T (NKT) and NK cells (Fig.  4D). A het-
erogeneous T-cell population within the pre-identified 
NKT cells was also identified, showcasing CD4+, CD8+, 
double-positive, and double-negative NKT cells (Fig. 4E). 
Finally, a significant decrease in the NKT population pre-
viously associated with cytotoxic activity in LAPC and 
MPC patients was revealed compared to healthy controls 
and RPC patients (Fig. 4F). These findings shed light on 
the complex dynamics of T-cell and NK cell populations 
in PDAC patients across various disease stages.

Discussion
PDAC tumour cells exhibit immunosuppressive char-
acteristics [43]. Infiltrating immune cells may influence 
PDAC progression in diverse ways. Hence, the immune 
status could be essential in predicting the outcome and 
management of the disease. This study showed that gran-
ulocyte levels increased as PDAC progressed from RPC, 
LAPC to MPC. Recent studies have demonstrated that 
granulocytes, neutrophils, lymphocytes, and NLR are 
associated with the overall survival of PDAC patients [7]. 
However, the granulocyte count is an independent pre-
dictive factor for PDAC [7]. Neutrophils contribute to the 
majority of the granulocyte population; hence it is rea-
sonable to expect that an elevated granulocyte count in 
this cohort is a consequence of elevated neutrophil lev-
els with PDAC severity. Neutrophils are the main com-
ponent of chronic inflammation which promotes tumour 
initiation and progression [44].

CD16+ neutrophils (also known as FcγRIIIb) were 
observed to increase with the disease severity. Neutro-
phils can exert both pro and anti-tumoural functions 
which could depend on the type of tumour and micro-
environment [44]. Additionally, they exhibit functional 
plasticity depending on the expression of cell surface 
markers, cytokines, and ROS. Studies have shown that 
ROS production is vital in several neutrophil effector 
functions [45]. Neutrophils contribute to the destruc-
tion of cancer cells particularly upon treatment with anti-
cancer antibodies, however, the existence of immature 
neutrophils in circulation mediates immunosuppression 
and subsequent metastasis [45]. Neutrophil apoptosis is 
associated with reduced responsiveness and inhibition of 
receptors activating effector function [46] and loss of its 
ability to secrete granule enzymes on deliberate external 
stimulation [47]. CD16+ neutrophils uniquely function as 
an inhibitor of antibody-dependent destruction of can-
cer cells, thereby identifying it as a potential target for 
enhancing the therapeutic efficacy of cancer therapeutic 
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Fig. 3  Interplay between immune cell expression, metabolite levels and inflammation in PDAC. (A) Correlation matrix between metabolic profile (in 
columns) and immune profile (in rows) measured by immunophenotyping, RT-qPCR and ELISA. Pearson correlation coefficient was used to measure the 
linear correlation (red represents positive correlations and blue represents negative correlations (B) Boxplot showing the comparison in DEPPD levels 
representing ROS activity between the PDAC groups (RPC, LAPC, and MPC) and control groups (HC and CP). A significant change was observed when 
the RPC and LAPC groups of PDAC were compared with HC groups. (C) Correlation of ROS and inflammatory marker GlycA. ROS is significantly positively 
associated with GlycA which is an NMR inflammatory marker. (D) Correlation of ROS with 2-hydroxybutyrate. 2-hydroxybutyrate is a metabolite strongly 
linked to oxidative stress via the impairment of β-cells. Although not significant, there was a negative correlation with ROS. HC; Healthy controls, CP: 
Chronic Pancreatitis, RPC: Resectable Pancreatic Ductal Adenocarcinoma, LAPC; Locally Advanced Pancreatic Ductal Adenocarcinoma, MPC; Metastatic 
Pancreatic Ductal Adenocarcinoma
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antibodies [48]. Furthermore, this study confirms that 
high NLR suggests a poor prognosis for patients with 
PDAC and that reduced lymphocyte count is negatively 
associated with survival rate [7], hence could be used as a 
novel survival assessment marker [49].

Pancreatic cancer cells downregulate the immune 
responses by causing a reduction in total lymphocytes 
and T helper cells which play a crucial role in immune 

regulation [50]. Although LAPC have elevated lev-
els of cytotoxic T cells compared to HC, lymphocytes 
decreased with the severity of the disease in this cohort. 
Additionally, no statistical alteration was recorded 
between CD4+T-cells and tumour severity for HIV-
positive PDAC patients in this cohort. Pancreatic can-
cer cells escape immunity by secreting cytokines such 
as IL-10 and TGF-β, immunosuppression as a result of 

Fig. 4  Single-cell analysis of PMBC samples from PDAC patients and HC. Different panels of genes were used to identify (A) CD3 expression, (B) NK phe-
notype, (C) cytotoxicity activity of granzyme and perforin, (D) CD4 + and CD8 + phenotype. E) A scatter plot showing the distribution of CD4 and CD8 
marker genes in the preidentified NKT cells. F) A box plot showing differences NKT cell per total cell counts in PDAC groups (i.e., RPC, LAPC and MPC) 
and HC. HC; Healthy controls, CP: Chronic Pancreatitis, RPC: Resectable Pancreatic Ductal Adenocarcinoma, LAPC; Locally Advanced Pancreatic Ductal 
Adenocarcinoma, MPC; Metastatic Pancreatic Ductal Adenocarcinoma
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these cytokines affects the immune function by inhibiting 
the infiltration of CD4+ and CD8+ T cells in the cancer 
cells [51]. Additionally, DN (CD3+ CD4− CD8−) T-cells 
levels, reduced significantly in LAPC and MPC in this 
cohort. The DN T-cells have been shown to inhibit pro-
liferation and invasion in human pancreatic cancer cells 
via the Fas/FasL pathway which induces cell apoptosis 
[52]. Although the detection of Tregs characterized as 
CD3 + CD4 + CD25 + FOXP3high, was not included in the 
scope of this study due to resource constraints and the 
focus on other immune cell populations, they are cru-
cial in maintaining immune homeostasis and contribute 
to immune evasion within the tumor microenvironment 
[53, 54].

In this study, NK and NKT cell levels were significantly 
elevated as the disease progressed. Furthermore, NKT 
CD16+ cells were significantly reduced across the groups. 
NK cell activation is accompanied by the secretion of 
inflammatory cytokines thereby driving inflammation 
which restricts adaptive immune responses [55]. NK 
cells excluded from PDAC tumours display downregula-
tion of both CD16+ and CD57+ [56]. NK cells fail to sur-
vive or proliferate in a hypoxic microenvironment which 
contributes to the immune escape of NK cells in PDAC 
patients.

CD56+ drives the maturation of NK cells and is weak 
in cytotoxicity but strong in the production of anti-
tumour cytokines such as IFN-γ and TNF-α [57]. How-
ever, although not significant the two main CD56+ NK 
subset populations which are; CD56bright and CD56dim 
CD16− levels were shown to reduce in LAPC and MPC 
when compared to HC. This might be due to the inhib-
ited immunomodulatory function and cytotoxic capac-
ity of both subsets respectively [18]. CD57+ NK cells are 
regarded as a marker of terminal differentiation which is 
less proliferative but more cytotoxic to tumour cells and 
could acquire IFN-γ when crosslinked with CD16+ [58, 
59]. Hence might suggest their reduction in PDAC groups 
compared to the controls. Most of the PDAC patients in 
this cohort have one or more comorbidities. This study 
confirmed the strong association between NK cells and 
Type 2 Diabetes. Dysregulated NK cell responses have 
been associated with a risk of cardiovascular diseases 
[60]. Additionally, decreased NK levels are favourable in 
obstructive jaundice because they lower plasma alanine 
transaminase and bilirubin levels [61]. Furthermore, DN 
T-cells were observed to be strongly associated with the 
comorbidities. Studies have shown that HIV patients 
undergoing antiretroviral therapy have elevated levels of 
DN T-cells [62].

Interestingly this study showed that reduced lev-
els of NK CD56dimCD16− cells are associated with lon-
ger survival time in PDAC. However recent studies 
show an increased proportion of NK CD56dimCD16− in 

advanced stages of breast cancer [63]. In this cohort, 
NK CD56dimCD16− cell levels decreased in RPC but 
increased in LAPC and MPC when compared to HC.

Metabolites in tumour microenvironment have been 
shown to influence immune cell differentiation and 
effector functions [64]. Tumour cells compete for and 
deplete essential nutrients that are required for immune 
cell response [64]. In this study, glycine and lipids were 
shown to have a strong link with CD3 and CD16, but a 
poor association with granulocytes and neutrophils. 
Studies showed that glycine inhibits the calcium flux 
required for the activation and proliferation of T-lym-
phocytes [65]. Lipid peroxidation is an important part of 
lipid metabolism which is vital in signal transduction to 
control proliferation, differentiation and cell death. The 
products of lipid peroxidation inhibit T-cell activation via 
the T-cell receptor (TCR) pathway [66].

ROS can either be detrimental or beneficial for immune 
cell function and response [67]. In this study, the expres-
sion levels of ROS and immune cell markers PDAC pro-
gression were evaluated in comparison to control groups 
consisting HC and CP. In pancreatic cancer, there is an 
intricate correlation between inflammation and oxidative 
stress. The chronic inflammatory environment character-
istic of pancreatic cancer contributes to the generation of 
reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS), leading to oxidative stress [68]. We measured 
ROS as an indicator for oxidative stress, observing sig-
nificant increases in CP and PDAC groups compared to 
controls, with significantly lower levels in MPC. This sug-
gests a delicate balance of ROS in PDAC cells, promoting 
proliferation while preventing senescence and cell death, 
potentially leading to decreased ROS levels at the MPC 
stage [69]. Understanding this interplay holds promise 
for novel therapeutic strategies. ROS promotes apoptosis 
and cancer cell survival depending on its concentration 
and cancer cell type [70]. This study confirms that ROS 
is strongly associated with inflammation because they 
have closely related pathophysiological activities that are 
linked [71, 72]. ROS acts as an inflammatory regulator via 
the activation of NF-kB which promotes the expression of 
proinflammatory cytokines [73].

To delve deeper into the impact of ROS on the inflam-
matory process, we correlated it with GlycA levels [74]. 
A positive association between ROS and GlycA was 
observed, highlighting their involvement in inflammatory 
mechanisms of tumor progression. Conversely, no signif-
icant correlation was found between ROS and 2-hydroxy-
butyrate (2-HB), a significant metabolite associated with 
oxidative stress and a marker for cellular redox imbalance 
and mitochondrial dysfunction [75, 76]. Studies have 
shown that 2-HB is synthesized in response to oxidative 
stress and hence a biomarker for screening β-cell dys-
function and hyperglycemia [77] which are all associated 
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with increased risk for PDAC [75]. Further studies are 
warranted to elucidate different mechanisms contribut-
ing to oxidative stress, as indicated by the absence of cor-
relation between ROS and 2-HB.

Through the scrutiny of a single-cell approach for the 
comprehensive examination of rare cell populations 
and various immune cell subsets, intricate details about 
immune response dynamics in PDAC can be uncovered 
[78, 79]. In our exploration of the immunological land-
scape within the PBMC scRNA seq dataset, a heteroge-
neous population of NKT cells was found. Interestingly, 
remarkable cytotoxic activity was exhibited by these 
NKT cells. A noteworthy depletion in cytotoxic NKT 
cells was found in advanced cancer stages either LAPC or 
MPC, indicating diminished cytotoxic ability with tumor 
progression. The complexity of the immune response in 
pancreatic cancer is underscored by this heterogeneity, 
highlighting the potential importance of these distinct 
NKT cell subsets in tumor progression.

Sample size was the major limitation in this study 
which needs to be expanded on in future research. 
Additionally, the availability of financial resources due 
to limited funding also played a pivotal role in patient 
recruitment and some analyses conducted such as immu-
nophenotyping. However, sample collection is ongoing to 
validate these findings in an increased sample size. The 
comprehensiveness of immunophenotyping is also lim-
ited by the detection ability of flow cytometry. Single-cell 
RNA sequencing of PBMC samples can further shed light 
on the key mechanisms underlying immune evasion in 
pancreatic cancer.

Conclusion
Effector immune cells could be essential in predict-
ing prognosis in the PDAC cohort. This study showed 
that increased granulocytes and neutrophil levels, and 
decreased T-lymphocyte are associated with better out-
comes. NK and NKT cell levels correlate with patient 
survival in this cohort. Evaluating the role of these 
immune cells as well as their interaction with ROS might 
be crucial in understanding disease progression and in 
developing novel therapeutic strategies. The small num-
ber of recruited patients in each stage is a limitation. 
However, to our knowledge, this is the first study of its 
kind in the study population, providing valuable data in 
this group of patients. Future studies must incorporate a 
larger patient cohort and further investigate the interplay 
between the immune cells in inflammation in the tumour 
microenvironment.
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